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Abstract. The combination of spatial latticed structures (hereafter SLS) and flexible cables, the cable-
stayed spatial latticed structures (hereafter CSLS) can cross longer span. According to variation principle,
a novel geometric nonlinear formulation for 3-D bar elements considering large displacement and
infinitesimal rotation increments with second-order precision is developed. The cable nonlinearity is
investigated and it is taken that the secant modulus method can be considered as an exact method for a
cable member. The tower column with which the cables link is regarded as a special kind of beam
element, and, a new simplified stiffness formulation is presented. The computational strategies for the
nonlinear dynamic response of structures are given, and the ultimate load carrying capacities and seismic
responses are analyzed numerically. It is noted that, compared with corresponding spatial latticed shells,
the cable-stayed spatial latticed shells have more strength and more stiffness, and that the vertical seismic
responses of both CSLS and CLS are remarkably greater than the horizontal ones. In addition, the
computation shows that the stiffness of tower column influences the performance of CSLS to a certain
extent and the improvement of structural strength and stiffness of CSLS is relevant not only to cables but
also to tower columns.

Key words: spatial latticed structures; cable; tower column; non-linearity; ultimate load carrying capac-
ity; seismic response.

1. Introduction

The long-span spatial latticed structures have been fully developed around the world in the past
several decades and they are good candidates for future applications due to their aesthetically
attractive shape, low cost, light weight and high stiffness (Makowski 1993, Dong et al. 2000). Since
the single structural type can not meet the need of longer span and greater variety of shapes for
buildings, the hybrid spatial structures come into being, in which the disadvantages of one basic
structural type are compensated with the advantages of another basic structural type. Thus, the
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advantages of different basic structures can be fully utilized. Hybrid structures are formed in two
ways (Kneen 1993, Schueler 1983): One is the combination among stiff structural types such as arch-
truss structures; the other is the combination among flexible cables and stiff structural types, which
has more wide-ranging prospects. As a flexible member, the cable can be combined with different
kinds of stiff structures in several ways. For example, if the two ends of a tensed cable are fixed at
two joints in a truss structure, the pre-stress truss system is formed. If the upper end of a cable is
fixed on tower column and the lower end is anchored to the joint of spatial latticed structure (Dong
et al. 2000), the CSLS can be obtained. CSLS which consists of 3-D bar element, cable member and
tower column member has a few unique characteristics. Firstly, it makes full use of the high strength
of steel cables. Secondly, the member’s stress and deformation in structures could be controlled and
sufficient structural rigidity can be provided due to the additional bearing points offered by tensioned
cables. Thirdly, CSLS with its expanded impression of space may enhance the internal space and
provide a landscape feature for long-span buildings. For spatial latticed structures together with
cables, in a word, the strength, stiffness and stability can be improved, longer span can be obtained
and the steel consumption can be reduced significantly. The use of cables as structural members in
long-span structure systems is, in fact, increasing in many nations (Hosozawa et al. 1999). 

Up to now, CSLS had also been used in many buildings in China. The roof structure of gymnasium
in National Olympic Sports Center in Beijing is a combination of two cylindrical spatial latticed
shells composed of the configuration of diagonal square pyramids. These two shells are connected to
a spatial truss along the ridge to form a gable roof. Two tower columns are set up at both ends of the
building, suspended with single directional cables. This gymnasium was completed in 1988, covering
an area of 70 m × 83.2 m. CSLS was also applied to Jiuguan toll-station of Taijiu express highway in
Shanxi province of China in 1995. Two separate cylindrical spatial latticed shells consisting of the
configuration of orthogonal square pyramids are hung by 28 multi-directional cables from a single
tower column between the two shell structures, covering an area of 14.0 m × 41.518 m. The longer
span structures (over 250 m) by use of CSLS will be demanded in China in the near future. 

Many publications regarding the static and dynamic analysis of spatial latticed structures can be
found (Liew et al. 1997, Yamashita and Kato 2001, Kato and Niho 2000, Kato et al. 2000, Hsiao
and Chang 1991, Kato et al. 1997, Abrate and Sun 1983, Kato and Mukaiyama 1995) in the
literature. The cable dynamics and its free vibration analysis are also studied in closed form by
considering the catenary profile and cable’s self-weight and damping (Kim and Chang 2001, Hobbs
and Raoof 1996, Starossek 1991). Some investigations on cable-supported structures were carried
out to a certain extent (Krishna 2001, Buchholdt 1999, Schrefler and Odorizz 1983). So far, the
literature concerning the on-going research on the behavior and properties of cable-stayed spatial
latticed structures, however, is rather insufficient and further study should be made. On the other
hand, It will be useful to use the research achievements in the field of long-span cable-stayed
bridges for reference, because of the structural similarity. This study is focused on the nonlinear
analysis of long-span CSLS.

2. Nonlinear analysis of 3-D bar element

2.1 Geometrically nonlinear analysis 

We know that different formulations for 3-D beam element or 3-D bar element have been
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developed to analyze the mechanical behaviors of spatial latticed shells in last decades (Schrefler
and Odorizz 1983, Narayanan and Krishnamoorthy 1990, Chan 1992, Borri and Hufendiek 1985).
In this study, however, a novel approach to the derivation of geometric nonlinear formulation for 3-D
bar element with large displacement increments is presented. In Fig. 1,  and oxyz are the local
coordinate systems (LCS) for an element, and, global coordinate systems (GCS) for structure
system respectively, and ij is a 3-D bar element with initial length of L. Define the state (I) as the
initial state before deformation and the state (II) as the working state under application of load.
While the structure is loaded, the element moves from the location ij  to i'j' . Define the nodal
displacement vector and nodal loading vector of this element as ui , uj and fi , fj under LCS, and as
Ui, Uj and Fi , Fj under GCS respectively, we have

2.1.1 Geometrically nonlinear equilibrium equation in the form of work done or energy 
The total potential energy Π of a 3-D bar element under state (II) is the sum of the deformation

energy and the external work done by the forces (Hangai 1981),

oxyz
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Fig. 1 The schematic diagram of an element’s movement
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(1)

where

(2)

E and A are the Young’s modulus and the sectional area, and L and L' are the element’s length at
the state (I) and state (II) respectively. 

Deploying the strain ε of the state (II) in the state (I) according to Taylor formulation and paying
attention to , we obtain

 (3)

where

 (4)

(5)

Substituting Eq. (3) into Eq. (1), the expression of the total potential energy becomes

(6)

The coordinate transformation for an element from GCS to LCS can be carried out according to
the following processes. First, a certain rotation of GCS around the axis z is done to make the axis x
coincide with the intersecting line of plane x-y and plane , which also make axis  at its final
position. Next, another rotation of GCS around the axis y (the same as axis ) makes axis  and

 at their final positions respectively. Thus, the coordinate transformation matrix for an element
between GCS and LCS is as follows 

(7)

where l, m and n are direction cosines of the element ij  about axis x, y and z under GCS
respectively. If the element ij  is perpendicular to the horizontal plane, the coordinate transformation
matrix is given by
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 (8)

The displacement vector under LCS can be expressed by that under GCS as 

  (9)

Differentiating with respect to Eq. (6) which Eq. (9) is substituted into and making it be zero, we
obtain the following nonlinear equilibrium equation

(10)

or (11)
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 (the third-order term) (15c)

Substituting Eq. (15a) and Eq. (15b) into the left side of Eq. (11) and introducing Eq. (12), the
linear terms and the second-order terms for the element stiffness matrix are obtained respectively.
Then, geometrically nonlinear equilibrium equation corresponding to accumulative displacements for
3-D bar element is as follows 

 (16a)

or  (16b)

in which

Kb = K1, b + K2, b (17a)

Exchanging the subscripts in Eq. (16a), we have

(16c)

Kb is the geometric nonlinear stiffness corresponding to accumulative displacements. On considering
up till the r-th order terms Gr in Eq. (14), the stiffness matrix with r-order precision is obtained

Kb = K1, b + K2, b + ... + Kr, b (17b)

It should be pointed out that the r-order terms in stiffness matrix are proportional to L−r, therefore,
the third-order terms and upwards have no obvious influence on the computational precision.

2.1.2 Tangent stiffness matrix for 3-D bar element 
In Eq. (16b), the load vector F might as well be rewritten as , where η is load parameter

and  is load mode. If the load system with single load parameter is conservative,  is constant
vector. For the convenience of derivation, the matrix Kb can be expressed with a six-dimensional
vector , that is 
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Thus, Eq.(16b) becomes as

(19)

Differentiating Eq. (19), we have 

(20)

where

 (21)

Noticing that

 (22)

then, Eq. (21) can be rewritten in following form

(23)
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(25)

in which, KT, b is the tangential stiffness matrix of 3-D bar element with second-order precision. The
elements in Eq. (25) are expressed as follows
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 (26)

where  

2.2 Material nonlinearity of steel tube element 

Various steel tubes are widely used to be members for SLS and usually considered as the tension/
compression 3-D bar elements with hinged connection. Let it be supposed that the member
movement and deformation is within the extent of large displacement and small strain and the
Bauschinger effect for steel tube can be neglected. 

The ideal elasto-plastic mechanical model can be used for tension steel tube element, that is, 

(27)

and for compression steel tube element, the elasto-plastic model of ultimate points instability is
adaptable due to the existence of initial bending, initial eccentricity and initial strain. Besides the
single step linear model and step by step linearized model (Smith, E.A. 1984, Smith, E.A. and
Smith, G.A. 1981), another mechanical model (Shen et al. 1988) based on the analysis of ultimate
bearing capacity for steel tube element is also useful, in which the axial deformation modulus and
the nonlinear stiffness reduced coefficient are introduced. Let σ and ε be the axial stress and strain
of the element, then, the incremental stress-strain relation is given by

(28)

If , the element is under elastic stage 

Et = E (29)

and if , it is under elastio-plastic stage

 (30)

where β is the tangent stiffness reduced coefficient of the compression steel tube element. If
, then
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and if , then 

(32)

in which, fy is the yield strength of steel, εy is the axial strain when σ = fy, and λ is the slenderness
ratio of steel tube element. The series of coefficients  and  can be found in Shen (1988). If
an element is under unloading state, the linear-elastic property will be introduced

Et = E

In the above Eqs., E and Et are the Young’s modulus and tangent modulus respectively.

3. Non-linearity of cable member

Although it is generally elastic in nature, a cable has unique behavior because of its non-linearity
in material and geometric senses. Nonlinear elasticity comes from the change of cable stiffness
varying with cable tension, and geometric non-linearity results from the change of cable location
and shape if large displacement occurs at both ends of a cable. 

Three kinds of methodologies, treating the cable as a bar, the finite element method and treating
the cable as an arc, can be used to analyze a cable member. Taking the change of chordwise length
of cable into account under the uniformly distributed load perpendicular to the chord and
introducing the equivalent elastic modulus, a cable can be treated as a bar member. Multi-node
isoparametric element for cable member is adopted in finite element method (John 1988, Chu and
Ma 1976, Meek 1991, Krishna 1978), but bulky computations are inevitable. Analytics based on
treating the cable as an arc is very helpful to find out the distribution law of internal force and
displacement fields, but it has very limited range for application. In this study, the ‘bar’ method is
used and the catenary line is approximately replaced by parabola in practice because of its small sag
ratio. For convenience, the load component parallel to the cable chord, and the temperature
influence and the stress relaxation of cable member under permanent loads are neglected.

3.1 Equivalent elastic modulus for cable member

For a cable member, as in Fig. 2, l and h are the chordwise length and horizontal projection
length, f and α are the sag and the angle between cable and the horizontal plane respectively, and A,
Ec and q' are the sectional area, the Young’s modulus and uniformly distributed load along the
horizontal projection. Only the self-weight of cable member is considered here. The distance
between nodes k and j is shortened due to the sag, but lengthened due to the tensile stress. So,
under initial state (qi, σi) and non-initial state (q and σ) at any loading incremental step, the changes
in chordwise length for a cable member are given by 

(33)
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(34)

where σi and σ are cable’s initial stress and common stress respectively. The increment of
chordwise length between the above states is as follows

(35)

paying attention to cosα and l = h/cosα, and let , the following equation is
found from Eq. (35) to be

(36)

Based on the change of chordwise length between initial and non-initial state in present loading
incremental step, the following development is obtained 

or (37)

where 

(38a)

and Eeq is the equivalent elastic modulus. Eq. (38a) can be regarded as the secant modulus method
for cable member at any loading incremental step. If making σi = σ approximately, we have
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Fig. 2 The schematic diagram of a cable member
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 (38b)

Here, Eq. (38b) is, in fact, corresponding to the tangent modulus method at the initial state i of the
present loading incremental step.

We see from Eq. (37) that Eeq decreases with the increment of cable length. For example, if ζ =
10 and h are equal to 50 m, 100 m and 200 m respectively, Eeq/Ec are equal to 0.976, 0.90 and
0.715. For steel strand cables, ζ usually varies between 2 and 50. 

As the above derivation is on the basis of considering a cable as parabola, the results are sure to
be in discrepancy with the results obtained from precise computation based on the catenary. Let
ERR = , where δ* is the exact extension of a cable, and  is the approximate extension
evaluated by using equivalent elastic modulus. It is clear that, through a series of computation, the
result based on secant modulus method and precise result fit well. For instance, the ERR is less than
1%, if the cable length is shorter than 400 m. However, the difference between the result based on
the tangent modulus method and precise result is not ignored, e.g., the ERR for a cable with the
length of 100 m is around 2%. Because cable length in CSLS is much shorter than 400 m for
practical applications, it is acceptable that the secant modulus method is regarded as a good
approximation.

3.2 Nonlinear equilibrium equation and tangent stiffness matrix for cable member

In the global coordinate systems, let the coordinates of both ends of a cable member connected
with a spatial latticed shell and a tower column are  and  respectively. With the
displacements of  and  of nodes i and j, the length and tension increment in
cable’s chordwise direction is dl and dS respectively, then

(39)

The cable tangent stiffness may be given by

 (40)

Substituting Eq. (37) into Eq. (39) with h replaced by h', the deploying formulation of cable tangent
stiffness can be obtained, where

(41)

The nonlinear equilibrium equation for cable member under initial global coordinate systems can
be expressed as follows
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where

(43)

(44)

In the above equations,  and  are the tangential stiffness matrix and the tension vector of
cable member at the time t respectively.  is the joint load vector at the time t + ∆t. ∆U is the
displacement incremental vector from time t to t + ∆t. The displacement transformation vector 
and the tension transformation vector  of cable member between the initial and the updated
global coordinate systems under the circumstances of large deformation are 

(45a)

(45b)

where

(46)

It is apparent from Eqs. (45) and (46) that T' is different from T" . 

4. Stiffness matrix of tower column 

A tower column can be considered as a special 3-D cantilever beam element with double-node or
multi-node because of the characteristics of CSLS. For the tower column itself, the connections
between sub-elements such as el , em and eu in Fig. 3 are rigid. The connections among cable, tower
column and main spatial latticed structure, however, should be regarded as pin-connected joints
(Dong and Luo 1994). 

4.1 The stiffness matrix for tower column with single-layer cables

For a tower column with single-layer of cables (see Fig. 3a), the equilibrium equations based on
force method in directions  and  under LCS are 
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(49a)

(49b)

in which,  and  are the flexibility matrices for tower column in directions  and 
respectively. The stiffness equation in direction  is found from Eq. (47a) to be
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Fig. 3 The drawing of a tower column with cables (under the local coordinate system )oxyz



428 Dai Zhou, Hongyu Liu and Bo Jin

where  is stiffness matrix in direction . The stiffness matrix  and  (that is, in directions
 and ) can be easily obtained by means of the same process. Assembling these stiffness matrices

above, we obtain the stiffness matrix for tower column under LCS.

4.2 The stiffness matrix for tower column with double-layer cables 

For a tower column with double-layer cables (see Fig. 3b), the equilibrium equations based on
force method in directions  and  under LCS are like Eqs. (47a) and (47b). But Eqs. (49a) and
(49b) become

(53a)

(53b)

and Eq. (48) also becomes

(54)

where

(55)

 (56)

Substituting Eq. (54) into Eq. (47a) or (47b), and inverting the matrices  and , the stiffness
matrices  and   in directions  and  under LCS can be obtained. Moreover, the stiffness
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matrix  in direction  is obtained easily by use of matrix-displacement method. The stiffness
equation for tower column under LCS is given by 

(57)

in which

(58)

5. Nonlinear seismic responses 

As above statement, CSLS consists of 3-D bar element, cable member and tower column member.
Once the stiffness matrix, mass matrix and damping matrix of each member of a cable-stayed
spatial latticed structure are assembled, the structural nonlinear dynamic equation can be obtained.
The dynamic equation at time step i + 1 (that is, t + ∆t) can be expressed as

(59a)

After linearization, the incremental dynamic equation is

(59)
 

where ,  and  are velocity, structural acceleration and seismic acceleration vector at
time step i + 1 respectively. , and Ri are the incremental displacement vector from time
step i to i + 1, the structural tangential stiffness matrix and nodal force vector at time step i. M is
the structural mass matrix and C is damping matrix. And
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The dynamic incremental equation above can be solved by Newmark method (Newmark 1959).
To avoid the error accumulation, however, an iteration procedure is added at each time step. That is,
if  are obtained from Eq. (59b) by use of Newmark method, we have

 (60)

where ui is displacement vector at time step i and  is the (k-1)th iteration displacement vector
at time step i + 1.

Making use of , we recalculate . Also, the linearization is introduced again

(61)

where 

(62)

Eq. (62) is the correction for . The fundamental equation for the k-th iteration is given by 

(63)

where
 

In Eq. (63),  and  are the acceleration and velocity vector obtained by use of  by
virtue of Newmark method. From Eq. (62), we have

 

Substituting  obtained from above process into Eq. (60), the next iteration is proceeded.
The iteration process ends when  is small enough. 

6. Examples and their analyses

Based on the above theories and methods, the numerical studies are focused on such aspects as
the ultimate load carrying capacity and the nonlinear seismic responses of CSLS. The influences of
some geometrical and physical factors upon structural behavior are also investigated. 
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Fig. 4 The structural schematic diagram and the deflection shapes at ultimate state of the dome

Table 1 Ultimate load carrying capacities of cable-stayed double layer spatial latticed dome and their
comparisons 

No. working mode ultimate load carrying capacity (kN) 

1 without cables and elastic supports system considered 15.05
2 with cables, elastic supports system considered and the 

deflection of tower columns neglected 
23.80

3 with cables, rigid supports system considered and the 
deflection of tower columns neglected 

29.07

4 with cables, elastic supports system and the deflection 
of tower columns considered

21.13

Note: the spring stiffness of elastic supports in Table 1 is k = 5.0 × 104 kN/m
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6.1 Ultimate load carrying capacities of cable-stayed spatial latticed dome and their com-
parisons

Fig. 4(a) shows a cable-stayed double layer spatial latticed dome whose top layer and lower layer
are constituted by the configuration with the Keiwitt 8-7 grid and honeycomb grid respectively
(briefly called as cable-stayed double layer dome of type K8-7). This dome has a number of grids
of 16 × 10, a span of 80.0 m and arch rise of 8.0 m. Its upper chord joints are anchored on the outer
annular beam, which form the bearing supports system. Four tower columns are set up at four
intersections between the outer annular beam and far ends of the two main orthogonal ribs of this
dome. Each tower column tying in with five cables is made up of upper and lower parts with the
length of 25.0 m and 10.0 m respectively. The uniform load system is exerted on the upper chords’
joints.

Nonlinear static computation is carried out to study the structural behavior under different working
modes. The results of ultimate load carrying capacities are shown in Table 1. It is clear that the
ultimate load carrying capacities of the dome under working mode 2, 3 and 4 enhance by 58.15%,
93.17% and 40.4% compared with that under working mode 1 respectively. The result under mode
2 is 81.9% only of that under mode 3, while under mode 4 it reduces by 12.6% compared with
under mode 2. The computations based on elastic supports system obviously differ from those based
on rigid supports system. Those based on the latter tend to be unsafe, because of the overestimation
of load carrying capacity of the structure. Fig. 4(b)~(e) show the deflections of these modes at the
moment of ultimate load respectively. It can be found that the deflection of spatial latticed dome
with cables notably abates, in other words, the dome stiffness improves greatly. The numerical
results also show that the improvement of structural strength and stiffness of CSLS is relevant not
only to cables, but also to tower columns. In addition, there is evident difference between the
computations based on whether or not the deflection of tower columns is considered. 

6.2 Nonlinear seismic responses

A series of computations is carried out for the dome shown in Fig. 4(a), which is subjected to El-
Centro and Taft seismic wave records in directions x, y and z at the same time. In Eq. (59b), the
lumped mass matrix and the Rayleigh damping matrix are introduced (Clough and Penzien 1975),
and the cables are supposed to keep in tensile state during the period of the seismic wave’s time
history. The damping ratio 2% of the basic mode of vibration is used. The displacement time
histories (DTH) of two typical nodes (named as node 1 and 2) of the dome subjected to El-Centro
wave records are showed in Figs. 5(a), (b) and Figs. 6(a), (b). Those subjected to Taft wave records
are showed in Figs. 7(a), (b) and Figs. 8(a), (b). It is very clear from the figures that structural
responses of CSLS are less than those of CLS greatly, the vertical seismic responses of both CSLS
and CLS are obviously greater than the horizontal ones and the configuration of displacement time
history curve of one node is very different from that of another node. It can be found that, under the
same seismic wave records acting on the dome, the peak values of DTH of different joints appear at
different moments. The velocity and acceleration time histories of both structures have the similar
phenomena above. Therefore, it can be deduced that the internal force peak values of different
members in structures occur at different moments. 
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Fig. 5 Displacement time history of double layer dome of type K8-7 under El-Centro seismic wave records

Fig. 6 Displacement time history of cable-stayed double layer dome of type K8-7 under El-Centro seismic
wave records 
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Fig. 7 Displacement time history of double layer dome of type K8-7 under Taft seismic wave records 

Fig. 8 Displacement time history of cable-stayed double layer dome of type K8-7 under Taft seismic wave
records 
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7. Conclusions

This paper focuses attention on the nonlinear analysis of long-span CSLS. Based on the variation
principle, a novel geometric nonlinear formulation for 3-D bar element considering large
displacement and infinitesimal rotation increments with the precision of second-order is developed.
Theoretically, tangent stiffness formulation with any order of precision can be obtained by use of
this method. The cable nonlinearity is discussed and the investigation shows that the secant modulus
method for cable member can be considered as a reasonably exact method and the tangent modulus
method may be used in approximate computation. Considering the tower column to which cables
link, as a special kind of beam element, a new simplified stiffness formulation is developed. In this
study, the computational strategies for the nonlinear dynamic response of structures are investigated,
and the ultimate load carrying capacities and structural nonlinear seismic responses are analyzed
numerically. It is very clear from computations that the ultimate load carrying capacities and
stiffness of CSLS (that is, SLS with cables) enhance significantly. It is shown that structural seismic
responses of CSLS are less than those of CLS greatly, the vertical responses of both CSLS and CLS
are obviously greater than the horizontal ones and the configuration of displacement time history
curve of one node is very different from that of another node. The study also points out that the
stiffness of tower column influences the performance of CSLS to a certain extent and the
improvement of structural strength and stiffness of CSLS is relevant not only to cables but also to
tower columns. Moreover, obvious difference between the static computations based on the elastic
and rigid supports systems exists. The results based on the former should be adopted, while those
based on the latter tend to be unsafe due to the overestimation of load carrying capacity. 
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