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Determination of crack spacing and crack width 
in reinforced concrete beams
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Abstract. In this paper spacing and width of flexural cracks in reinforced concrete beams are
determined using two-dimensional finite element analysis. At early loading stages on the beam the
primary crack spacing is based on the slip length, which is the development length required to resist the
steel stress increment that occurs at a cracked section on the formation of the first flexural crack. A semi-
empirical formula is presented in this paper for the determination of the slip length for a given beam. At
higher load levels, the crack spacing is based on critical crack spacing, which is defined as the particular
crack spacing that would produce a concrete tensile stress equal to the flexural strength of concrete. The
resulting crack width is calculated as the relative difference in extensions of steel reinforcement and
adjacent concrete evaluated at the cracked section. Finally a comparative study is undertaken, which
indicates that the spacing and width of cracks calculated by this method agree well with values measured
by other investigators. 
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1. Introduction

Cracking in reinforced concrete is unavoidable due to its low tensile strength and extensibility.
Wider cracks may not only destroy the aesthetics of the structure but also induce corrosion of steel
reinforcement. Maximum allowable crack widths that will not induce corrosion for different
environmental conditions have been specified by various authorities including ACI Committee 224
(1972). To ensure that the resulting crack widths under service loads do not exceed the limits set,
designers may use the simple guidelines specified in relevant building codes. These guidelines are
based on certain crack width prediction formulas proposed by various investigators. For example,
guidelines for the distribution of tension steel specified by ACI Committee 318 (1995) are based on
the following crack width prediction formula developed by Gergely and Lutz (1968), which is based
on a statistical computer analysis of a large number of test results from different sources.

(1)Wt max, 0.0132fs cAe
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In Eq. (1), Wt, max is the maximum crack width at the tension face of a member in mm, fs is the
steel stress at the cracked section in MPa, c is the concrete cover in mm measured to the centre of
steel bars and Ae is the effective stretched concrete area in mm2. Slightly different guidelines have
been specified by Standards Australia International (2001). These guidelines nominate certain limits
for the maximum steel stress, depending on the diameter and spacing of reinforcing bars. When the
steel stresses under service loads do not exceed the above limits the resulting crack widths are
deemed to be within the acceptable range.

In developing new prediction formulas, different researchers have used various procedures to
calculate the spacing and width of cracks in reinforced concrete members. Watstein and Parsons
(1943) and Chi and Kirstein (1958) developed empirical formulas to calculate the spacing and width
of cracks in flexural members, based on experimental and analytical results of uniaxial tension
members (cylindrical concrete prism with a central steel bar subjected to a tensile force). To
determine the crack spacing, Broms (1965) calculated the concrete stresses by analysing a concrete
section between two adjacent cracks, with the total bond force applied at the two ends of the block
as uniformly distributed line loads at reinforcement level. Beeby (1970, 1971) used the analytical
results of un-reinforced and reinforced concrete columns subjected to eccentric axial loads to
evaluate the spacing and width of cracks. Bazant and Oh (1983) developed prediction formulas
based on a theoretical study on the spacing and width of cracks, using the energy criterion of
fracture mechanics as well as the strength criterion. To determine the spacing and width of cracks,
Venkateswarlu and Gesund (1972) analysed a portion of a cracked beam between two adjacent
cracks using two-dimensional finite element method, with the magnitude of the total bond force
evaluated empirically using experimental results.

In this paper, a more rational approach is adapted in determining the spacing and width of cracks
in reinforced concrete flexural members. Spacing and width of cracks are evaluated based on the
concrete stress and strain distributions near flexural cracks, calculated using a rigorous analytical
procedure. The bond force developed at the interface between reinforcement and surrounding
concrete is evaluated by relating the bond stress to the local bond slip. The present method of
calculation has wider applicability as it can include all the variables involved in reinforced concrete
beams.

2. Analysis of concrete blocks adjacent to flexural cracks

To calculate crack spacing and crack width a series of analyses are carried out on various concrete
block sections taken from loaded reinforced concrete beams. These concrete blocks are bounded by
top and bottom faces of the beam and two transverse sections. The analyses are carried out by
resorting to certain semi-empirical formulations in conjunction with the finite element method, with
the details of the latter method described in Section 2.5. Two different types of concrete blocks are
considered for this analysis. They are: (i) concrete block adjoining the first flexural crack in a beam,
and (ii) concrete block located between two pair of adjacent flexural cracks. These two types are
described below.

2.1 Concrete block adjoining the first flexural crack

Fig. 1(a) shows the concrete block analysed for the determination of concrete stresses and
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displacements adjacent to the first flexural crack in a beam. In this figure the transverse section AA’,
bounding the concrete block, is taken through the first flexural crack in the beam. The formation of
this crack increases the tensile force in steel bars at section AA’, as the concrete tensile force is
transferred to the reinforcement. This force increment is resisted by bond forces developed along a
particular length (development length) of steel bars on either side of the crack. The end point of this
development length on one side of the crack (section XX’ in Fig. 1a) is taken as the other boundary
of the concrete block analysed. This length, shown as lo in Fig. 1(a), is herein referred to as the slip
length, where stresses at sections beyond a distance lo away from the crack are unaffected by the
formation of the first crack. The magnitude of the slip length lo and the associated bond force for a
given beam are determined using the procedure described in Section 2.3.1. 

Compressive and tensile forces acting on the two end transverse sections (AA’ and XX’) are
calculated assuming a linear strain distribution across the depth of the beam, and satisfying
translational and rotational equilibrium requirements. For the translational equilibrium, total
compressive force acting on the section is equated to the total tensile force, including the effect of
reinforcement. For the rotational equilibrium, moment due to all compressive and tensile forces
about the neutral axis is made equal to the applied bending moment at the section. In this
calculation, the applied bending moment at the cracked section (AA’) is taken as the cracking
moment of the beam, Mcr. In a constant moment region, the moment at the uncracked section XX’ is
also equal to Mcr, while in a varying moment region its value depends on the loading regime on the
beam. Note that in the process of calculating the concrete stresses, the resulting steel stresses fs1 and
fs2 at XX’ and AA’ respectively, are also determined. These steel stresses are used in the evaluation
of bond forces developed between reinforcement and surrounding concrete (Section 2.3.1).

Fig. 1 Details of concrete blocks analysed



162 R. Piyasena, Yew-Chaye Loo and Sam Fragomeni

2.2 Concrete block in between two adjacent cracks

The concrete block shown in Fig. 1(b) is analysed to determine the concrete stresses and
displacements in between two adjacent cracks in a loaded beam. This analysis is carried out for
different values of crack spacing and load levels (represented by various steel stress values at
cracked sections) to investigate their effect on the resulting maximum tensile stress within the
concrete block. 

In a constant moment region, the concrete block BAA’B’ is symmetrical about the centre line CC’
(Fig. 1b), and therefore only one half of the block (CAA’C’ ) is analysed. For a selected value of
steel stress at cracked section AA’, the resulting concrete compressive force is determined by
assuming a linear strain distribution across the depth of the beam, and equating the concrete
compressive force and steel tensile force at the section.

In a varying moment region, the full block BAA’B’ is analysed. The steel stress at the cracked
section AA’ is selected to represent the loading regime on the beam. The resulting concrete
compressive force at this section is determined using the same procedure described in the previous
paragraph.

The concrete compressive force and steel stress at the other cracked section BB’ are determined
by assuming a linear strain distribution across the depth of the beam and satisfying the translational
and rotational equilibrium of the section. This procedure is same as that described in Section 2.1 for
calculating forces at the cracked section AA’ in the concrete block adjoining the first flexural crack
(see Fig. 1a). For this calculation, the bending moment at section BB’ is evaluated using the selected
steel stress at section AA’ and the loading on the beam. The evaluation of bond forces is described
in the following Section.

2.3 Bond forces acting on concrete blocks

To evaluate bond forces, the bond stress is assumed to vary parabolically along the steel bar as
shown in Fig. 1. This assumption is followed by the test results of Mains (1951) and Jian et al.
(1984), which showed a similar pattern. The magnitude of the peak bond stress at the mid point of
the parabolic distribution is determined by relating its value to the slip at that point, and satisfying
the equilibrium of forces acting on the steel bar. This procedure is described below.

2.3.1 Bond stress near the first flexural crack and the slip length lo
By equating the total bond force acting on the bar surface and the difference in tensile forces at

the two ends of a reinforcing bar between sections AA’ and XX’ (see Fig. 1a), the following
equation is derived.

(2)

where fs2 and fs1 are the stresses in the steel bar at the cracked section AA’ and the uncracked
section XX’, respectively and φ is the bar diameter. Values of fs1 and fs2 are calculated as previously
described in Section 2.1, while fbo is the peak bond stress and lo is the slip length, both unknown.

Also the peak bond stress fbo at the mid point of the parabolic distribution can be related to the
slip so occurring at that point. The slip is calculated as the relative difference in extensions of steel
and surrounding concrete. The steel extension is calculated by integrating the strain function, as the

πφ2

4
-------- fs2 fs1–( ) 2

3
---πφfbol o=
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steel stress between sections AA’ and XX’ varies non-linearly due to the parabolic bond stress
distribution. This procedure is described below.

Using the parabolic distribution, the bond stress fbx at a distance x from the zero-slip section (see
Fig. 1a) can be expressed as 

(3a)

The total bond force Fbz acting on the bar surface between sections XX’ and ZZ’ (Fig. 1a) can
then be calculated using the following integral.

(3b)

where z is the distance to the section ZZ’ from the zero-slip section (Fig. 1a).
The resulting steel stress fsz at the section ZZ’ can be calculated using the following equation,

which is derived by equating the difference in tensile forces acting at sections XX’ and ZZ’ of the
steel bar, and the total bond force on the bar surface between those two sections.

(3c)

Substitution of Eq. (3c) into Eq. (3b) leads to the following equation for fsz.

(3d)

The corresponding steel strain εsz at the section ZZ’ is then calculated as εsz = fsz/Es where Es is
the elastic modulus of steel. The resulting extension of the steel bar, eso, at the mid point of the
parabolic bond stress distribution is calculated by integrating the steel strain function εsz as follows.

(3e)

In calculating eso, the use of fs2 (steel stress at the cracked section) is considered more appropriate
than the use of fs1 (steel stress at the zero-slip section), because the crack spacing and crack width
are usually expressed as a function of fs2. Therefore, the variable fs1 in Eq. (3e) is changed to fs2
using the following relationship, which is derived by re-arranging Eq. (2).

(3f)

Substitution of Eq. (3f ) into Eq. (3e) yields the following formula for the calculation of eso.

(3g)

where the elastic modulus of steel is taken as Es = 200000 MPa.
Then the slip so at the mid point between sections XX’ and AA’ is calculated as

so = eso − eco (4)
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where eco is the extension of concrete at the mid point between sections AA’ and XX’ which is
calculated as

eco = ec, co + ec, bo (5)

in which ec, co is part of the extension due to the concrete compressive force acting at the cracked
section, and ec, bo is that part due to the bond force. 

Calculation of ec, co and ec, bo

Values of ec, co and ec, bo were calculated for a large number of beam sections similar to XAA’X’
shown in Fig. 1(a), using the finite element method which is described later in Section 2.5. The
results showed that ec, co is proportional to the effective depth d, if the ratio lo /d remains unchanged.
Therefore, for convenience, ec, co is calculated using a value of d = 100 mm, and the results are
multiplied by the ratio d/100 (d is in mm) to obtain the final extension. The results also showed that
ec, co varies almost linearly with lo /d as shown in Fig. 2(a). Consequently, ec, co (in mm) can be
expressed as a function of d/100 and lo /d as follows. 

 (6a)

The calculated values of the concrete extension due to bond forces ec, bo showed that if the ratio lo/d
remains unchanged, ec, bo is proportional to fbo, lo, and the total perimeter of steel bars per unit width
of the beam, which is equal to 4ρd/φ. Therefore, for convenience, ec, bo is calculated using fbo = 1
MPa, 4ρd/φ = 1 and lo = 100 mm, and the results are multiplied by the actual values of fbo, 4ρd/φ
and the ratio lo/100 (lo is in mm) to obtain the final extension. Further, the results showed that ec, bo

varies almost linearly with lo /d as shown in Fig. 2(b). Therefore, ec, bo (in mm) can be expressed in
terms of fbo, 4ρd/φ, lo/100 and lo /d as follows.

  (6b)

1000ec co, 2.5
l o

d
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Fig. 2 Approximation for concrete extensions
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In determining the two unknowns fbo and lo using Eqs. (2) to (6), the bond stress-bond slip
relationship shown in Fig. 3 is utilised to relate so and fbo. This relationship has been developed by
Guiriani et al. (1991) using the results of pull out tests on deformed bars with transverse
reinforcement (stirrups), carried out by Eligehausen (1983). As this relationship is non-linear, the
above equations are solved by a trial and error procedure.

It must be noted that the bond stress obtained using Fig. 3 needs to be modified before
substituting into Eqs. (2) to (6) because, for the same slip value, different bond stresses may develop
at various points along the steel bar depending on the distance from the crack. This fact was
revealed by the experimental results of Nilson (1972). These results have shown that, for a particular
slip value, the bond stress developed at different points along a steel bar increases almost linearly
with the distance from the crack, up to a distance of 100 mm. At points where the distance from the
crack is in between 100 and 153 mm, only a small difference was observed in bond stresses
developed for a particular slip value, while no difference was noted in bond stresses developed at
points that are more than 153 mm away from the crack. 

The limiting distance of 100 mm mentioned in the previous paragraph was observed in experiment
results (Nilson 1972) involving a single bar size with diameter 25.4 mm. It is assumed that this
limiting distance depends on the bar diameter when different bar sizes are used. To be consistent
with experimental results of Nilson (1972) this limiting distance is taken as 4φ where φ is the bar
diameter. Consequently, if the peak bond stress occurs at a distance more than 4φ away from the
crack (0.5lo > 4φ), the value of fbo obtained from Fig. 3 is used in the calculation with no
modification. If the peak bond stress occurs at a closer distance, the bond stress obtained from Fig. 3
is reduced proportionately depending on the distance from the crack. To facilitate this reduction, the
peak bond stress fbo obtained from Fig. 3 is multiplied by a factor γ, which is taken as unity if the
peak bond stress occurs at a distance larger than 4φ from the crack, and reduced proportionately for
smaller distances using the following equation.

(7)γ
0.5l o

4φ
----------- 1≤=

Fig. 3 Bond stress-bond slip relationship used (proposed by Giuriani et al. 1991, for deformed bars with
stirrups)
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where 0.5lo is the distance from the crack to the point where the peak bond stress fbo occurs (Fig. 1a).
Hence the relationship between the peak bond stress fbo and the slip so can be expressed in general
form as

(8)

where Γ(so) is the bond stress corresponding to the slip so obtained from the relationship shown in
Fig. 3.

2.3.2 Bond stress in between adjacent flexural cracks
Bond forces acting on concrete blocks located between adjacent flexural cracks are calculated by

solving the equations presented in the previous Section (Eqs. (2) to (8)), with the variable lo
changed as appropriate. In this calculation the trial and error procedure described in Section 2.3.1 is
slightly modified depending on whether the concrete block is located in a constant or varying
moment region, as described below.

(a) Constant moment region
It can be seen that the half-concrete block analysed in a constant moment region (CAA’C’ in Fig. 1)

is similar to the block adjacent to the first flexural crack (XAA’X’) in every respect, except that their
lengths are different. In calculating the bond force in block CAA’C’, the variable lo in Eqs. (2) to (8)
is therefore replaced by 0.5l where l is the selected value of the crack spacing (see Fig. 1). The two
unknowns determined by solving these equations are the peak bond stress fbo and the steel stress fs1
at mid section CC’, in contrast to fbo and lo evaluated for the block XAA’X’.

(b) Varying moment region
In determining the peak bond stresses in the concrete block BAA’B’ (see Fig. 1), a trail value is

first assumed for the distance lx , and the procedure described in the previous paragraph is used for
the two blocks BCC’B’ and CAA’C’ separately to calculate fbo'  and fbo. This will generally yield two
different fs1 values (steel stress at mid section CC’) for the two blocks. The trial distance lx is
changed and the calculation is repeated until the difference in the two fs1 values becomes negligible,
when the values of lx, fbo, fbo'  and fs1 are taken as final.

2.4 Calculation of maximum crack width at reinforcement level

Only crack widths in constant moment regions are calculated because, at the same load level, the
crack widths in varying moment regions are smaller, as described later in Section 4.2.2.

The width of a crack at reinforcement level is determined as the relative difference in extensions
of steel bars and adjacent concrete. The extension of steel bars es1 for the length 0.5l from section
CC’ to AA’ in Fig. 1(b) is calculated using the following equation.

(9)

where l is the crack spacing and fs2 is the steel stress at the cracked section AA’. Eq. (9) has been
derived using the procedure described for evaluating eso (Eq. (3a) to (3g)) with the following
changes: (i) in Eq. (3a), replace lo with 0.5l (see Fig. 1), and (ii) in Eq. (3e), change the upper limit
of integration from z = 0.5lo to z = 0.5l.

fbo γ Γ so( )=

es1
fs2l
2Es

--------
fbol

2

3Esφ
------------–=
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The resulting crack width Ws1 is then calculated as

Ws1 = es1 − ec1     (10)

where ec1 is the extension of concrete adjacent to steel bars. Its value is taken as twice the
corresponding extension at the mid section between CC’ and AA’ in Fig. 1(b). (ec1 = 2eco where eco

is calculated using Eqs. (5) and (6) with lo replaced by 0.5l ). 
Note that in calculating the maximum crack width, both crack spacings on either side of section

AA’ are assumed to be equal to the maximum crack spacing lmax. This is because the crack width is
found to increase with the spacing of adjacent cracks as described later in Section 3.2.2.
Determination of lmax is described in Section 4.2.1. Thus the total crack width Ws at the
reinforcement level can be calculated as

Ws = 2Ws1.   (11)

The resulting crack width Wt at the tension face of the beam is evaluated by assuming the two
faces of the crack to be planar (Fig. 4). Then the crack width at the tension face Wt can be
calculated as a proportion of Ws using the following formula.

   (12)

where kd is the depth of the compression zone and h is the overall height of the beam (Fig. 4).
In the present method of calculating concrete stresses and extensions in loaded beams, it is

assumed that the loading is incremented in small steps. At a selected load level, equilibrium
conditions and the bond stress - bond slip relationship are applied to concrete sections as described
above, only after the flexural cracks corresponding to that load level have fully grown, the bond slip
taken place, and the full bond stress has developed. At this stage, concrete blocks between
successive cracks have reached a state of static equilibrium. Hence, after the flexural cracks in the
beam have stabilised, linear elastic analysis can be performed on concrete blocks between adjacent
cracks to determine the stresses and extensions. This analysis is carried out using two-dimensional
linear elastic finite element method as described below.

2.5 Finite element analysis

Fig. 5 shows a unit width of a typical concrete block isolated for the analysis. This block is
divided into 240 rectangular elements by 24 longitudinal and 10 transverse divisions. The

Wt
h kd–
d kd–
--------------- 

  Ws=

Fig. 4 Relationship between crack widths at reinforcement level and at tension face
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longitudinal divisions near the axis of reinforcement are taken at closer intervals to have a finer
mesh (Fig. 5). As shown in Fig. 5, the width of the block at reinforcement level is reduced to
account for the reduction in concrete area due to steel bars. The reduced thickness t at the
reinforcement level, corresponding to a unit width of the beam is calculated using the following
formula.

   (13)

The analysis is carried out using the standard software package STRAND6 (1993). A four-node
rectangular plane stress element is used in the analysis. This element is generated by the software
by assembling four Constant Strain Triangular (CST) elements with the internal fifth node
condensed out. The CST element used by STRAND6 (1993) has been developed using the theory
described by Zienkiewicz (1977) and Cook et al. (1989).

3. Results

A large number of concrete blocks isolated from various loaded beams comprising of rectangular,
T-shaped as well as Box-shaped cross sections were analysed using the procedure described in
Section 2. The results obtained from this analysis are summarised below.

3.1 Concrete blocks adjoining the first flexural crack

3.1.1 Slip length lo
Slip length lo is calculated by solving Eqs. (2) to (8) for different beams having various material

and sectional properties. Table 1 shows the parameters and their ranges used. Bar diameters ranging
from 10 mm to 32 mm were used to achieve the different reinforcement ratios listed in Table 1.
Table 2 gives certain constraints applied on reinforcement ratio and bar diameter to ensure that each

t 1
ρd
φ

------–=

Fig. 5 Finite element mesh and cross section for rectangular beams
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beam represents a common practical situation. Note that only rectangular sections were considered
for members with effective depths 100 mm and 200 mm. For beams with effective depths ranging
from 300 mm to 600 mm, both T-shaped and box-shaped sections were considered, in addition to
rectangular sections. Various combinations of the parameters listed in Table 1, subjected to the
above constraints, have produced 3240 different beams. For all the beams the ratio of effective depth
to the overall height (d/h) is taken as 0.87. It can be seen that the prediction formulas developed in
this Section are also applicable for other values of d/h ratios, as demonstrated by comparison of
results (Section 5).

For each beam described above, the steel stress increment that occurs at the first flexural crack
∆fso is also determined using Eq. (2), after calculating the slip length lo and the peak bond stress fbo.
Note that ∆fso = fs2 − fs1 where fs1 and fs2 are the steel stresses at the uncracked section XX’ and the
cracked section AA’ respectively (Fig. 1a), both calculated for the same bending moment M = Mcr.
The calculated values of lo and ∆fso for the above 3240 beams showed that lo increases with ∆fso and
bar diameter φ, while it decreases with the concrete strength fc' . Consequently, using the above
calculated values in a semi-regression analysis, the following empirical formula was developed to
determine the slip length in terms of fc' , φ and ∆fso.

   (14)

where ∆fso and fc'  are in MPa, and lo and φ are in mm.
The results also showed that ∆fso decreases with the reinforcement ratio, while it increases with

concrete strength. Using the calculated values in a semi-regression analysis, the following formula
was developed to determine the steel stress increment ∆fso at the first flexural cack in reinforced
concrete members.

l o 100 1.3
fc′
80
------– 

  0.25
φ
28
------+ 

  fso∆+=

Table 1 Parameters and their ranges used to calculate lo

Parameter Range Number of values

Concrete strength, fc' 20-50 MPa 4
Reinforcement ratio, ρ 0.003-0.030 5
Flange width/web width, b/bw 1.0-3.0 5
Flange thickness/effective depth, hf /d 0.25-0.40 4
Effective depth, d 100-600 mm 6

Table 2 Ranges of reinforcement ratio and bar diameter used to calculate lo

Effective depth, 
d (mm)

Member width,
b (mm)

Reinforcement ratio, ρ Bar diameter, φ (mm)

Lower limit Upper limit Lower limit Upper limit

100 1000 0.0035 0.075 10 12
200 1000 0.005 0.01 12 20
300 200 0.01 0.02 16 22
400 240 0.01 0.025 20 25
500 300 0.01 0.025 25 28
600 400 0.01 0.03 28 32
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   (15)

in which ρx = ρ, for rectangular sections, (16a)

and, , for T- and Box-sections, (16b)

In Eq. (16), b is the flange width and bw is the web width. Note that for box sections, the flange
width is the total width of the member, while the web width is twice the wall thickness. 

A comparison of the slip lengths calculated using the proposed empirical formulas (Eqs. (14) to (16))
and the ‘exact’ values determined by solving Eqs. (2) to (8) is shown in Fig. 6, for 300 typical beams.
Ranges of variables included in this calculation are as follows: fc'  = 20 − 50 MPa, ρ = 0.0035 − 0.03,
b/bw = 1.0 − 2.5, and φ = 10 − 30 mm. It may be seen that more than 98 percent of the ‘exact’ lo
values (except the five values lying below the negative 30% line) fall between ±30% of those
calculated using the empirical formulas. It will be shown in Section 4.1 that, in a beam subjected to
a gradually increasing load, the spacing of primary cracks can be related to the slip length lo. This
prediction will be verified in Section 5. 

3.1.2 Concrete stress at the tension face
The concrete block adjacent to the first flexural crack (block XAA’X’ in Fig. 1a) in six different

beams were analysed by the finite element method to investigate the concrete stress distribution at the
tension face. Table 3 shows the details of these beams. Values of lo and ∆fso, calculated using Eqs.
(14) to (16) are also shown in the same Table. Note that the concrete strength for all these beams was
taken to be constant, fc' = 32 MPa, as the concrete stress distribution was found to be insensitive to
fc' . Each of the above beams was analysed twice, firstly for a constant moment region, and next for a
varying moment region that corresponds to a beam under a central point load (total 12 cases).

Results of the above analyses indicate that the concrete stress at the tension face near the first
flexural crack increases gradually from zero at the crack to a maximum value at the end of the slip
length. Although the maximum value of this concrete tensile stress and the slip length vary from
one beam to another, the gradual variation of the concrete tensile stress along the slip length is

fso∆
0.3 0.0125fc′+( )

ρx

-----------------------------------------=

ρx ρ 1.4 0.4
b

bw

-------– 
  b

bw

-----=

Fig. 6 Comparison of lo computed using empirical formulas and ‘exact’ values
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found to have a similar pattern for all the 12 beams analysed. A typical variation is shown in Fig. 7.
This gradual variation of the concrete tensile stress along the slip length will be utilised later in
Section 4 to predict the locations of subsequent flexural cracks that are formed at early loading
stages of a beam.

3.2 Concrete blocks in between cracks

3.2.1 Concrete stress distribution between adjacent cracks
To investigate the stress distribution in between two adjacent cracks, concrete blocks BAA’B’ and

CAA’C’ shown in Fig. 1(b) were analysed for the same six beams detailed in Table 3. The analysis
was carried out for different crack spacings (l values) at various load levels (fs2 values) shown in
Table 4, for concrete blocks located in a constant moment region and a varying moment region that
corresponds to a beam under a central point load (total 72 cases).

Results show that the maximum concrete tensile stress across any transverse section between two
adjacent cracks occurs at the level of reinforcement. It is also seen that the magnitude of this
maximum concrete tensile stress varies along the reinforcing bar between the two cracks. In
constant moment regions, the peak value of the maximum concrete tensile stress at reinforcement
level occurs at the mid point between the two cracks. In varying moment regions, the location of
this peak value is found to depend on the magnitudes of bending moments at the two adjacent
cracked sections. 

Table 3 Details of beams used to calculate concrete stress and crack width

Beam 
No.

Width 
(mm)

Effective depth 
(mm)

Total height 
(mm)

Reinforcements Reinforcement 
Ratio

lo
(mm)

∆fso

(MPa)

B1 1000 170 200 12φ @ 165 mm 0.004 207 175
B2 1000 170 200 16φ @ 145 mm 0.008 165 88
B3 1000 170 200 12φ @ 110 mm 0.006 171 117
B4 200 400 450 3 × 16φ 0.0075 169 93
B5 315 400 450 4 × 20φ 0.010 161 70
B6 325 400 450 4 × 25φ 0.015 148 47

Fig. 7 Variation of concrete stress at the tension face near the first flexural crack
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Critical crack spacing lc
The results show that the peak value of the maximum concrete tensile stress at reinforcement level

increases with the loading on the beam, as well as the spacing between adjacent cracks (see Fig. 8).
The particular crack spacing which produces a tensile stress equal to the flexural strength of
concrete (BA4 in Fig. 8a) is herein referred to as the critical crack spacing, lc for the given load
level. The calculated values of critical crack spacing for the 72 cases investigated indicate that lc
decreases gradually with the increase of the loading on the beam.

3.2.2 Crack width
The crack width at the tension face Wt was calculated using the procedure described in Section

2.4 for the same 72 beam sections mentioned previously (See Tables 3 and 4). The results show that
the crack width increases with the loading on the beam as well as the spacing of adjacent cracks. 

It can be seen in Eq. (12) that the relationship between Ws and Wt depends on the depth of the
compression zone kd at the cracked section (See Fig. 4). Crack width results of the above 72 beams
show that this relationship is not significantly affected by different k values encountered in the
calculation. It is also seen that accurate results can be obtained for Wt by assuming a constant value

Table 4 Values of fs2 and l used to calculate concrete stress and cack width

B1 B2 B3 B4 B5 B6

fs2
(MPa)

l
(mm)

fs2
(MPa)

l
(mm)

fs2
(MPa)

l
(mm)

fs2
(MPa)

l
(mm)

fs2
(MPa)

l
(mm)

fs2
(MPa)

l
(mm)

220
200

150
160

200
180

150
200

150
160

150
150

250 200 200 250 200 180
300 300 250 300 250 210

220
300

100
200

200
250

130
200

130
200

80
200250 150 250 160 160 120

300 200 300 200 200 160

Fig. 8 Variation of concrete tensile stresses at reinforcement level in between adjacent cracks (fr = flexural
strength of concrete)
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k = 0.3, which corresponds to moderately reinforced beams. Using this assumption, Eq. (12) can be
simplified as

   (17)

4. Propagation of flexural cracks

Flexural cracks are categorised into two groups namely, (i) primary cracks, and (ii) secondary
cracks. Primary cracks are defined as the cracks that are developed after the maximum bending
moment at any section within the beam has exceeded the cracking moment. Secondary cracks are
those cracks formed in between existing cracks at higher load levels, after the formation of primary
cracks is completed. 

4.1 Primary crack spacing

The location of primary cracks is predicted using the slip length lo and the distribution of concrete
stress at the tension face near the first flexural crack already discussed in Section 3.1. Spacing of
these cracks for constant and varying moment regions are different, as described in the following
Sections.

4.1.1 Constant moment region
Fig. 9 shows a simply supported beam subjected to two equal point loads equally spaced from the

mid span, so that the bending moment within the middle region is constant. The line ACDB
indicates the resulting concrete stress fR at the tension face of the beam, which has the same shape
as the bending moment diagram. The line A’B’  represents the flexural strength fr at the tension face,
which may vary slightly from one section to another.

When the load on the beam is increased from zero, the first flexural crack occurs at a section such
as X1, which has the lowest flexural strength within the constant moment region. Once this crack is
formed, the concrete stress at the tension face will become zero at the crack, and gradually increases
along the slip length lo, as already described in Section 3.1. The modified stress pattern on the
tension face is schematically shown by curved lines in Fig. 9. As a result of this modification, new
cracks can only develop at sections more than a distance lo away from the first crack at X1. This is
because the concrete tensile stress within a distance lo from the crack is much lower than the rest. This

Wt Ws 1.43 h d⁄( ) 0.43–{ }.=

Fig. 9 Propagation of primary cracks in a constant moment region
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means that the primary crack spacing lp in a constant moment region should be larger than lo . 
If the load is increased slightly, a second crack will develop at a section such as X2 (Fig. 9) that

has the next lowest flexural strength within the constant moment region, and more than a distance lo
away from the first crack. Formation of this crack will also modify the concrete stress at the tension
face of the beam for a distance lo on either side of the new crack at X2, as shown in Fig. 9. It is
clear in this figure that a slight increase in the load may develop another new crack in between the
sections at Y1 and Y2, if the distance X1X2 is larger than 2lo. This means that the primary crack
spacing in a constant moment region will not exceed 2lo . Therefore, the primary crack
spacing lp in a constant moment region should satisfy the following equation.

   (18)

where lo is the slip length.

4.1.2 Varying moment region
To predict the formation of primary cracks in a varying moment region, a simply supported beam

subjected to a central point load shown in Fig. 10 is considered. The line ACB indicates the concrete
stress at the tension face of the beam before any cracks are formed, while the line A’B’  represents
the flexural strength. It is clear that the first flexural crack is formed at the mid-span of the beam
(point X1) where the concrete stress at the tension face is largest.

Once the first crack is formed at X1, the concrete stress at the tension face will modify for a
distance lo on either side of the crack as shown by the curved lines. It can be seen that the concrete
tensile stresses at sections X2 and X2'  will next reach the flexural strength of concrete, if the load is
increased further. This means that two new cracks will develop at sections that are a distance lo
away on either side of the first crack. Formation of these cracks will also modify the concrete stress
at the tension face, as shown by the curved lines. As a result of this modification, under an
increasing load on the beam, two more new cracks will develop at X3 and X3'  which are lo away
from cracks at X2 and X2' , respectively. This suggests that all primary cracks in a varying moment
region are formed at a regular spacing of lo. Therefore in a varying moment region the primary
crack spacing can be expressed as

lp = lo. (19)

l p l o≥( )

l p 2l o≤( )

l o l p 2l o≤ ≤

Fig. 10 Propagation of primary cracks in varying moment regions
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4.2 Secondary crack spacing

Spacing of secondary cracks under a given load level is predicted in the following Sections, using
the critical crack spacing lc. Spacing of these cracks are different for constant and varying moment
regions as described below.

4.2.1 Constant moment region

As seen in Fig. 8(a), for crack spacings larger than the critical crack spacing lc, the maximum
concrete tensile stress at reinforcement level exceeds the flexural strength of concrete, which causes
a new crack to form. This means that the maximum crack spacing lmax at a given load level should
be equal to the critical crack spacing lc (lmax = lc). 

Similarly, if the crack spacing is equal to the critical crack spacing lc, any increase in the load on
the beam will cause the maximum concrete tensile stress at reinforcement level to exceed the
flexural strength of concrete (see Fig. 8b). This will result in the formation of a new crack at the
mid section CC’, dividing the crack spacing lc into two halves. This means that the minimum crack
spacing at this load level is 0.5lc, because crack spacings previously divided into two halves at lower
load levels are larger than lc. This follows from the fact that critical crack spacing lc decreases with
the increased load on the beam. Therefore, the minimum crack spacing lmin at this load level should
be equal to 0.5lc (lmin = 0.5lc).

As described in the previous two paragraphs, at a given load level, the individual crack spacings
in a constant moment region will lie between the upper limit lc and the lower limit 0.5lc. As a result,
the measured average crack spacing lave at this load level may vary between these two limits. i.e., 

.    (20)

The predicted average crack spacing lave-pred at this load level can be taken as the arithmetic mean
of these two limits as 

lave-pred = 0.75lc.    (21)

4.2.2 Varying moment region
As described in Section 4.1.2, primary crack spacing in a varying moment region is small, and is

equal to lo (Eq. 19). This is in contrast to a constant moment region where larger crack spacings are
present because the primary crack spacing varies between lo to 2lo (Eq. 18). Results of the finite
element analyses indicate that, if the crack spacing is small and equal to lo, the concrete tensile
stress within the block will not reach the flexural strength, even when the load is close to the
ultimate load. (Note that the maximum concrete tensile stress is low for smaller crack spacings as
shown in Fig. 8a.) As a result, in a varying moment region the formation of secondary cracks is
very rare, and the average crack spacing remains constant during the whole loading period.
Therefore the predicted average secondary crack spacing in a varying moment region, at all load
levels, can be expressed as

lave-pred = lo.    (22)

It may be noted that smaller crack spacings in varying moment regions result in smaller crack
widths when compared with constant moment regions at the same load level. This is because the
crack width increases with the spacing of adjacent cracks as previously described in Section 3.2.2.

0.5l c l ave l c≤ ≤
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5. Comparison of predicted and measured values

5.1 Primary crack spacing

To verify the accuracy of proposed prediction formulas, the primary crack spacings calculated by
Eqs. (18) and (19) are compared with the values measured by other investigators. Although many
investigations have been carried out on cracking of reinforced concrete beams, results of individual
crack spacing are rarely available; only the average crack spacing is reported most of the times.
Stewart (1997) has reported the results of individual crack spacing on two simply supported and two
continuous box-beams at various load levels. These measurements are compared with predicted
values for constant and varying moment regions.

Details of the four box beams tested by Stewart (1997) are shown in Table 5. All box beams have
a 300 mm × 300 mm square hollow section with a 60 mm thick wall all around. Both simply
supported beams, SSB1 and SSB2 having a clear span of 5.3 m were subjected to two equal point
loads, each 1 metre away from the mid span. Continuous beams CB1 and CB3 have two equal clear
spans of 5.9 m long, each loaded with two equal point loads, 2 m and 4 m away from the central
support. All beams were reinforced with 20 mm diameter deformed bars as detailed in Table 5.
Values of the slip length, lo and the steel stress increment, ∆fSo calculated using Eqs. (14) to (16) are
also shown in the same Table.

For this comparison, primary cracks are selected from the above four beams as follows: 

Constant moment regions- all the cracks developed within the constant moment region before the
formation of any crack on the adjoining varying moment regions;

Varying moment regions -all cracks developed, except those formed in between existing cracks.

Measured primary crack spacings in constant moment and varying moment regions are separately
arranged in ascending order and plotted as bar graphs, for comparison. These graphs shown in Fig. 11
for beams SSB1, SSB2, CB1 and CB3 reveal the following.

(a) Constant moment region
It can be seen in Fig. 11(a) that the measured primary crack spacings in constant moment regions

of beams SSB1 and SSB2 vary between a minimum and a maximum value. These two limits are
close to lo and 2lo as predicted by Eq. (18). Comparison of the stirrup spacings and crack spacings
of these two beams clearly indicates that there is no relationship between them. Note that the
distributions of primary crack spacings in these two beams are nearly identical while the stirrup
spacings are entirely different (300 mm and 125 mm).

Table 5 Details of beams tested by Stewart (1997)

Beam 
No.

d
 (mm)

Deformed 
bars used

ρ stirrup 
spacing (mm)

fc'
(MPa)

lo
(mm) 

∆fso 
(MPa) 

SSB1 270 3 × 20 mm 0.0116 300 32.0 152 60
SSB2 270 6 × 20 mm 0.0232 125 27.6 126 28
CB1 266 3 × 20 mm 0.0118 125 28.9 151 56
CB3 264 6 × 20 mm 0.0228 125 26.0 125 27
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(b) Varying moment region
It can be seen in Fig. 11(b) that the measured primary crack spacings in varying moment regions

of beams SSB1, SSB2, CB1 and CB3 vary above and below a mean value. This mean spacing is
close to the calculated value of lo, as predicted by Eq. (19). Comparison of the stirrup spacing and
crack spacings in beam SSB1 clearly shows that there is no relationship between them.
Coincidentally the stirrup spacing and the slip length lo are nearly the same in beams SSB2, CB1
and CB3. Therefore, it is not clear whether the regular crack spacings in these three beams are
related to the stirrup spacing or to the slip length lo. However, considering the large difference
between the stirrup spacing and the crack spacings in beam SSB1, it can be concluded that the
regular crack spacings in beams SSB2, CB1 and CB3 are in fact related to lo.

5.2 Average crack spacing at higher load levels (secondary cracks)

(a) Constant moment region
The average crack spacing at higher load levels in a constant moment region may vary between

0.5lc and lc, where lc is the critical crack spacing for the particular load level (Eq. 20). The predicted
average crack spacing is taken as the arithmetic mean of these two limits as 0.75lc (Eq. 21). To
verify this prediction, lc values are determined using the finite element analytical procedure
described in Section 2 and compared with the average crack spacing measured by Clark (1956) and
Chi and Kirstein (1958) on 70 flexural members. All these beams were reinforced with deformed
steel bars, with the diameter ranging from 10 mm to 35 mm. For each member, lc is evaluated at
seven steel stress levels namely, 103, 138, 172, 207, 241, 276 and 310 MPa, for which the
measurements are available. This comparison is shown in Fig. 12. In this figure, the x-axis
represents the calculated values of lave-pred = 0.75lc (Eq. 21) while the y-axis represents the measured
values of average crack spacings. Lines corresponding to y = lc and y = 0.5lc are also shown for
comparison. It is clear that most of the measured average crack spacings lie between the two limits
lc and 0.5lc, as predicted (Eq. 20). 

The analytical procedure described in this paper for the determination of critical crack spacing lc

Fig. 11 Comparison of predicted primary crack spacing with those measured by Stewart (1997)
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and maximum crack width Wt may not be suitable for practical usage, as it requires many steps of
computations, including the finite element analysis. The intention of this paper is to describe the
above analytical procedure, and to verify its accuracy by comparing the computed and measured
spacing and width of cracks (Section 5). Empirical formulas suitable for practical usage are
currently being developed, based on a large number of lc and Wt values calculated using the
procedure described herein, and will be published in a subsequent publication.

(b) Varying moment region
The average crack spacing in a varying moment region is predicted as lo at all load levels (Eq. 22).

To verify this prediction, the measured average crack spacings in varying moment regions of four
box-beams SSB1, SSB2, CB1 and CB3 (see Table 5) tested by Stewart (1997) are compared with the
calculated values of lo in Fig. 13. In this figure, measured average crack spacings at various load
levels are arranged in ascending order for each beam, and plotted as bar graphs. It can be seen that
the average crack spacing at all load levels remains nearly the same, and this constant spacing is
close to the calculated value of lo, as predicted.

5.3 Maximum crack width

The maximum crack width is calculated for the same 70 flexural members tested by Clark (1956)
and Chi and Kirstein (1958), already mentioned in Section 5.2(a). The maximum crack width at
reinforcement level Ws is evaluated using the procedure described in Section 2.4 at seven steel stress
levels for which the measurements are available. The corresponding crack width at the tension face
is then calculated using Eq. (17). These calculated crack widths are compared with the measured
values in Fig. 14(a). A similar comparison based on the Gergely and Lutz (1968) prediction
procedure (Eq. 1) is shown in the accompanying Fig. 14(b). Inspection of these two figures, each
containing 420 data points, indicates that the present method can calculate the maximum crack

Fig. 12 Comparison of predicted average crack
spacing in constant moment regions with
those measured by Clark (1956) and Chi
and Kirstein (1958)

Fig. 13 Comparison of predicted average crack
spacing in varying moment regions with
those measured by Stewart (1997)
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width with sufficient accuracy. 
Although the present analytical method of calculating the crack width is not as simple as the use

of Eq. (1), the new method has wider applicability, as it can incorporate most of the variables
involved in flexural cracking. One direct application of the new method would be the investigation
of the effects of different parameters on the crack width in reinforced concrete beams. This work is
currently in progress and the results will be published in a subsequent publication.

6. Conclusions

Spacing and width of cracks are determined using concrete tensile stresses and displacements near
flexural cracks in reinforced concrete beams. For the calculation of stresses and displacements, a
free body of concrete block bounded by top and bottom faces and two transverse sections is isolated
and analysed by the finite element method. The bond force acting on this free body is evaluated by
using a bond stress-bond slip relationship available in literature.

Based on the stress distributions calculated by the above method, the following predictions are
made with regard to the crack spacing.

(a) in constant moment regions: primary crack spacing varies between lo and 2lo while the
average crack spacing at higher load levels lies between 0.5lc
and lc.

(b) in varying moment regions: primary crack spacing and average crack spacing at all load
levels remain constant at lo.

In (a) and (b) above, lo is the development length required to resist the steel stress increment that
occurs at a primary crack, while lc is the crack spacing that produces a concrete tensile stress equal
to the flexural strength of concrete. The value of lo is calculated using an empirical formula
developed in this paper, while lc is evaluated based on the results of finite element analysis. The

Fig. 14 Comparison of predicted maximum crack width with those measured by Clark (1956) and Chi and
Kirstein (1958)
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above predictions are verified by comparing the predicted crack spacings with those measured by
other investigators.

The crack width is determined as the relative difference in extensions of steel bars and
surrounding concrete calculated at the crack. A comparison of the crack width values calculated by
this method and those measured by other investigators reveals that they are in good agreement.
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