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Abstract. A new simple 3-node triangular flat-shell element with standard nodal DOF (6 DOF per
node) is proposed for the linear and geometrically nonlinear analysis of very thin to thick plate and shell
structures. The formulation of element GT9 (Long and Xu 1994), a generalized conforming membrane
element with rigid rotational freedoms, is employed as the membrane component of the new shell
element. Both one-point reduced integration scheme and a corresponding stabilization matrix are adopted
for avoiding membrane locking and hourglass phenomenon. The bending component of the new element
comes from a new generalized conforming Kirchhoff-Mindlin plate element TSL-T9, which is derived in
this paper based on semiLoof constrains and rational shear interpolation. Thus the convergence can be
guaranteed and no shear locking will happen. Furthermore, a simple hybrid procedure is suggested to
improve the stress solutions, and the Updated Lagrangian formulae are also established for the
geometrically nonlinear problems. Numerical results with solutions, which are solved by some other recent
element models and the models in the commercial finite element software ABAQUS, are presented. They
show that the proposed element, denoted as GMST18, exhibits excellent and better performance for the
analysis of thin-think plates and shells in both linear and geometrically nonlinear problems. 

Key words: finite element; flat-shell element; generalized conforming; semiLoof constrains geometrical
nonlinear; UL formulation; GMST18.

1. Introduction

The 3-node triangular flat-shell element is widely used in the analysis of shell structures because
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its outstanding merits, such as simplicity, easy application and high accuracy. Therefore, a great deal
of attention has been paid to develop an efficient model (Darendeliler, Oral and Turgut 1999, Fish
and Belytshko 1992, Providas and Kattis 2000, To and Liu 1994, Wanji and Cheung 1999, Zhang,
Lu and Kuang 1998, Zienkiewicz and Taylor 2000). 

The formulation of the flat-shell element is composed of two parts: membrane component and
plate bending component. The most conventional model is made of the constant strain element CST
and the standard nine-DOF plate bending element. But a difficulty arises if all the elements meeting
at a node are co-planar: the global stiffness matrix will be singular. This problem can be easily
avoided if the membrane element with drilling degrees of freedoms is used (Providas and Kattis
2000). Allman (1984 and 1988), Felippa and Alexander (1992), proposed triangular membrane
elements with vertex rotational degrees of freedoms. Long and Xu (1994), also proposed
generalized conforming triangular membrane elements with vertex rigid rotational freedoms. Some
of these elements have been successfully utilized to construct flat-shell elements (Zhang, Cheung
and Chen 2000). 

Plate bending element is the other component of the flat-shell element. The development of “thin
(C1- continuity)” or “thick (C0-continuity)” plate elements has attracted many researchers for more
than 40 years. Various models have been proposed since 1960s. For thin plate, the non-conforming
element BCIZ (Bazeley, Cheung, Irons and Zienkiewicz 1965), the discrete Kirchhoff triangle DKT
(Batoz, Bathe and Ho 1980) and their enhanced versions (Cheung and Wanji 1995, Wanji and
Cheung 1998) are the most well-known and popular models. Besides, some other high performance
elements were also presented by using generalized conforming element method (Long and Zhao
1988, Long and Xin 1989, Long 1993, Long, Bu, Long and Xu 1995). Though these models all
exhibit good abilities, they neglect the effects due to transverse shear strains and can only be used in
thin plate analysis. Recently, several approaches are applied to generalize thin plate element DKT to
Mindlin plate elements (Batoz and Lardeur 1989, Batoz and Katili 1992, Katili 1993, Soh, Long
and Cen 1999, Wanji and Cheung 2001). Other C0-continuity Mindlin type elements are also
successfully constructed at the same time (Ayad, Dhatt and Batoz 1998, Ayad, Rigolot and Talbi
2001, Taylor and Auricchio 1993). 

The foregoing efforts provide plentiful choices to develop high performance flat-shell element.
The key is how to make a rational selection of membrane and plate elements. From authors’
opinions, the new element should include following characters: (1) relative large range for
application, i.e., be valid for both thin and thick plates and shells; (2) relative simple formulation
without any numerical difficulties and problems, such as singularity of stiffness matrix, shear
locking, membrane locking, and hourglass; (3) high accuracy and good convergence for arbitrary
mesh division. 

In this paper, a new 3-node, 18-DOF triangular flat-shell element is developed. The formulation of
the membrane part is modeled by the generalized conforming membrane element, GT9 (Long and
Xu 1994), with rigid rotational freedoms. Both one-point reduced integration scheme and a
corresponding stabilization matrix (Fish and Belytshko 1992) are adopted for avoiding membrane
locking and hourglass phenomenon. The formulation of the bending part is based on a new
generalized conforming thin-thick plate element TSL-T9, which is derived in this paper by using
semiLoof constrains method (Long 1993) and rational shear interpolation approach (Soh, Long and
Cen 1999). Furthermore, a simple hybrid procedure is suggested to improve the stress solutions, and
the Updated Lagrangian formulae are also established for the geometrically nonlinear problems.
Then the resulting element, called GSMT18, is introduced into the commercial finite element
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software ABAQUS (ABAQUS/Standard User’s Manual 1998) by user element function and
examined by various examples. The numerical results show that present element GSMT18 is free of
membrane and shear locking and robust for both thin to thick plates and shells. 

2. Finite element formulation

Consider the triangular flat-shell element shown in Fig. 1. The element is assembled by plane
membrane and plate bending element. It has 3 nodes and 6 DOF per node. The element nodal
displacement vector in local coordinate system xyz is:

with  (i = 1, 2, 3) (1)

where ui, vi and wi are the nodal displacements along the axes x, y and z, respectively; θxi, θyi and θzi

are the nodal rotation freedoms. 
Let  be the nodal displacement vector related to membrane element; and  be the nodal

displacement vector related to plate bending element. Then

(2)

2.1 The formulation and the stabilization of the plane membrane element GT9 (Long and
Xu 1994)

The membrane element used here is the 3-node triangular generalized conforming membrane
element GT9 (Long and Xu 1994) with rigid rotational freedoms, and its displacement field is given by

(3)

where Li (i = 1, 2, 3) are the triangular area coordinates; Nuθ i and Nvθ i are the shape functions for the
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Fig. 1 Flat-shell element in the local co-ordinate system xyz
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rigid rotation freedoms θzi (Fig. 2): 

(4)

with

(5)

Differentiation of Eq. (3) yields the strain matrix of element:

(6)

where

(7)

where A denotes the area of the element.
Then, the element stiffness matrix of GT9 in the local coordinate system can be obtained as

follows:

(8)

where Dm is the elasticity matrix:

(9)

where E is Young’s modulus; ν is Poisson’s ratio; and h is the thickness of element.
If θz1 = θz2= θz3, there exists an extra zero energy mode in addition to the conventional rigid body

movement. This extra zero energy mode can be easily suppressed by setting one of the nodal
rotational to be zero in one element of the mesh (Long and Xu 1994).

In order to avoid membrane locking in the calculation of shells, one-point reduced integration are
often employed for the membrane component with rotational freedoms. But unfortunately, extra zero
energy modes of the element will appear and hourglass phenomenon may occur. Fish and Belytschko
(1992), suggested a method of adding a stabilization matrix to overcome this shortcoming. According
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Fig. 2 The additional rigid rotational freedom for membrane element
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to their approach, the stabilization matrix of the element GT9 is given as follows 

(10)

with

(11)

where  denotes the element stiffness matrix of GT9 using one-point integration; χ is a perturbation
factor. From numerical experiments, it is found that when χ is not less than 10−6, the rank and
eigenvalues of the new shell element are correct. So χ = 10−6 is adopted throughout this paper. 

 Thus the element stiffness matrix of GT9 in local coordinate system can be modified as

(12)

2.2 The formulation of the new thin-thick plate bending element TSL-T9

Long (1993), proposed a 9-DOF generalized conforming thin plate element LSL-T9 based on
semiLoof constrains. Soh, Long and Cen (1999), proposed a method of assuming shear strain field
and extend thin plate element DKT to another thin-thick plate element ARS-T9. Both techniques
described in foregoing references are used in this section to construct a new thin-thick plate element
TSL-T9: (1) the shear strain field is determined by using Timoshenko’s beam theory; (2) the
deflection field is assumed and then determined by using semiLoof constrains. Then all the
formulae can be obtained following the standard procedure. 

Consider the thick plate triangular element shown in Fig. 3, the element nodal displacement vector is:
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Fig. 3 Triangular plate bending element TSL-T9
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The  qe and  in Eq. (2) have following relationship:

 with , and (14)

2.2.1 Locking-free Timoshenko’s beam element
In order to determine the displacements and the shear strain along each element side, a locking-

free Timoshenko’s beam element was derived and presented by Soh, Long and Cen (1999) and Soh,
Cen, Long and Long (2001). The formulas of deflection w, rotation βs and shear strain γ for the
thick beam element, as shown in Fig. 4, are as follows:

(15a)

(15b)

(15c)

with

(16)

where d is the length of the beam. Dd and Cd are the bending and shear stiffness of the beam,
respectively. Since the deflection, rotation and shear strain along the sides of the plate element will
be given by Eqs. (15) and (16), Dd and Cd should be replaced by the corresponding quantities of the
plate. So the parameter δ in Eqs. (15) and (16) can be rewritten as:

(17)

where h is the thickness of the element; ν is Poisson’s ratio. 
It can be seen that when the thickness h approaches zero, the shear strain γ will vanish

automatically, and no shear locking will happen.
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Fig. 4 The Timoshenko’s beam element
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2.2.2 Interpolation formulas for the shear strain fields
The interpolation procedure for transverse shear strain fields is the same as that of Soh, Long and

Cen (1999). As shown in Fig. 5, the shear strain along the tangential direction of each element side
is constant and determined by Timoshenko’s beam formulae (15c). And from some simple
geometrical relations, the shear strain fields can be obtained as follows:

(18)

where Bs is the shear strain matrix; 

(19)

with

(20)

  with (i = 1, 2, 3) (21)

(22)

where bi and ci (i = 1, 2, 3) are given in (5); di is the length of the ith element side (Fig. 5). It is
obvious that when hç 0, ∆ç 0, and γç 0.

2.2.3 Interpolation formulas for the deflection field
According to Long (1993), the element deflection field w is assumed to be a polynomial with
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Fig. 5 The shear strain γsi, length di, normal and tangential direction (ni, si) of each element side
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with

(24)

(25)

2.2.4 The rotation field
Based on the Mindlin plate theory, the rotation field can be obtained:

(26)

where (, x) and (, y) mean the derivatives respect to x and y, and

(27)

2.2.5 The deflections and normal slopes along element sides
Along each side of the element, the deflection  is determined by Eq. (15a); and the normal slope
 is assumed to distribute linearly. For example, the deflection and normal slope along side are

as follows
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Then, apply the compatibility conditions for deflections at the mid-side points 4, 5, 6

(32)

λ4, λ5, λ6 can be solved

(33)

Finally, apply the compatibility conditions for normal slopes at Gauss points A and B along each
side

(34)

where βn is derived from Eq. (26). And for example, along side 

(35)

Substituting Eqs. (35) and (28b) into Eq. (34), λ7, …, λ12 can be solved. In this solution, the last
three coefficients are equal, i.e., λ10= λ11= λ12. Therefore, the element deflection field can be
rewritten in term of 10 coefficients
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C3 =

(41c)

where

(42)

Substituting Eq. (39) into Eq. (36), w can be expressed as

with  (43)

where N e is the shape function matrix for the deflection field w. As the statement in (Long 1993), the
deflection field w and the rotation field β are not exactly compatible with the deflection and rotation
along the element sides. But it satisfies following relaxed compatible conditions (Long 1992):
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Then, the curvature field κ of the bending element is 

(46)

where Bb is the bending strain matrix, and

(47a)

(47b)

(47c)

Thus, the stiffness matrix for the plate bending element can be obtained

(48)

where

(49)

where G = E/[2(1 − ν)] is the shear modulus. A standard 3 Hammer integration point scheme is
employed in executing Eq. (48) in order to satisfy the theoretical necessity. It is not necessary to use
any reduced integration techniques here.

This plate bending element obtained is named TSL-T9, to remind that it is a Thick plate
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SemiLoof Triangular finite element with 9 DOFs. It can degenerate into the generalized conforming
thin plate element LSL-T9 presented by (Long 1993) when let the parameters δi(i = 1, 2, 3) equal
zero. So TSL-T9 is a Kirchhoff-Mindlin element.

2.2.8 Hybrid-enhanced procedure for stress solutions
From the constitutive relations of the plate, the bending moments and shear forces can be

obtained.

(50)

It is a well-known fact that hybrid elements are likely to perform better than displacement
elements for calculation of stresses. In order to improve the stress solutions of the presented
element, a simple hybrid-enhanced procedure is suggested here.

The bending moment field M and the shear force field T are only required to satisfy C−1-
continuity between two elements based on Mindlin plate theory (Ayad, Dhatt and Batoz 1998, Ayad,
Rigolot, Talbi 2001). Thus, M can be assumed as follows:

(51)

where

(52)

(53)

αi (i = 1, 2, …, 9) are 9 unknown parameters.
From the equilibrium equations of a plate, the shear force field T can be expressed as:

(54)

where

(55)

By employing Hellinger-Reissner variational principle, the energy functional of the plate element
can be expressed as:
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From , aM can be sovled out:

(57)

where

(58)

Substituting Eqs. (57) into Eqs. (51) and (54), M and T can be obtained.

2.3 The new flat-shell element GMST18

Assembling Eqs. (12) and (48) according to the DOF’s sequence (Eq. (1)), we obtain the flat-shell
element stiffness matrix Ke in the local co-ordinates. And after transforming Ke to the global
coordinates by standard procedure (Zienkiewicz and Taylor 2000), the element can be used to
calculate shell structures. 

This element is named GMST18, to remind that it is a Generalized conforming Mindlin SemiLoof
Triangular finite element with 18 DOFs.

3. Updated Lagrangian formulae

In incremental method, all the physical components of a structure from time 0 to time t are
assumed to have been obtained. What we are interested in is the increment that occurs from time t
to time t + ∆t. The reference configuration is the configuration at time t.

The principle of virtual displacement expressed by the UL method can be written as

(59)

where  and  are the modified Kirchhoff stress tensor and the modified Green strain
tensor, respectively.  is the virtual work done by external loadings at the time t + ∆t.

(60)

where  is the Cauchy stress tensor at the time t, and ∆σij is the Kirchhoff stress tensor increment
from time t to time t + ∆t.

(61)

where ∆eij and ∆ηij are the linear and non-linear Green strain tensor increment from time t to time
t + ∆t, respectively. And ∆ui is the displacement increment from time t to time t + ∆t.

If ∆t is small enough, the following relationship can be established
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(62)

where Dijkl is elastic tensor.
Substitution of Eqs. (60), (61) and (62) into (59) yields (the higher-order terms have been

neglected)

(63)

with

(64)

where I1 is the linear increment of virtual work; I2 is the incremental virtual work relevant to the
initial stresses; I3 is the incremental virtual work done by the internal forces.

For the flat-shell element in the local co-ordinates, I1, I2 and I3 in Eq. (63) can be rewritten in the
following discrete form

(65)

where ∆ means the increment of relevant variables; ∆εm is the linear increment of the membrane
strain and given by 

(66)

∆κ is the linear increment of the curvature vector given in Eq. (46); ∆γ is the increment of the
transverse shear strain vector given in Eq. (18); 

with  (67)

(68)

 and TE are the membrane force, bending moment and shear force vectors at the time t,
respectively.

(69)

Substitution of the geometric relation Eqs. (18), (46) and (66) into (65) yields
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(70)

And  can be rewritten as

(71)

where  and  are the equivalent nodal force vectors at the time t + ∆t of the membrane
element and plate bending element, respectively.

 and  are arbitrary. Thus, according to the variational principle and Eqs. (63), (70) and
(71), we can obtain the element incremental equations in the local co-ordinates:

(72)

where  is the linear stiffness matrix of the membrane element and given by Eq. (8);  is the
linear stiffness matrix of the plate bending element and given by Eq. (48);  is the geometric
stiffness matrix, 

(73)

 is the equivalent nodal internal force vector of the membrane element;  is the equivalent
nodal internal force vector of the plate bending element,

 (74)

Rewriting (72) according to the DOF’s sequence yields

(75)

After transforming (75) to the global co-ordinates by standard procedure (Zienkiewicz and Taylor
2000), element GMST18 can be used to analysis the geometrically nonlinear problem of shells.

4. Numerical examples

The element GMST18 is introduced into the commercial finite element software ABAQUS
(ABAQUS/Standard User’s Manual 1998) by user element function and evaluated by three types of
numerical examples: (i) plate bending; (ii) linear shell; and (iii) geometrically nonlinear shell. 

4.1 Plate bending problems

Firstly, some standard examples are used to assess the accuracy of the new derived element TSL-
T9, the plate bending component of the element GMST18. All the bending moment and shear force
solutions are calculated by both the constitutive relations (50) and the hybrid enhanced procedure
proposed in section 2.2.8.
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4.1.1 Eigenvalues and rank
Only three eigenvalues are always zero (corresponding to the rigid body modes of the element)

for various element shapes of very thin and very thick plates. The element TSL-T9 always has a
proper rank. This is to say the element has no spurious zero-energy modes. We can claim that in
real applications the triangular element is stable provided sufficient boundary conditions are
imposed to prevent rigid body motion.

4.1.2 Patch test presented in Fig. 7
(a) Bending moment Mn = 1
For the bending moments Mn= 1 along the four sides, the equivalent nodal forces are directly

obtained since βn is linear along the sides (refer to Eq. (28b)). The computed values of Mx, My, Mxy,
Tx and Ty at any point in the four elements are exact (error = 0.00%) for thick (h/2a = 0.1) and thin
(h/2a = 0.001) plates.

(b) Twist moment Mns = 1
The consistent definition of βs has been given in Eq. (15b). The consistent nodal forces for Mns= 1

are given in Fig. 7 for the arbitrary thickness-span ratio. The results obtained using the element
TSL-T9 are exactly the same as those of the exact solution (error = 0.00%), except the Mx(= 0) and
My(= 0) of thick plate (h/2a = 0.1) in which the max discrepancy between the two solutions is less
than 0.6%.

Fig. 7 Patch test: Contant bending moments
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Thus, TSL-T9 passes the patch-test.

4.1.3 Simply-supported and clamped square plate
Fig. 8 shows the typical meshes employed for the study of a square plate. Two simply supported

cases were considered. One was soft (SS1, w = 0) and the other was hard (SS2, w = θn = βs= 0).
Moreover, a clamped square plate was also considered. The thickness and side length of the plate
are denoted by h and l, respectively; and the Poisson’s ratio ν of the material was assumed to be
0.3. Tables 1 to 3 present the results of the central displacements and moments subjected to a
uniformly distributed load q = 1 from very thin plate (h/l = 10−30) to thick plate (h/l = 0.1). It is

Fig. 8 Typical mesh (4 × 4) for 1/4 square plate (point c is the center of plate)

Table 1 Central displacements wc/(ql 4/100D) and moments Mc/(ql2/10) for the hard simply supported (SS2)
square plate subjected to uniform load q

Number

h/l   Mesh type
2 × 2 4× 4 8× 8 16× 16 Analytical 

solutions

wc/(ql 4/100D)

10-30~0.001 Mesh A
Mesh B

0.4024
0.4014

0.4058
0.4051

0.4062
0.4060

0.4062
0.4062 0.4062

0.01 Mesh A
Mesh B

0.4026
0.4016

0.4059
0.4052

0.4063
0.4061

0.4063
0.4063 0.4064

0.1 Mesh A
Mesh B

0.4146
0.4189

0.4214
0.4233

0.4249
0.4258

0.4266
0.4269 0.4273

Mc/(ql2/10)

10-30~0.001 Mesh A
Mesh B

0.5161c,h

0.5022c,h
0.4917c,h

0.4798c,h
0.4830c,h

0.4781c,h
0.4801c,h

0.4784c,h 0.4789

0.01 Mesh A
Mesh B

0.5163c/0.5161h

0.5026c/0.5022h
0.4919c/0.4914h

0.4803c/0.4799h
0.4832c/0.4827h

0.4786c/0.4782h
0.4802c/0.4800h

0.4789c/0.4786h 0.4789

0.1 Mesh A
Mesh B

0.5301c/0.5058h

0.5276c/0.5078h
0.5017c/0.4904h

0.4965c/0.4882h
0.4872c/0.4831h

0.4845c/0.4819h
0.4814c/0.4802h

0.4804c/0.4797h 0.4789

c. Results by the Constitutive Eq. (50);
h. Results by the Hybrid-enhanced procedure proposed in section 2.2.8
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obvious that the proposed element, TSL-T9, is a high precision and fast convergence element
whether it is used for thin or thick plate analysis. No shear locking happens in thin plate limit. The
comparisons of the present results with those obtained by other element models, DKT (Batoz, Bathe

Table 2 Central displacements wc/(ql 4/100D) and moments Mc/(ql2/10) for the soft simply supported (SS1)
square plate subjected to uniform load q

Number

h/l   Mesh type
2 × 2 4× 4 8× 8 16× 16 Analytical

solutions

wc/(ql 4/100D)

10-30~0.001 Mesh A
Mesh B

0.4030
0.4034

0.4059
0.4052

0.4062
0.4060

0.4062
0.4062

0.4062
(Taylor et al. 

1993)

0.1 Mesh A
Mesh B

0.4154
0.4239

0.4293
0.4322

0.4465
0.4472

0.4568
0.4570 0.4617

Mc/(ql 2/10)

10-30~0.001 Mesh A
Mesh B

0.5133c,h

0.5074c,h
0.4909c,h

0.4809c,h
0.4828c,h

0.4783c,h
0.4801c,h

0.4785c,h 0.4789

0.1 Mesh A
Mesh B

0.5279c/0.5050h

0.5387c/0.5183h
0.5085c/0.4976h

0.5055c/0.4971h
0.5066c/0.5026h

0.5040c/0.5013h
0.5085c/0.5073h

0.5074c/0.5067h 0.5096

c. Results by the Constitutive Eq. (50);
h. Results by the Hybrid-enhanced procedure proposed in section 2.2.8

Table 3 Central displacements wc/(ql4/100D) and moments Mc/(ql2/10) for the clamped square plate subjected
to uniform load q

Number

  h/l    Mesh type
2 × 2 4× 4 8× 8 16× 16 Analytical

solutions

wc/(ql4/100D)

10-30~0.001 Mesh A
Mesh B

0.1077
0.1229

0.1220
0.1254

0.1254
0.1263

0.1263
0.1265 0.1265

0.01 Mesh A
Mesh B

0.1078
0.1230

0.1222
0.1256

0.1256
0.1263

0.1264
0.1267 0.1267

0.1 Mesh A
Mesh B

0.1199
0.1426

0.1402
0.1464

0.1471
0.1487

0.1495
0.1499 0.1499

Mc/(ql 2/10)

0.001 Mesh A
Mesh B

0.2380c,h

0.2909c,h
0.2343c,h

0.2386c,h
0.2306c,h

0.2309c,h
0.2295c,h

0.2294c,h

0.2291
(Taylor et al. 

1993)

0.1 Mesh A
Mesh B

0.2473c/0.2230h

0.3015c/0.2839h
0.2448c/0.2335h

0.2545c/0.2468h
0.2374c/0.2333h

0.2390c/0.2365h
0.2337c/0.2325h

0.2339c/0.2332h
0.231

(Taylor et al. 
1993)

c. Results by the Constitutive Eq. (50);
h. Results by the Hybrid-enhanced procedure proposed in section 2.2.8
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Fig. 9 The percentage error of central deflection wc and moment Mc for hard simply supported (SS2) square
plates

Fig. 10 The percentage error of central deflection wc and moment Mc for soft simply supported (SS1) square
plates
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and Ho 1980), DKMT (Katili 1993), ARS-T9 (Soh, Long and Cen 1999), T3BL (Taylor and
Auricchio 1993), are also plotted in Fig. 9 to 11. (Note: for present element TSL-T9, only hybrid-
enhanced moment solutions are plotted). It also shows that present element can provide similar
solutions under different mesh type A and B for most cases, while significantly differences exist in
other elements.

4.1.4 Skew plates 
(a) Fig. 12 shows a 60o skew plate which was originally studied by Razzaque (1973). This plate

was simply supported (SS1) on two opposite edges and free on the other two edges. The results
obtained using the present element TSL-T9 and other triangular or quadrilateral elements are shown
in Table 4 and Fig. 13. It shows that TSL-T9 exhibits excellent performance in both displacement
and moment solutions.

(b) The simply supported (SS1) skew plate illustrated in Fig. 14 has been solved by (Morley
1963) for the limiting Kirchhoff-Germain assumptions. Babuška and Scapolla (1989) also solved

Fig. 11 The percentage error of central deflection wc and moment Mc for clamped square plates

Fig. 12 Razzaque’s skew plate 4× 4 mesh
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this problem as a 3-D elastic case. The results obtained using TSL-T9 and some other elements are
presented in Tables 5 through 6. The accuracy and reliability of the proposed element is again
clearly illustrated.

Fig. 13 The percentage error of central deflection wo and moment My for a Razzaque’s skew plate (Triangular
elements)

Table 4 Results for the Razzaque’s skew plate

Mesh
N × N TSL-T9

MiSP3+
(Ayad et al. 

2001)

MiSP3
(Ayad et al. 

1998)

DKT 
DKMT 
ARS-T9 

MITC4
(Bathe et al. 

1985)

MiSP4
(Ayad et al. 

1998)

MMiSP4
(Ayad et al. 

1998)

ARS-Q12
(Soh et al. 

2001)

(a) Central deflection wo×10-9

2 × 2 0.7191 0.6215 0.5663 0.6327 0.3856 0.5120 0.2979 0.6666
4 × 4 0.7735 0.7610 0.7400 0.7539 0.6689 0.7259 0.6668 0.7691
8 × 8 0.7865 0.7860 0.7805 0.7816 0.7560 0.7781 0.7604 0.7876

16× 16 0.7898 0.7899 0.7894 0.7886 0.7797 0.7894 0.7832 0.7920

Exact (Razzaque 1973) 0.7945

(b) Central moment My×10-3

2 × 2 0.9937c,h 0.6767 0.6668 0.9145 0.3778 0.6066 0.4687 0.9246
4 × 4 0.9760c,h 0.9100 0.8930 0.9559 0.7706 0.8774 0.7704 0.9595
8 × 8 0.9651c,h 0.9501 0.9454 0.9601 0.9070 0.9423 0.9052 0.9605

16× 16 0.9613c,h 0.9581 0.9571 0.9600 0.9472 0.9567 0.9466 0.9601

Exact (Razzaque 1973) 0.9589

c. Results by the Constitutive Eq. (50);
h. Results by the Hybrid-enhanced procedure proposed in section 2.2.8

Fig. 14 Morley’s skew plate 4× 4 mesh
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Table 5 Displacement and principal moments at the center of Morley’s acute skew plate (L /h = 1000)

Mesh 
N × N TSL-T9

ARS-T9
(Soh et al. 

1999)

T3BL
(Taylor et al. 

1993)

T3BL(R)
(Taylor et al. 

1993)

MITC4
(Bathe et al. 

1985)

Q4BL
(Zienkiewicz 
et al. 1993)

DKMQ
(Katili 
1993)

ARS-Q12
(Soh et al. 

2001)

(a) Central deflection wo/(qL4/1000D)
4 × 4
8 × 8

16× 16
32× 32

0.453
0.422
0.417
0.415

0.453
0.424
0.419
0.417

0.421
0.415
0.414
0.413

0.489
0.439
0.426
0.421

0.358
0.343
0.343
0.362

0.512
0.439
0.429
0.424

0.760
0.507
0.443
0.425

0.756
0.506
0.442
0.424

Morley (Morley 1963)  0.408

(b) Central max principal moment Mmax/(qL2/100)
4 × 4
8 × 8

16× 16
32× 32

2.189c,h

1.940c,h

1.940c,h

1.928c,h

2.217
1.983
1.951
1.934

1.722
1.893
1.912
1.918

1.820
1.912
1.942
1.940

1.669
1.733
1.717
1.777

2.012
1.990
1.967
1.953

2.339
2.074
1.984
1.950

2.314
2.069
1.985
1.950

Morley (Morley 1963)  1.910

(b) Central min principal moment Mmin/(qL2/100)
4 × 4
8 × 8

16× 16
32× 32

1.425c,h

1.068c,h

1.118c,h

1.110c,h

1.429
1.116
1.124
1.106

0.955
1.090
1.100
1.100

0.964
1.099
1.125
1.125

0.921
0.957
0.874
0.923

1.133
1.164
1.152
1.140

1.751
1.276
1.166
1.137

1.730
1.271
1.168
1.136

Morley (Morley 1963) 1.080

c. Results by the Constitutive Eq. (50);
h. Results by the Hybrid-enhanced procedure proposed in section 2.2.8

Table 6 Displacement and principal moments at the center of Morley’s acute skew plate (L/h = 100)

Mesh 
N × N TSL-T9

ARS-T9
(Soh et al. 

1999)

T3BL
(Taylor et al. 

1993)

T3BL(R)
(Taylor et al. 

1993)

MITC4
(Bathe et al. 

1985)

Q4BL
(Zienkiewicz 
et al. 1993)

DKMQ
(Katili 
1993)

ARS-Q12
(Soh et al. 

2001)

(a) Central deflection wo/(qL4/1000D)
4 × 4
8 × 8

16× 16
32× 32

0.453
0.423
0.418
0.417

0.454
0.425
0.421
0.419

0.422
0.417
0.418
0.420

0.490
0.440
0.428
0.424

0.359
0.357
0.383
0.404

0.513
0.440
0.431
0.427

0.757
0.504
0.441
0.423

0.754
0.503
0.440
0.423

Morley (Morley 1963) 0.408
3-D (Babuška and Scapolla 1989)  0.423

(b) Central max principal moment Mmax/(qL2/100)
4 × 4
8 × 8

16× 16
32× 32

2.190c/2.188h

1.942c/1.939h

1.943c/1.940h

1.934c/1.932h

2.217
1.983
1.952
1.940

1.724
1.893
1.922
1.937

1.820
1.913
1.946
1.947

1.670
1.782
1.844
1.894

2.014
1.992
1.973
1.962

2.330
2.073
1.984
1.945

2.310
2.067
1.983
1.947

Morley (Morley 1963) 1.910

(b) Central min principal moment Mmin/(qL2/100)
4 × 4
8 × 8

16× 16
32× 32

1.427c/1.425h

1.074c/1.073h

1.121c/1.120h

1.118c/1.117h

1.430
1.118
1.127
1.124

0.956
1.089
1.107
1.121

0.965
1.100
1.127
1.132

0.921
0.999
1.046
1.076

1.132
1.164
1.155
1.149

1.740
1.267
1.166
1.135

1.723
1.267
1.169
1.137

Morley (Morley 1963) 1.910

c. Results by the Constitutive Eq. (50);
h. Results by the Hybrid-enhanced procedure proposed in section 2.2.8
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4.1.5 Circular plate
A clamped circular plate subjected to a uniformly distributed load q = 1 is showed in Fig. 15. The

radius, Young’s modulus and Poisson’s ratio of the plate were assumed to be 5, 10.92 and 0.3,
respectively. In Figs. 16 through 19 show the results of bending moments Mr and Mθ, shear force Tr

and displacement wr, respectively, on a radius for the thin and thick plates. All results were obtained
using a mesh with 96 elements. It is obvious that the results obtained using the proposed element
are in excellent agreement with those of the exact solutions, except the shear forces obtained by the
constitutive Eq. (50) in thin-plate analysis. It also demonstrates that better stress solutions can be
obtained by the proposed hybrid-enhanced procedure. 

4.2 Linear shell problems

4.2.1 Scordelis-Lo roof
The cylindrical shell in Fig. 20 is supported by a rigid diaphragm at two ends and loaded

vertically by its uniform dead weight. Because the shell is symmetric, only a quarter is taken for
calculation. The results of GMST18, the following ABAQUS (ABAQUS/Standard User’s Manual
1998) elements: 

(i) STRI3: 3-node, 18-DOF, triangular, flat-shell element for thin shells; 
(ii) S3R: 3-node, 18-DOF, triangular, three-dimension degenerate element with reduced

integration for general shells and some other models are given in Table 7. It can be seen that better
accuracy can be obtained by proposed element GMST18.

4.2.2 Twisted cantilever beam
A twisted cantilever beam is shown in Fig. 21. The free end is twisted 90o from the clamped end.

Two types of load are applied to the free end of the beam: P = 1.0, Q = 0.0 and P = 0.0, Q = 1.0.
The displacements in the direction of the load are reported in Table 8. Excellent results can be again
obtained by GMST18. 

4.2.3 Hemispherical shell
As shown in Fig. 22, a hemispherical shell with hole at the top is under two opposite radial

concentrated loads at point A and B. The results of the radial deflection at load point are given in
Table 9. 

Fig. 15 The typical mesh for 1/4 circular plate
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Fig. 16 Bending moment Mr along the radius of a clamped circular plate subjected to uniform loading

Fig. 17 Bending moment Mθ along the radius of a clamped circular plate subjected to uniform loading.

Fig. 18 Shear force Tr along the radius of a clamped circular plate subjected to uniform loading

Fig. 19 Deflection wr along the radius of a clamped circular plate subjected to uniform loading
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4.3 Geometrically nonlinear shell problems

All nonlinear examples in this section are solved by Newton-Raphson method used in ABAQUS. 

4.3.1 Post-buckling analysis of a square plate
As shown in Fig. 23, a square plate is controlled by four clamps along each edge. Thus, the

displacements in the control directions are uniform. Only a quarter of the plate using 4 × 4 mesh

Fig. 20 Scordelis-Lo roof 

Fig. 21 Twisted beam divided into 2 × 12 mesh 

Table 7 Vertical displacement at the midpoint of free edge for Scordelis-Lo roof

Mesh Guan and 
Tang 1992

DKT-CST-15RB 
(Carpenter, Stolarski 

and Belytschko 1986)

Olson and 
Bearden 1979 STRI3 S3R GMST18

2 × 2 0.3078 0.2976 0.3809 0.3310 0.2390 0.3349
4 × 4 0.3033 0.2144 0.2942 0.2221 0.2150 0.2943
6 × 6 − 0.2428 − 0.2464 0.2438 0.2946
8 × 8 − 0.2622 − 0.2642 0.2627 0.2965

10× 10 − 0.2737 0.2970 0.2751 0.2742 0.2978

Deep shell solution (Parisch 1979) 0.3008
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division is analyzed because of symmetry. According to the series method presented by (Budiansky
1974), the critical load and post-buckling path are given by 

Fig. 22 Hemispherical shell with hole at the top, mesh
8 × 8

Fig. 23 Post-buckling problem for a square plate

Table 8 Deflection at the free edge of a cantilever twist beam 

Mesh STRI3 S3R
RTS18

(Wanji, Cheung 
1999)

GMST18

Load case 1: P = 1, Q = 0
2 × 4 59.08 663.7 851.0 875.3
2 × 8 455.6 1190 1238 1282
2 × 12 917.7 1255 1280 1293
2 × 16 1145 1275 1290 1295

Exact (Wanji and Cheung 1999) 1294

Load case 2: P = 0, Q = 1
2 × 4 185.6 2479 3727 3618
2 × 8 1742 4891 5117 5226
2 × 12 3678 5093 5238 5269
2 × 16 4642 5153 5268 5276

Exact (Wanji and Cheung 1999) 5256

Table 9 Radial deflection at point A of the spherical under concentrated loads at A and B

Mesh STRI3 S3R RTS18
(Wanji, Cheung 1999)

Providas and 
Kattis 2000 GMST18

4 × 4 0.094 0.055 0.091 0.095 0.082
8 × 8 0.094 0.084 0.096 0.093 0.092

16× 16 0.093 0.092 0.094 (14× 14) − 0.093
64× 64 0.093 0.093 − − 0.094

Exact (Wanji and Cheung 1999) 0.094
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and 

where wmax is the central deflection of square plate. The post-buckling paths obtained by elements
GMST18 and STRI3 are ploted in Fig. 24. It can be seen that the results of GMST18 are more
consistent with Budiansky’s solutions than those of STRI3.

4.3.2 Post-buckling analysis of a cylindrical shell subjected to a concentrated load
Fig. 25 shows a cylindrical shell subjected to a central vertical concentrated load P. The

displacement loading is adopted in this example. Total number of incremental steps is 200. And the
displacement step length is fixed in each step. The post-buckling path obtained by two elements
GMST18 and STRI3 (under 4 × 4 and 8 × 8 mesh divisions) are plotted together in Fig. 26. It can
be seen that all curves are in agreement with each other. 

The critical load obtained by both elements under different mesh divisions is also given in Fig. 27
and Table 10. It shows that the proposed element GMST18 possesses better convergence.
Furthermore, less time is needed when using element GMST18 under the same hardware and
software conditions (Table 11). 

5. Conclusions

A new 18-DOF triangular flat-shell element GMST18 has been formulated by using a new derived
thin-thick plate element, TSL-T9, based on semiLoof constrains (Long 1993) and rational shear
interpolation approach (Soh, Long and Cen 1999). The membrane part is modeled by the
generalized conforming membrane element, GT9 (Long and Xu 1994), with rigid rotational
freedoms. Furthermore, a simple hybrid procedure is suggested to improve the stress solutions, and
the Updated Lagrangian formulae are also established for the geometrically nonlinear problems. The
potential accuracy and versatility of the said elements have been illustrated using various numerical
examples, which show that

Pcr
4π2

D
L

-------------=
P

Pcr

------- 1
3
8
--- 1 ν2–( )

wmax

h
---------- 

 
2

+=

Fig. 24 Post-buckling path for a square plate, mesh
4 × 4

Fig. 25 A hinged cylindrical shell, mesh 4× 4
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1. Element GMST18 possesses excellent performance in the analysis of very thin to thick plate
and shell problems;

2. No shear locking takes place when the thickness of the shells approaches zero. And no
membrane locking and hourglass happen after adopting usual numerical techniques.

3. The hybrid-enhanced procedure can improve stress solutions obviously.

Table 10 Critical load (KN) under different mesh divisions for a simply-supported cylindrical
shell

Mesh N × N STRI3 GMST18

2 × 2 2.0452 2.1132
4 × 4 2.1708 2.1764
8 × 8 2.1904 2.1896

16 × 16 2.1940 2.1968
Saleeb, Chang, Graf and Yingyeunyong 1990

Hughes and Liu 1981
Bathe and Bolourchi 1980

To and Liu 1995

2.20
2.20
2.24
2.30

Table 11 The CPU time used for post-buckling problem of a cylindrical shell (Mesh 16× 16)

Solver: ABAQUS6.1 standard
CPU: Pentium III 450 MHz 
Memory: 512 M

Element No. of incremental steps Time (s)

GMST18 200 298
STRI3 200 425

Fig. 26 Load-central deflection curve for a hinged
cylindrical shell subjected to a central vertical
concentrated load

Fig. 27 Critical load for different mesh divisions for
a hinged cylindrical shell
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4. Element GMST18 exhibits better efficiency and accuracy than the same type model used in
ABAQUS.

Element GMST18 also possesses excellent performance in the analysis of laminated composite
shells and smart structures. This will be introduced in another paper. 
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