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Abstract. A new simple 3-node triangular flat-shell element with standard nodal DOF (6 DOF per
node) is proposed for the linear and geometrically nonlinear analysis of very thin to thick plate and shell
structures. The formulation of element GT9 (Long and Xu 1994), a generalized conforming membrane
element with rigid rotational freedoms, is employed as the membrane component of the new shell
element. Both one-point reduced integration scheme and a corresponding stabilization matrix are adopted
for avoiding membrane locking and hourglass phenomenon. The bending component of the new element
comes from a new generalized conforming Kirchhoff-Mindlin plate element TSL-T9, which is derived in
this paper based on semiLoof constrains and rational shear interpolation. Thus the convergence can be
guaranteed and no shear locking will happen. Furthermore, a simple hybrid procedure is suggested to
improve the stress solutions, and the Updated Lagrangian formulae are also established for the
geometrically nonlinear problems. Numerical results with solutions, which are solved by some other recent
element models and the models in the commercial finite element software ABAQUS, are presented. They
show that the proposed element, denoted as GMST18, exhibits excellent and better performance for the
analysis of thin-think plates and shells in both linear and geometrically nonlinear problems.

Key words: finite element; flat-shell element; generalized conforming; semiLoof constrains geometrical
nonlinear; UL formulation; GMST18.

1. Introduction

The 3-node triangular flat-shell element is widely used in the analysis of shell structures because
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its outstanding merits, such as simplicity, easy application and high accuracy. Therefore, a great deal
of attention has been paid to develop an efficient model (Darendeliler, Oral and Turgut 1999, Fish

and Belytshko 1992, Providas and Kattis 2000, To and Liu 1994, Wanji and Cheung 1999, Zhang,

Lu and Kuang 1998, Zienkiewicz and Taylor 2000).

The formulation of the flat-shell element is composed of two parts: membrane component and
plate bending component. The most conventional model is made of the constant strain element CST
and the standard nine-DOF plate bending element. But a difficulty arises if all the elements meeting
at a node are co-planar: the global stiffness matrix will be singular. This problem can be easily
avoided if the membrane element with drilling degrees of freedoms is used (Providas and Kattis
2000). Allman (1984 and 1988), Felippa and Alexander (1992), proposed triangular membrane
elements with vertex rotational degrees of freedoms. Long and Xu (1994), also proposed
generalized conforming triangular membrane elements with vertex rigid rotational freedoms. Some
of these elements have been successfully utilized to construct flat-shell elements (Zhang, Cheung
and Chen 2000).

Plate bending element is the other component of the flat-shell element. The development of “thin
(C*- continuity)” or “thick (C°continuity)” plate elements has attracted many researchers for more
than 40 years. Various models have been proposed since 1960s. For thin plate, the non-conforming
element BCIZ (Bazeley, Cheung, Irons and Zienkiewicz 1965), the discrete Kirchhoff triangle DKT
(Batoz, Bathe and Ho 1980) and their enhanced versions (Cheung and Wanji 1995, Wanji and
Cheung 1998) are the most well-known and popular models. Besides, some other high performance
elements were also presented by using generalized conforming element method (Long and Zhao
1988, Long and Xin 1989, Long 1993, Long, Bu, Long and Xu 1995). Though these models all
exhibit good abilities, they neglect the effects due to transverse shear strains and can only be used in
thin plate analysis. Recently, several approaches are applied to generalize thin plate element DKT to
Mindlin plate elements (Batoz and Lardeur 1989, Batoz and Katili 1992, Katili 1993, Soh, Long
and Cen 1999, Wanji and Cheung 2001). OtB&vcontinuity Mindlin type elements are also
successfully constructed at the same time (Ayad, Dhatt and Batoz 1998, Ayad, Rigolot and Talbi
2001, Taylor and Auricchio 1993).

The foregoing efforts provide plentiful choices to develop high performance flat-shell element.
The key is how to make a rational selection of membrane and plate elements. From authors’
opinions, the new element should include following characters: (1) relative large range for
application, i.e., be valid for both thin and thick plates and shells; (2) relative simple formulation
without any numerical difficulties and problems, such as singularity of stiffness matrix, shear
locking, membrane locking, and hourglass; (3) high accuracy and good convergence for arbitrary
mesh division.

In this paper, a new 3-node, 18-DOF triangular flat-shell element is developed. The formulation of
the membrane part is modeled by the generalized conforming membrane element, GT9 (Long and
Xu 1994), with rigid rotational freedoms. Both one-point reduced integration scheme and a
corresponding stabilization matrix (Fish and Belytshko 1992) are adopted for avoiding membrane
locking and hourglass phenomenon. The formulation of the bending part is based on a new
generalized conforming thin-thick plate element TSL-T9, which is derived in this paper by using
semilLoof constrains method (Long 1993) and rational shear interpolation approach (Soh, Long and
Cen 1999). Furthermore, a simple hybrid procedure is suggested to improve the stress solutions, and
the Updated Lagrangian formulae are also established for the geometrically nonlinear problems.
Then the resulting element, called GSMT18, is introduced into the commercial finite element
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Fig. 1 Flat-shell element in the local co-ordinate systgm

softwvare  ABAQUS (ABAQUS/Standard User's Manual 1998) by user element function and
examined by various examples. The numerical results show that present element GSMT18 is free of
membrane and shear locking and robust for both thin to thick plates and shells.

2. Finite element formulation

Consider the triangular flat-shell element shown in Fig. 1. The element is assembled by plane
membrane and plate bending element. It has 3 nodes and 6 DOF per node. The element nodal
displacement vector in local coordinate systgmis:

=
a® =[O with a =[uvw 6 6 6] @(=123) 1)
O O
eSOl
whereu;, vi andw; are the nodal displacements along the axgsandz, respectivelyg;, 8, andé,;
are the nodal rotation freedoms.

Let a; be the nodal displacement vector related to membrane elemengy; and be the nodal
displacement vector related to plate bending element. Then

o NI ks
a, = Ejaﬁ]zg with a, = Evi % a, = 55132% with a5, = EHXE (i=123 (2
0,0 090 2,0 0%i0

2.1 The formulation and the stabilization of the plane membrane element GT9 (Long and
Xu 1994)

The membrane element used here is the 3-node triangular generalized conforming membrane
element GT9 (Long and Xu 1994) with rigid rotational freedoms, and its displacement field is given by

o=y |k O N g, ©
mi
VO i; 0 L; Nyg

whereL,; (i =1, 2, 3) are the triangular area coordinatgs; andN,g; are the shape functions for the
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Fig. 2 The additional rigid rotational freedom for membrane element

rigid rotation freedom#,; (Fig. 2):

N —l'LbL bL N—l'L L L i,j,k=1,2 3 4
u9i_2i(kj_j K v9i_2i(ckj_cj K (i,j,k=1,273) (4)
with
Di =Y, =Ym Ci =X —Xn (5)
Differentiation of Eq. (3) yields the strain matrix of element:

Bm = [Bmi Bmz Bl (6)

where

1 2b, O bi (b L;—b;Ly) N

Bmi = 475\ O 2C| CI(CkLJ_C]Lk) ’ (Iljlk = 11 21 3) (7)

2¢; 2b;  (bice+ bc)L; —(bic + bic) Ly

whereA denotes the area of the element.
Then, the element stiffness matrix of GT9 in the local coordinate system can be obtained as
follows:

Ks = ff.BnDnBrdA (8)
whereD,, is the elasticity matrix:
1 v 0
P = ir\]/z . 1—Ov ©)
0 0 >

whereE is Young’s modulusy is Poisson’s ratio; ank is the thickness of element.

If 8, =6,= 0, there exists an extra zero energy mode in addition to the conventional rigid body
movement. This extra zero energy mode can be easily suppressed by setting one of the nodal
rotational to be zero in one element of the mesh (Long and Xu 1994).

In order to avoid membrane locking in the calculation of shells, one-point reduced integration are
often employed for the membrane component with rotational freedoms. But unfortunately, extra zero
energy modes of the element will appear and hourglass phenomenon may occur. Fish and Belytschko
(1992), suggested a method of adding a stabilization matrix to overcome this shortcoming. According
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to their approach, the stabilization matrix of the element GT9 is given as follows

00 000 000 0
00 000 000 O
00 200-10 0 -1
00 000 000 O
Knstab= @0 0 000 000 0 (10)
00-100 20 0-1
00 000 000 0
00 000 000 0
00-100-100 2
with
@ = x[K:(3,3)+ KL (6, 6) +KE(9,9)]/3 (11)

where Kﬁq denotes the element stiffness matrix of GT9 using one-point integxaioa;perturbation
factor. From numerical experiments, it is found that wiyeis not less than 16 the rank and
eigenvalues of the new shell element are correck Sd0° is adopted throughout this paper.

Thus the element stiffness matrix of GT9 in local coordinate system can be modified as

K - K + Kmstab (12)
2.2 The formulation of the new thin-thick plate bending element TSL-T9

Long (1993), proposed a 9-DOF generalized conforming thin plate element LSL-T9 based on
semiLoof constrains. Soh, Long and Cen (1999), proposed a method of assuming shear strain field
and extend thin plate element DKT to another thin-thick plate element ARS-T9. Both techniques
described in foregoing references are used in this section to construct a new thin-thick plate element
TSL-T9: (1) the shear strain field is determined by using Timoshenko's beam theory; (2) the
deflection field is assumed and then determined by using semiLoof constrains. Then all the
formulae can be obtained following the standard procedure.

Consider the thick plate triangular element shown in Fig. 3, the element nodal displacement vector is:

q° = [w; Ba By Wy Byo By Wi Bis ﬁys]T (13)
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Fig. 3 Triangular plate bending element TSL-T9
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The g®and afj in Eqg. (2) have following relationship:

100 100 00O
q°=La;withL= g0l I=|00-1|.and0= |po0o0 (14)
001 010 00O

2.2.1 Locking-free Timoshenko’s beam element

In order to determine the displacements and the shear strain along each element side, a locking-
free Timoshenko’s beam element was derived and presented by Soh, Long and Cen (1999) and Soh,
Cen, Long and Long (2001). The formulas of deflectigrrotation B and shear straiy for the
thick beam element, as shown in Fig. 4, are as follows:

W= w(l—r)+mm4-gugp¢godl—r)—gr(l—26)D(l—rﬂl—ZU (15a)
Bs = Bsi(L—r)+ Bgr+ 3r(1-25) r(1-r) (15b)
_ low _
y - dar _ﬁs - 6r (15C)
with
_2 _ _62 _ Dg
r= d(_Wi + W) = Bsi— By 0= 1+ 121 A= Cd(jz (16)

whered is the length of the beany and C4 are the bending and shear stiffness of the beam,
respectively. Since the deflection, rotation and shear strain along the sides of the plate element will
be given by Egs. (15) and (1&)y andC4 should be replaced by the corresponding quantities of the
plate. So the parametérin Egs. (15) and (16) can be rewritten as:

y

5= (17)
5 chif
2(1-v) + 255

whereh is the thickness of the elementjs Poisson’s ratio.
It can be seen that when the thicknéssapproaches zero, the shear strgirwill vanish
automatically, and no shear locking will happen.

\ ¥

?

'B“. — 5 ﬁsj I
r=0 T l § /- l’:l
?
!

Fig. 4 The Timoshenko's beam element
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Fig. 5 The shear straip; lengthd;, normal and tangential direction;,(s) of each element side

2.2.2 Interpolation formulas for the shear strain fields

The interpolation procedure for transverse shear strain fields is the same as that of Soh, Long and
Cen (1999). As shown in Fig. 5, the shear strain along the tangential direction of each element side
is constant and determined by Timoshenko’s beam formulae (15c). And from some simple
geometrical relations, the shear strain fields can be obtained as follows:

¥z

y=0 0= HAGq = Bga, (18)
%20
whereB; is the shear strain matrix;
B, = HAGL (19)
with
2A Csk, —Cols by —Csby CLy —Cily
ohf
000 s g, O
A= witl = i=1,2,3 21
05,0 =5 he (i ) (21)
003, 61~V %m0

0 0 0-2-—¢, by 2 ¢, b
G=|2-=,b, 0 0 0-2-=,bh, (22)
-2 —Cc3 by 2 —<c;b; 0 0O

whereb; andc (i =1, 2, 3) are given in (5) is the length of théth element side (Fig. 5). It is
obvious that whein — 0, A — 0, andy— 0.

2.2.3 Interpolation formulas for the deflection field
According to Long (1993), the element deflection fialds assumed to be a polynomial with
12 terms:

w=FA (23)
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with
A=A Ay A Ay As Ag Ay Ag Ag Agg Anx Apal (24)
Fy =Ly Ly Ly Lol Laby Loy Lola(Ly—Lg) Lsly(Lz—Ls) LyiLo(L;—Ly)
LiL,Ls LiLsl, L3L4L,] (25)

2.2.4 The rotation field
Based on the Mindlin plate theory, the rotation field can be obtained:

oW _ ., O
— Yz
o 0o a
B= %BXD= 0o o= |™{A-HaGe (26)
DBo DwW_, O [Fay
Ogy ~ 70O
where (,x) and (,y) mean the derivatives respectxtandy, and
9 _ J 90
ox 2A%)10|_1 P25+ P 0
9 _ g 9.0
Y 2A%1a|_1 TGt G0 (27)

2.2.5 The deflections and normal slopes along element sides

_Along each side of the element, the deflection  is determined by Eq. (15a); and the normal slope

B, is assumed to distribute linearly. For example, the deflection and normal slope alogg side  are
as follows

~ 1
Wo3 = [Lz + ey Lolg(Ly—Lg) Jw, + él-zl—s[l + Uy (Lo —L3)1(C1 B — b1 f3)2)

+ [Lg— Mo Lolg(Lo —Lg) ws + 1'—2 La[—1+ Uy (Lo —L3)](C1Bs —01Bys) (28a)
Bra = — (0B ciBa) ~ (biBs Cify) (280)

with
Hei = 1- Zd (l = 1! 21 3) (29)

2.2.6 The semiloof constrains

In order to solveA in term of g% 12 semiLoof point compatibility conditions (Fig. 6) are
established (Long 1993).

First, apply the compatibility conditions for deflections at the corner nodes 1, 2, 3

(w—w); =0 i=1,23) (30)
A1, Ay, Azcan be solved

A=Wy, A=W, A3= W (31)
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3 4,5,6 are mid-side nodes;

Ay and By are two Gauss points along each

'S\l/m side (k=1,2,3). For instance, the area
4

coordinate of A, and B, arc:
O
e m e aa R S

Fig. 6 SemiLoof constrain points

Then, apply the compatibility conditions for deflections at the mid-side points 4, 5, 6
(W=w); =0 (1=4,576) (32)
A4, As, Agcan be solved
c b
/\4 = E:L(ﬁxz_ﬁx3)_51(ﬁy2_ﬁy3)
c b
As = S (Ba=Bu) =5 (Ba=Bp)
c b
Ao = S (Ba=Be) =5 (Ba=Fp) (33)

Finally, apply the compatibility conditions for normal slopes at Gauss points A and B along each
side

(Ba=B)i =0 (k= Ay By, Ay By, Ay, By) (34)
wheref, is derived from Eq. (26). And for example, along si®e
b, Cy
= -7 T 5
Bn23 dlﬁx L,=0 dlBy L=0 (3 )

Substituting Egs. (35) and (28b) into Eqg. (3%, ..., A;xcan be solved. In this solution, the last
three coefficients are equal, i.ed;o=A11=A1,. Therefore, the element deflection field can be
rewritten in term of 10 coefficients

w=F, A (36)
where
A=A Ay A Ay A Ag A7 Ag Ag Agl]” (37)
F)( =[L; L, Ly LoLg Lk, L4, LoLg(Ly—Lg) Lgbqi(Ls—L,)
L,Lo(L; —Ly) L;L,Ls] (38)
Combining the above resulta; can be expressed in tergisasffollows:
A =cCq (39)
where

C=[C, C, C4 (40)
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O oOoo

1
202

1
—§b3

1
E(r2+ r3)—%+ rZEfsz %2(01—3&02"' 3ryCs) + é(l"' 3r;)c,0; —%2(b1—3r2b2+ 3r3b3)—%(1+ 3ry)b, 4,

1
—é(l—srs)b353
1 4
1—2(3r3b3+ b;—8hb,) + §b252

51+ F)bs8,

4
+ §b353

1
—z(rzbz"' r3hg) +1,0,0, + 13030,

1 1
I‘2(3r3b3— b+ 80,) - 6(1 —3r3)b3ds

+ gb151

1
o(ls* rl)_%-'- r%@ 112(02—3%03"' 3ricy) + %(1 +3r3)C30, —%Z(bz—?’raba"' 3riby) —%(1"' 3r3)bsd;

1
—é(l—3r1)b161
1 4
1_2(3r1b1 +b; —8b;) + §b353
—%(1*' 3ry)bi6;

1
—z(rabs +1,01) +13b38;+1,b, 5,

(41a)

(41b)
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CS =
[ 0 0 0 |
0 0 0
1 0 0
1 1
O —Ecl ébl
1 1
O ECZ —ébz
134r)+85 1 4 1 4
_2( r2) 3 1 —1—2(3r202+02—8C1)—50161 1—2(3I’2b2+ b2—8bl) + éblél
1 1 1
TRt + 5(1+3r))c0, —=(1+3ry)b,0,
5 6 6 (41c)

1 1 1 1 1
5(3_r1)_%_r1%51 1_2(3r101—01+ 802)"‘6(1—3"1)0151 —1_2(3r1b1—b1+8b2)—6(1—3r1)b151

3
Lo vr)-Fer D5 1 1 1 1
A RAF ] 1o 1—2(03—3rlcl+3r2c2)+é(1+3r1)c151 —1—2(b3—3r1b1+3r2b2)—6(1+ 3rb,6;

4 4
25 50 + 3020

+Bor s + 2(1-3r,)0, —S(1-3r,)b,5,

1
(ro=r1) +2(r 6,—r,9,) é(rlcl+ I2C5) —11C10,—T5C,0,

1
—é(rlbl*' rob,) +110,0, +1,0,9,

where
2

2 2 2 2 2
r, = d2—2d3 2:d3—2d1, 3:d_1:5d_2 (42)
d d, ds
Substituting Eq. (39) into Eq. (36} can be expressed as
w= F;Cq = F,CLag= N with N°=F,CL

whereN € is the shape function matrix for the deflection fieldAs the statement in (Long 1993), the
deflection fieldw and the rotation fielg8 are not exactly compatible with the deflection and rotation
along the element sides. But it satisfies following relaxed compatible conditions (Long 1992):

§ o[ Ta(W =) = M(B, = Br) ~My(Be—B5)] = O (44)

where T,, M, and M,s are the boundary shear force, normal moment and tangential moment on
element boundary)A° . Thus, from the concept of generalized conforming (Long and Zhao 1988,
Long and Xin 1989, Long 1992, Long 1993, Long, Bu, Long and Xu 1995), the element presented
here is also a generalized conforming element, and the convergence can be guaranteed.

(43)

2.2.7 The stiffness matrix for plate bending element
From Egs. (26), (36) and (39), the rotation figldan be rewritten as

2w _ ., 0
— Yz !
B0 Oox ™0 OF 0
B=0,0= 0O o= 0 "|c-HAGLa] (45)
B0 wW_, O F, g
Wa 4
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Then, the curvature fielg of the bending element is

5 %
38 8 o B 8% 8
K= [0k, E:E —761’ E: E)— Fr vy CL%BE: Bpa, (46)
25l 0 op,_ogT DLFim
0 dy  oxO

whereB,, is the bending strain matrix, and
Fi o = —=[0 0 0 byb, bgb, byb,
2A

b2Ls— b2L, + 20,b5(L, — L) bjLs —biLs+ 2bgby (Ly—Ly) bAL,—b3L, + 2byby(Ls —Ly)
b,bsL; + bsb;L, + byb,L;] (47a)

, 1
Fay = 2_A2[0 0 0 c,c;3 c5Cp CiCy

C§L3 - C§L2 +2C,C3(L,—L3) Cgl—l - Cil—a +2¢3¢,(Ls—Ly) Ci'—z - Cgl—l +2C,C(Ly - L)
C,C5L, + c5cq L, +CiCoL 5] (47b)
Fry = L%Az[o 0 0 byCy+bsCy by +byCs byc,+ by,

2(boC5+ b3Cr—b3C3) Lo+ 2(b,C—b,C3—b3C,) s 2(3Cy +b,C3—b1Cy) L +2(bsCs—bsci—b,Co) Ly
2(b1Co+ b€ —byCo) Ly +2(01C1—b1Co—b,C1) Ly (D,C5+103C,) Ly + (b3Cy +b1C5) Ly + (01, + b,C4) Ls]

(47¢)
Thus, the stiffness matrix for the plate bending element can be obtained
Ky = IIAeBngBbdA+ HAEBIDSBSdA (48)
where
1v O , 1 v O
Db:DV1 0 :LZV]. O, Ds:§Ghlo (49)
1-v| 12(1-v") 1-v 6 101
00— 00—~

where G=E/[2(1 - V)] is the shear modulus. A standard 3 Hammer integration point scheme is
employed in executing Eg. (48) in order to satisfy the theoretical necessity. It is not necessary to use
any reduced integration techniques here.

This plate bending element obtained is named TSL-T9, to remind that it is a Thick plate
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SemiLoof Triangular finite element with 9 DOFs. It can degenerate into the generalized conforming
thin plate element LSL-T9 presented by (Long 1993) when let the parardéierd, 2, 3) equal
zero. So TSL-T9 is a Kirchhoff-Mindlin element.

2.2.8 Hybrid-enhanced procedure for stress solutions
From the constitutive relations of the plate, the bending moments and shear forces can be
obtained.

MXE O
M,0= D,k = DB,a, T=
y O b bBp8p ET

My y

It is a well-known fact that hybrid elements are likely to perform better than displacement
elements for calculation of stresses. In order to improve the stress solutions of the presented
element, a simple hybrid-enhanced procedure is suggested here.

The bending moment fieldM and the shear force fieldd are only required to satisfy €
continuity between two elements based on Mindlin plate theory (Ayad, Dhatt and Batoz 1998, Ayad,
Rigolot, Talbi 2001). Thudyl can be assumed as follows:

X

oo

0
M = Ez D.y= DB, (50)

M = Pyay (51)
where
L, L,L;, O 0O 0O 0 0 O
Pa=10 0 OL, L, L; 0 0 O (52)
0 00 0O OL; L, Ly
ay =[a, a; a3 a, as 05 a7 Qg ag]T (53)
a(i=1, 2, .., 9) are 9 unknown parameters.

From the equilibrium equations of a plate, the shear forceTielan be expressed as:

OO My x+ My, ,0
T = XD = EM“ Xy’yD = Pray (54)
alyQ . x T My v

where

I:,T__l_blbzbgoooclczcg (55)

" 2Al0 0 O c cocs by b, by
By employing Hellinger-Reissner variational principle, the energy functional of the plate element
can be expressed as:
e_ 1 T -1 1 T -1 T T
Mg = _ZHAQM D, MdA_zIIAeT Ds TdA+HAeM KdA+ HAET YA — W,

1 - _
= —3aw[ff,.(PuDy Py + Pr'DSPr)dAlay + ay [[[,.(Pu By + Pr' B dAlag ~ Wey,  (56)
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ong
oJay,

From = 0 ,ay can be sovled out:

Ay = —KunKuady (57)
where
-1 -1
Kum = —ff,.(Pu Dy Py + P DS Pr)dA

Kua = [f.(Pu By + Py Bo)dA (58)
Substituting Egs. (57) into Egs. (51) and (3)andT can be obtained.
2.3 The new flat-shell element GMST18

Assembling Egs. (12) and (48) according to the DOF’s sequence (Eg. (1)), we obtain the flat-shell
element stiffness matriX® in the local co-ordinates. And after transformik§ to the global
coordinates by standard procedure (Zienkiewicz and Taylor 2000), the element can be used to
calculate shell structures.

This element is named GMST18, to remind that it is a Generalized conforming Mindlin SemiLoof
Triangular finite element with 18 DOFs.

3. Updated Lagrangian formulae

In incremental method, all the physical components of a structure from time O ta &me
assumed to have been obtained. What we are interested in is the increment that occurs from time
to timet + At. The reference configuration is the configuration at time

The principle of virtual displacement expressed by the UL method can be written as

J'IJ'V(HAtUij)aHAt%j)dV = oty (59)

where %o and”AAtsij are the modified Kirchhoff stress tensor and the modified Green strain
t+ At

tensor, respectively. "W is the virtual work done by external loadings at the tifkte

t+At

g; = oﬁ +A0'ij (60)
where g, is the Cauchy stress tensor at the tiraadAg; is the Kirchhoff stress tensor increment
from timet to timet + At.

t+At

& = Dg; = Ae; +Any
_1 21

Ae; = E(Aui,j +Au;;), An;= EAuk,iAuk,j (61)

whereAg; andAny; are the linear and non-linear Green strain tensor increment front tongéme

t + At, respectively. And\y; is the displacement increment from tim® timet + At.
If At is small enough, the following relationship can be established
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Ag;; = DA (62)

whereDjy is elastic tensor.
Substitution of Egs. (60), (61) and (62) into (59) yields (the higher-order terms have been
neglected)

I +1, = (t+AtVV)_|3 (63)
with
I, = Iv DijkIAekldAekldV’ 2= Iv OﬁdAnijdV’ 3= Iv OﬁdAe'i dv (64)

wherel, is the linear increment of virtual work; is the incremental virtual work relevant to the
initial stressesl;is the incremental virtual work done by the internal forces.

For the flat-shell element in the local co-ordinatgsl, andlzin Eq. (63) can be rewritten in the
following discrete form

I, = HAe(aAe;DmAem + OAK D, AK + SAY' D AY)dA
2 = [ 3w TN FAw dA
Iy = HAe(aAa;NnE + OAK'M T+ 30y’ T BYdA (65)

where A means the increment of relevant variables; is the linear increment of the membrane
strain and given by
dAu 9Au JAu é’AVJT _

Ag, = [dx ay _5y_+—d—x_ = B, Aa;, (66)

Ak is the linear increment of the curvature vector given in Eq. @g)is the increment of the
transverse shear strain vector given in Eq. (18);

DQAWD
O00x O_ [Fax . Fi .
AW =0, 0O=| *|cLAa = Bgha, with Bg = | **|CL (67)
ZAW FI p p FI
0 gy E - Y
i h/2 h/2 _E E E
NT = L2 0,dz [z D082 _ [N Ny (68)
h/2 _E h/2 E E
_I—h/Z Tydz I—h/z Ofdz Ny Ny

Ny, ME and TE are the membrane force, bending moment and shear force vectors at the time
respectively.

Ne=[Nf NS NE]T, ME=[ME M MEL, TE=[TF T8 (69)

Substitution of the geometric relation Egs. (18), (46) and (66) into (65) yields
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I, = JAaem(HAeBmTDmBmdA)Aaem + d0ay (HAE(BDTDbBb + B, 'D,B;)dA)Aa;

l, = dha’ (HAeBGTNEBGdA)Aa;

Iy = 5Aa;(HAEBmTN,idA) + dha; (HAe(BbTM *+ B, THdA) (70)
And "W can be rewritten as
AW = snan(TURy) + day (TURY) (71)

where' "“R? and "“R° are the equivalent nodal force vectors at thet #imie of the membrane
element and plate bending element, respectively.
dla;, and 5Aa§ are arbitrary. Thus, according to the variational principle and Egs. (63), (70) and

(71), we can obtain the element incremental equations in the local co-ordinates:

K o |Mann 0 RaO0 RO
. O 0=0,, ,0-0 0 (72)
0 KS+Kg DA O O77R;D OWpD
where K, is the linear stiffness matrix of the membrane element and given by Elqs (8); is the
linear stiffness matrix of the plate bending element and given by Eq. K48); is the geometric
stiffness matrix,
KE = HAQBLNEBGdA (73)
Y is the equivalent nodal internal force vector of the membrane eletHent; is the equivalent
nodal internal force vector of the plate bending element,
W = [[.BaNedA, W7 =[] (ByM "+ BT )dA (74)

Rewriting (72) according to the DOF's sequence yields
(Ke+KHAa® = AR -y (75)

After transforming (75) to the global co-ordinates by standard procedure (Zienkiewicz and Taylor
2000), element GMST18 can be used to analysis the geometrically nonlinear problem of shells.

4. Numerical examples

The element GMST18 is introduced into the commercial finite element software ABAQUS
(ABAQUS/Standard User's Manual 1998) by user element function and evaluated by three types of
numerical examples: (i) plate bending; (i) linear shell; and (iii) geometrically nonlinear shell.

4.1 Plate bending problems

Firstly, some standard examples are used to assess the accuracy of the new derived element TSL-
T9, the plate bending component of the element GMST18. All the bending moment and shear force
solutions are calculated by both the constitutive relations (50) and the hybrid enhanced procedure
proposed in section 2.2.8.



Development of triangular flat-shell element using a new thin-thick plate bending... 99

4.1.1 Eigenvalues and rank

Only three eigenvalues are always zero (corresponding to the rigid body modes of the element)
for various element shapes of very thin and very thick plates. The element TSL-T9 always has a
proper rank. This is to say the element has no spurious zero-energy modes. We can claim that in
real applications the triangular element is stable provided sufficient boundary conditions are
imposed to prevent rigid body motion.

4.1.2 Patch test presented in Fig. 7

(a) Bending moment M 1

For the bending momentsl,=1 along the four sides, the equivalent nodal forces are directly
obtained sincgs, is linear along the sides (refer to Eq. (28b)). The computed valldg, ™, My,
Tx andT, at any point in the four elements are exact (error = 0.00%) for thiz& £ 0.1) and thin
(n/2a=0.001) plates.

(b) Twist moment M= 1

The consistent definition ¢ has been given in Eq. (15b). The consistent nodal forced,fer1
are given in Fig. for the arbitrary thickness-span ratio. The results obtained using the element
TSL-T9 are exactly the same as those of the exact solution (error = 0.00%), exddgt=tBe and
My(= 0) of thick plate {/2a=0.1) in which the max discrepancy between the two solutions is less
than 0.6%.

M=1
-“-— d— q— 4 3
a a
i 10,13) f b b
2b M=M,=1 2b
¥ 2a T 0 2a 0
a a

(a) BENDING (M,=1).

Consistent nodal forces (For arbitrary thickness f)

Mn\‘:l
$ * $ $ * : 2:268,-28, | 4 3 [-2+28426,
— - 2bé, -2bd,
10,13) 2aé, 228,
—>> 2b | e— Mxy:l 2b
2426428, 2-28,-26,
— 2 ! 2
2 2b5, 2 -2bé,
22ad, [ 1 2 -2a68,

R

(b) BENDING (M,=1). Consistent nodal forces (For arbitrary thickness #)

Gr @

su-v+E)

E=10’, v=0.3, h=4 and 0.04, 2=20, b=10, &, = 2 = —
2-v+ )

BC: wi=wr=w3=0

Fig. 7 Patch test: Contant bending moments
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Thus, TSL-T9 passes the patch-test.

4.1.3 Simply-supported and clamped square plate

Fig. 8 shows the typical meshes employed for the study of a square plate. Two simply supported
cases were considered. One was soft (9620) and the other was hard (SS2= 6,=3:,=0).
Moreover, a clamped square plate was also considered. The thickness and side length of the plate
are denoted by andl, respectively; and the Poisson’s ratimf the material was assumed to be
0.3. Tables 1 to 3 present the results of the central displacements and moments subjected to a
uniformly distributed loadg=1 from very thin plate (I = 10°% to thick plate I§/l=0.1). It is

i I

o Lo
il il
® ™
L &
¢ x ¢ *
c ¢ 0=, =0 cle 0,=06,=0
a) Mesh A 4X4 b)yMesh B 4X4

Fig. 8 Typical mesh (4 4) for 1/4 square plate (pointis the center of plate)

Table 1 Central displacements/(gl4/100D) and momentd/./(ql%/10) for the hard simply supported (SS2)
square plate subjected to uniform lapd

Number 4x4 8x8 16x16  Analytical
h/l Mesh type solutions
w/(gl 4/100D)
w0 Mesh A  0.4024 0.4058 0.4062 0.4062
107-0.001 piesh B 04014 0.4051 0.4060 0.4062 0.4062
Mesh A  0.4026 0.4059 0.4063 0.4063
001 MeshB 04016 0.4052 0.4061 0.4063 0.4064
MeshA  0.4146 0.4214 0.4249 0.4266
0.1 Mesh B 04189 0.4233 0.4258 0.4269 0.4273
M./(ql%/10)
20 MeshA  0.516F" 0.4917" 0.4830" 0.480F"
107-0.001 viesh B 0.5022" 0.4708" 0.478%" 0.4784" 0.4789
0.0l Mesh A 0.5163/0.5161 0.4919/0.4914 0.4832/0.4827 0.4802/0.4800" 0.4789
' Mesh B 0.5026/0.5022 0.4803/0.4799 0.4786/0.4782 0.4789/0.4786 '
01 Mesh A 0.53050.5058 0.5017/0.4904 0.4872/0.4831 0.4814/0.4802 oo

Mesh B 0.5276/0.5078 0.496%/0.4882 0.484%/0.4819 0.4804/0.4797

c. Results by th€onstitutive Eq. (50);
h. Results by thélybrid-enhanced procedure proposed in section 2.2.8
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Table 2 Central displacementg/(gl*/100D) and momentsdvi./(ql%/10) for the soft simply supported (SS1)
square plate subjected to uniform lapd

Number 2% 2 Ax4 8x8 16x 16 Analy_tical
h/l Mesh type solutions
w./(ql#/100D)
0.4062
a0 Mesh A 0.4030 0.4059 0.4062 0.4062
107-0.001  \ioch B 0.4034 0.4052 0.4060 0.4062 (Ta{'ggg; al.
01 Mesh A 0.4154 0.4293 0.4465 0.4568 0.4617
: Mesh B 0.4239 0.4322 0.4472 0.4570 :
Mc/(q1%/10)
30_ Mesh A 0.5133" 0.4909" 0.4828" 0.480F"
107-0.001  pesh 0.5074" 0.4809" 0.4783" 0.4785" 0.4789
01 Mesh A 0.5279/0.5050 0.5085/0.4976 0.5066/0.5026 0.5085/0.5073 o«

Mesh B 0.5387/0.5183% 0.505%/0.4971 0.5040/0.5013 0.5074/0.5067

c. Results by th€onstitutive Eq. (50);
h. Results by thélybrid-enhanced procedure proposed in section 2.2.8

Table 3 Central displacementg/(gl¥/100D) and moment$4./(ql%10) for the clamped square plate subjected
to uniform loadq

Number i
2% 2 4x4 8x8 16x16  Anatical
hil Mesh type solutions
w./(ql*/100D)
w0 Mesh A 0.1077 0.1220 0.1254 0.1263
1070001 Viesh B 0.1229 0.1254 0.1263 0.1265 0.1265
Mesh A 0.1078 0.1222 0.1256 0.1264
001 \eshB 0.1230 0.1256 0.1263 0.1267 0.1267
Mesh A 0.1199 0.1402 0.1471 0.1495
0.1 Mesh B 0.1426 0.1464 0.1487 0.1499 0.1499
M./(q]%/10)
000l MeshA  0.2380" 0.2343" 0.2306" 0.2295" (Tao'éfgtlm
' Mesh B 0.2908" 0.2386" 0.2308" 0.2204" {993) :
o1 Mesh A 0.2473/0.2230 0.2448/0.2338 0.2374/0.2338 0.233%0.2328 . 0231

Mesh B 0.3015/0.2838 0 2545/0.2468 0.2390/0.2368 0.2339/0.2332 (Ta{'ggg)t al.

c. Results by th€onstitutive Eq. (50);
h. Results by thélybrid-enhanced procedure proposed in section 2.2.8

obvious that the proposed element, TSL-T9, is a high precision and fast convergence element
whether it is used for thin or thick plate analysis. No shear locking happens in thin plate limit. The
comparisons of the present results with those obtained by other element models, DKT (Batoz, Bathe
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(a) thin plate (2/1=0.001)
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(b) thick plate (#/71=0.1)

Fig. 9 The percentage error of central deflectiprand moment, for hard simply supported (SS2) square

plates
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-4 I i ARS-TS A 5 b .
-5 F . o DKT DKMT
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(a) thin plate (#/1=0.001)
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(b) thick plate (k/7=0.1)

Fig. 10 The percentage error of central deflectigrand moment, for soft simply supported (SS1) square

plates
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%o error —A—-TsL-T9 A % error
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° —®—TsL-T9 B |
20 . L !
. 20 Mesh NxV
w0r ‘o . - -A - DKT DKMT 0 -
__ 4 ARS-TS A |
¢ LS = - -0 -okTokMT | -20 f . ‘
-10 | . ARS-T8 B L
20 S B NSV S X - T3BL A -40 } X }
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% error % error
20 5 —&—15-19 A | 60
10 T —®— 579 8 40 |

=K |- A - kT 20
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RS98| _pg |

207 Mesh NxN| |- % ~T38LA
. N \

-40

0 2 4 8 16
W M.
(b) thick plate (h/1=0.1)
Fig. 11 The percentage error of central deflectigmand momenM, for clamped square plates

and Ho 1980), DKMT (Katili 1993), ARS-T9 (Soh, Long and Cen 1999), T3BL (Taylor and
Auricchio 1993), are also plotted in Fig. 9 to 11. (Note: for present element TSL-T9, only hybrid-
enhanced moment solutions are plotted). It also shows that present element can provide similar
solutions under different mesh type A and B for most cases, while significantly differences exist in
other elements.

E£=10.92
v=0.3

e [ININ/N/N/ 1o

I AWM Uniform load g=1
INONONONL
\VAVAV

Boundary conditions:
X On AB & CD: w=0(S81)

Fig. 12 Razzaque’s skew platex4 mesh

4.1.4 Skew plates

(@) Fig. 12 shows a 8Gkew plate which was originally studied by Razzaque (1973). This plate
was simply supported (SS1) on two opposite edges and free on the other two edges. The results
obtained using the present element TSL-T9 and other triangular or quadrilateral elements are shown
in Table 4 and Fig. 13. It shows that TSL-T9 exhibits excellent performance in both displacement
and moment solutions.

(b) The simply supported (SS1) skew plate illustrated in Fighdst been solved by (Morley
1963) for the limiting Kirchhoff-Germain assumptions. Babuska and Scapolla (1989) also solved
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Table 4 Results for the Razzaque’s skew plate

MiSP3+ MiSP3 DKT MITC4 MiSP4  MMiSP4 ARS-Q12
TSL-T9 (Ayadetal. (Ayadetal. DKMT (Batheet al. (Ayadet al. (Ayadet al. (Sohet al.
2001) 1998) ARS-T9 1985) 1998) 1998) 2001)

(a) Central deflectiom,x10°

2x2 0.7191 0.6215 0.5663 0.6327 0.3856 0.5120 0.2979 0.6666
4x4 0.7735 0.7610 0.7400 0.7539 0.6689 0.7259 0.6668 0.7691
8x8 0.7865 0.7860 0.7805 0.7816 0.7560 0.7781 0.7604 0.7876
16x16 0.7898 0.7899 0.7894 0.7886 0.7797 0.7894 0.7832 0.7920

Exact (Razzaque 1973) 0.7945
(b) Central momeni,x10°

2x2  0.993%*" 0.6767 0.6668 0.9145 0.3778 0.6066 0.4687 0.9246
4x4  0.9766" 0.9100 0.8930 0.9559 0.7706 0.8774 0.7704 0.9595
8x8 0.965f" 0.9501 0.9454 0.9601 0.9070 0.9423 0.9052 0.9605
16x16 0.9618" 0.9581 0.9571 0.9600 0.9472 0.9567 0.9466 0.9601

Exact (Razzaque 1973) 0.9589

c. Results by th€onstitutive Eq. (50);
h. Results by thélybrid-enhanced procedure proposed in section 2.2.8

Mesh
N x N

9% error % error
0 - 10
T 5 F
_5 - oo
o s 0 e
s | N [—a—TsL-Te -5 e R
S0 |- -a - wmispa+ -10r o _*_T§L 19
-20 2 - -X - -MisP3 -15 r :', A MISP3*
=25 . - -0 - -ARS-T9 -20 ,:' X MiSP3
30 | X X =25t X O - ARS-T9
-35 L Mes 1] NxN -30 k Mesh Nx N
-35 ! .
0 2 4 8 16
0 2 4 8 16
(a) Central deflection wy (b) Central moment M,

Fig. 13 The percentage error of central deflectigrand momenM, for a Razzaque’s skew plate (Triangula
elements)

F=10.92; u=0.3

h=0.1, 1

L=100

L/h=1000,100

Uniform load ¢ =1

Boundary conditions:
on ABCD w=0 (8§51)

Fig. 14 Morley’s skew plate 44 mesh

this problem as a 3-D elastic case. The results obtained using TSL-T9 and some other elements are
presented in Tables through 6. The accuracy and reliability of the proposed element is again
clearly illustrated.
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Table 5 Displacement and principal moments at the center of Morley’s acute skewi filatel 000)

Mesh ARS-T9 T3BL T3BL(R) MITC4 Q4BL DKMQ ARS-Q12
NxN TSL-T9 (Sohet al. (Tayloret al. (Tayloret al. (Batheet al. (Zienkiewicz  (Katili ~ (Sohet al.
1999) 1993) 1993) 1985) etal.1993) 1993) 2001)
(a) Central deflectiom,/(qL*1000D)

4x4 0.453 0.453 0.421 0.489 0.358 0.512 0.760 0.756

8x8 0.422 0.424 0.415 0.439 0.343 0.439 0.507 0.506
16x16 0.417 0.419 0.414 0.426 0.343 0.429 0.443 0.442
32x32 0.415 0.417 0.413 0.421 0.362 0.424 0.425 0.424

Morley (Morley 1963) 0.408

(b) Central max principal momeM.,/(qL%100)

4x4  2.189" 2.217 1.722 1.820 1.669 2.012 2.339 2.314

8x8  1.940" 1.983 1.893 1.912 1.733 1.990 2.074 2.069
16x16 1.94¢" 1.951 1.912 1.942 1.717 1.967 1.984 1.985
32x32 1.928" 1.934 1.918 1.940 1.777 1.953 1.950 1.950

Morley (Morley 1963) 1.910

(b) Central min principal momeiMy,,/(qL%100)

4x4 14280 1.429 0.955 0.964 0.921 1.133 1.751 1.730

8x8 1.068" 1.116 1.090 1.099 0.957 1.164 1.276 1.271
16x16 1.118" 1.124 1.100 1.125 0.874 1.152 1.166 1.168
32x32 1.110" 1.106 1.100 1.125 0.923 1.140 1.137 1.136

Morley (Morley 1963) 1.080

c. Results by th€onstitutive Eq. (50);
h. Results by thélybrid-enhanced procedure proposed in section 2.2.8

Table 6 Displacement and principal moments at the center of Morley’s acute skevi/platd@0)

Mesh ARS-T9 T3BL T3BL(R) MITC4 Q4BL DKMQ ARS-Q12
Nx N TSL-T9  (Sohet al. (Tayloret al. (Tayloret al. (Batheet al. (Zienkiewicz (Katili (Sohet al.
1999) 1993) 1993) 1985) et al. 1993) 1993) 2001)
(a) Central deflectiom,/(qL*1000D)
4x4 0.453 0.454 0.422 0.490 0.359 0.513 0.757 0.754
8x8 0.423 0.425 0.417 0.440 0.357 0.440 0.504 0.503
16x 16 0.418 0.421 0.418 0.428 0.383 0.431 0.441 0.440
32x 32 0.417 0.419 0.420 0.424 0.404 0.427 0.423 0.423
Morley (Morley 1963) 0.408
3-D (BabuSka and Scapolla 1989) 0.423
(b) Central max principal momeM,s/(qL%100)
4x4 2190/2.188  2.217 1.724 1.820 1.670 2.014 2.330 2.310
8x8 1.942/1.939  1.983 1.893 1.913 1.782 1.992 2.073 2.067
16x 16 1.943/1.940  1.952 1.922 1.946 1.844 1.973 1.984 1.983
32x32 1.934/1.932  1.940 1.937 1.947 1.894 1.962 1.945 1.947
Morley (Morley 1963) 1.910
(b) Central min principal momeM,,;,/(qL%100)
4x4 1.42F1.428  1.430 0.956 0.965 0.921 1.132 1.740 1.723
8x8 1.074/1.073  1.118 1.089 1.100 0.999 1.164 1.267 1.267
16x16 1.12F¥1.120  1.127 1.107 1.127 1.046 1.155 1.166 1.169
32x32 1.118/1.117 1.124 1121 1.132 1.076 1.149 1.135 1.137
Morley (Morley 1963) 1.910

c. Results by th€onstitutive Eq. (50);
h. Results by thélybrid-enhanced procedure proposed in section 2.2.8
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Fig. 15 The typical mesh for 1/4 circular plate

4.1.5 Circular plate

A clamped circular plate subjected to a uniformly distributed tpad. is showed in Fig. 15. The
radius, Young's modulus and Poisson’s ratio of the plate were assumed to be 5, 10.92 and 0.3,
respectively. In Figs. 1@rough 19show the results of bending momemMsandM,, shear forcd,
and displacement;, respectively, on a radius for the thin and thick plates. All results were obtained
using a mesh with 96 elements. It is obvious that the results obtained using the proposed element
are in excellent agreement with those of the exact solutions, except the shear forces obtained by the
constitutive Eqg. (50) in thin-plate analysis. It also demonstrates that better stress solutions can be
obtained by the proposed hybrid-enhanced procedure.

4.2 Linear shell problems

4.2.1 Scordelis-Lo roof

The cylindrical shell in Fig. 20 is supported by a rigid diaphragm at two ends and loaded
vertically by its uniform dead weight. Because the shell is symmetric, only a quarter is taken for
calculation. The results of GMST18, the following ABAQUS (ABAQUS/Standard User's Manual
1998) elements:

() STRI3: 3-node, 18-DOF, triangular, flat-shell element for thin shells;

(i) S3R: 3-node, 18-DOF, triangular, three-dimension degenerate element with reduced
integration for general shells and some other models are given in Table 7. It can be seen that better
accuracy can be obtained by proposed element GMST18.

4.2.2 Twisted cantilever beam

A twisted cantilever beam is shown in Fig. 21. The free end is twistefto®0 the clamped end.
Two types of load are applied to the free end of the b&mil.0, Q=0.0 andP=0.0,Q=1.0.
The displacements in the direction of the load are reported in Table 8. Excellent results can be again
obtained by GMST18.

4.2.3 Hemispherical shell

As shown in Fig. 22, a hemispherical shell with hole at the top is under two opposite radial
concentrated loads at point A and B. The results of the radial deflection at load point are given in
Table 9.
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Rigid diaphragm

L=50.0
Rigid diaphragm R=25.0
y=w=6,=0 h=0.25 .
E=4.32x10
v=0.0

£=90.0/un1t area

Fig. 20 Scordelis-Lo roof

Table 7 Vertical displacement at the midpoint of free edge for Scordelis-Lo roof
DKT-CST-15RB

Guan and . Olson and
Mesh Tang 1992 a(r?éilggr;igghi?lfgsslg)l?’earden 1979 STRI3 S3R GMST18
2x2 0.3078 0.2976 0.3809 0.3310 0.2390 0.3349
4x4 0.3033 0.2144 0.2942 0.2221 0.2150 0.2943
6x6 - 0.2428 - 0.2464 0.2438 0.2946
8x8 - 0.2622 - 0.2642 0.2627 0.2965
10x 10 - 0.2737 0.2970 0.2751 0.2742 0.2978
Deep shell solution (Parisch 1979) 0.3008
E=29X10°
v=0.22
Length=12
Width=1.1
Thickness=0.0032
Twist=90"

Fig. 21 Twisted beam divided into 2 x 12 mesh

4.3 Geometrically nonlinear shell problems
All nonlinear examples in this section are solved by Newton-Raphson method used in ABAQUS.
4.3.1 Post-buckling analysis of a square plate

As shown in Fig. 23, a square plate is controlled by four clamps along each edge. Thus, the
displacements in the control directions are uniform. Only a quarter of the plate using 4 x 4 mesh
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Table 8 Deflection at the free edge of a cantilever twist beam

RTS18
Mesh STRI3 S3R (Waniji, Cheung GMST18
1999)

Loadcase 1: P=1,Q=0
2x4 59.08 663.7 851.0 875.3
2x8 455.6 1190 1238 1282
2x12 917.7 1255 1280 1293
2x16 1145 1275 1290 1295

Exact (Wanji and Cheung 1999) 1294

Loadcase 2: P=0,Q=1
2x4 185.6 2479 3727 3618
2x8 1742 4891 5117 5226
2x12 3678 5093 5238 5269
2x16 4642 5153 5268 5276

Exact (Wanji and Cheung 1999) 5256

R=10

Thickness=0.04

E=6.825% 107 }‘———;—ﬂ

v=0.3  — E=2.1x10°MPa

v=03
h=0.1m
_P, QPi L=2m
————————— Clamps
Fig. 22 Hemispherical shell with hole at the top, mesh Fig. 23 Post-buckling problem for a square plate

8x8

Table 9 Radial deflection at point A of the spherical under concentrated loads at A and B

RTS18 Providas and
Mesh STRI3 S3R - wanji, Cheung 1999)  Kattis 2000 GMST18
4%x4 0.094 0.055 0.091 0.095 0.082
8x8 0.094 0.084 0.096 0.093 0.092
16x16 0.093 0.092 0.094 (1414) - 0.093
64 x 64 0.093 0.093 - - 0.094
Exact (Wanji and Cheung 1999) 0.094

division is analyzed because of symmetry. According to the series method presented by (Budiansky
1974), the critical load and post-buckling path are given by
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E=3105MPa
v=03
Thickness A=12.7mm

P/Pcr

—— BUDIANSKY hinge: u=v=w=0

054 4 GMST18
o STRI3
0.0 T T T T
0.0 0.5 1.0 1.5 20
W/ h R=2540mm
Fig. 24 Post-buckling path for a square plate, mesh Fig. 25 A hinged cylindrical shell, meshx4
4x4

2 2
P, = 2D g B - 1+§(1—v2)[]’ﬂﬂ

L Per Oh O

wherewnax is the central deflection of square plate. The post-buckling paths obtained by elements
GMST18 and STRI3 are ploted in Fig. 24. It can be seen that the results of GMST18 are more
consistent with Budiansky’s solutions than those of STRI3.

4.3.2 Post-buckling analysis of a cylindrical shell subjected to a concentrated load

Fig. 25 shows a cylindrical shell subjected to a central vertical concentrated load P. The
displacement loading is adopted in this example. Total number of incremental steps is 200. And the
displacement step length is fixed in each step. The post-buckling path obtained by two elements
GMST18 and STRI3 (under 4 x 4 and 8 x 8 mesh divisions) are plotted together in Fig. 26. It can
be seen that all curves are in agreement with each other.

The critical load obtained by both elements under different mesh divisions is also given in Fig. 27
and Table 10. It shows that the proposed element GMST18 possesses better convergence.
Furthermore, less time is needed when using element GMST18 under the same hardware and
software conditions (Table 11).

5. Conclusions

A new 18-DOF triangular flat-shell element GMST18 has been formulated by using a new derived
thin-thick plate element, TSL-T9, based on semiLoof constrains (Long 1993) and rational shear
interpolation approach (Soh, Long and Cen 1999). The membrane part is modeled by the
generalized conforming membrane element, GT9 (Long and Xu 1994), with rigid rotational
freedoms. Furthermore, a simple hybrid procedure is suggested to improve the stress solutions, and
the Updated Lagrangian formulae are also established for the geometrically nonlinear problems. The
potential accuracy and versatility of the said elements have been illustrated using various numerical
examples, which show that
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Fig. 26 Load-central deflection curve for a hingedrig. 27 Critical load for different mesh divisions for
cylindrical shell subjected to a central vertical a hinged cylindrical shell
concentrated load

Table 10 Critical load (KN) under different mesh divisions for a simply-supported cylindrical

shell

MeshN x N STRI3 GMST18
2x2 2.0452 2.1132
4x4 2.1708 2.1764
8x8 2.1904 2.1896
16x 16 2.1940 2.1968

Saleeb, Chang, Graf and Yingyeunyong 1990 2.20

Hughes and Liu 1981 2.20

Bathe and Bolourchi 1980 2.24

To and Liu 1995 2.30

Table 11 The CPU time used for post-buckling problem of a cylindrical shell (Mesth6)6

Solver: ABAQUS6.1 standard
CPU: Pentium Ill 450 MHz
Memory: 512 M

Element No. of incremental steps Time (s)
GMST18 200 298
STRI3 200 425

1. Element GMST18 possesses excellent performance in the analysis of very thin to thick plate
and shell problems;

2. No shear locking takes place when the thickness of the shells approaches zero. And no
membrane locking and hourglass happen after adopting usual numerical techniques.

3. The hybrid-enhanced procedure can improve stress solutions obviously.
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4. Element GMST18 exhibits better efficiency and accuracy than the same type model used in
ABAQUS.

Element GMST18 also possesses excellent performance in the analysis of laminated composite
shells and smart structures. This will be introduced in another paper.
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