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Abstract. In this paper some techniques for the dynamic analysis of non-classically damped linear
systems are reviewed and compared. All these methods are based on a transformation of the governing
equations using a basis of complex or real vectors. Complex and real vector bases are presented and
compared. The complex vector basis is represented by the eigenvectors of the complex eigenproblem
obtained considering the non-classical damping matrix of the system. The real vector basis is a set of Ritz
vectors derived either as the undamped normal modes of vibration of the system, or by the load
dependent vector algorithm (Lanczos vectors). In this latter case the vector basis includes the static
correction concept. The rate of convergence of these bases, with reference to a parametric structural
system subjected to a fixed spatial distribution of forces, is evaluated. To this aim two error norms are
considered, the first based on the spatial distribution of the load and the second on the shear force at the
base due to impulsive loading. It is shown that both error norms point out that the rate of convergence is
strongly influenced by the spatial distribution of the applied forces.

Key words:  dynamic response; non-classical damping; Ritz method; Lanczos vectors; complex modal
analysis.

1. Introduction

The evaluation of the dynamic response of practical engineering structures subjected to any type
of loading, including earthquake excitation, requires the solution of a large number of coupled
differential dynamic equilibrium equations (Clough and Penzien 1993, Chopra 1995). 

The direct integration approach is numerically efficient only for short duration loads which excite
a large number of natural frequencies. For long duration loads, like in an earthquake, the standard
mode superposition analysis represents, for linear systems, the most appropriate numerical technique
in order to reduce the computational effort. According to this method, the dynamic response is
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expressed as a linear combination of real undamped natural modes of vibration and the equations of
motion are decoupled by transformation in terms of these modal co-ordinates. Furthermore a
sufficient degree of approximation can be obtained considering only the first few modal
contributions, but the accuracy of the dynamic response can be improved by using the procedures of
static correction or mode acceleration (Clough and Penzien 1993, Chopra 1995, Cornwell et al.
1983, Hansteen and Bell 1979) which account for the contribution of truncated modes.

However it has not been proved that the real undamped exact eigenvectors provide the best basis
for reducing the size of the problem. The Ritz method, in fact, has been widely used as an
alternative approach for the dynamic analysis of engineering structures (Wilson et al. 1982). This
procedure leads to an approximate solution of the equations of motion in which the displacements
are expressed as a linear combination of admissible shape vectors, called Ritz vectors, which must
be linearly independent and must satisfy the geometric boundary conditions. Moreover, when used
in conjunction with the Rayleigh-Ritz method, the Ritz vectors provide a good approximation of the
first natural modes of vibration of the system, which can be conveniently used for decoupling the
equations of motion without solving the eigenvalue problem of the original structure.

Obviously the accuracy of the results is strongly influenced by the numerical technique used to
generate the set of Ritz vectors. The load dependent vector algorithm (Clough and Penzien 1993,
Chopra 1995, Nour-Humid and Clough 1984, Wilson et al. 1982) leads to particular Ritz vectors
often called Lanczos vectors. These turn out to be very effective because the starting vector of the
sequence, obtained as the static displacement due to the applied forces, includes the static correction
effect, while the subsequent vectors account for the inertial effects on the dynamic response.

It is worth noticing that both exact real eigenvectors and Rayleigh-Ritz approximate vectors can
rigorously decouple the equations of motions only when damping is of the form specified by
Caughey and O’Kelly (1965). This physically means that the energy loss mechanisms are almost
homogeneous throughout the structure. Systems satisfying this condition are said to be classically
damped and the mode superposition method for such systems is referred to as standard modal
analysis. In this case the damping properties can be specified in terms of modal damping ratios, thus
avoiding the construction of the damping matrix. However a classical damping matrix can be easily
derived in the form of Rayleigh damping (Clough and Penzien 1993, Chopra 1995), Caughey
damping (Caughey 1960, Chopra 1995), or by superposition of modal damping matrices (Clough
and Penzien 1993, Chopra 1995, Wilson and Penzien 1972).

Nevertheless there are structural systems for which the standard mode superposition analysis
cannot be applied in the above-mentioned form. These are structures with non-uniform damping
properties, such as soil-structure interacting systems or base-isolated ones, which are referred to as
non-classically damped. For these structures the equations of motion cannot be decoupled by using
the real undamped modes of vibration or the Rayleigh-Ritz vectors, because the generalised
damping matrix presents off-diagonal terms. 

The advantages of decoupling the equations of motion may be retained by using the complex
mode superposition method. This procedure was firstly developed by Foss (1958) and requires the
solution of an unsymmetric, unbounded eigenvalue-eigenvector problem, the dimensions of which
are twice the number of degrees of freedom of the system. Furthermore the eigensolutions, i.e., the
natural frequencies and the damped modes of vibration, are complex and their orthogonality
properties look very different from the corresponding ones of classically damped systems. Owing to
the numerical difficulties in the evaluation of the complex frequencies and modes of vibration and
also to the lack of physical understanding of the elements of the solution, this method has been
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rarely used in structural engineering practice in the form due to Foss. Subsequently Veletsos and
Ventura (1986) have reformulated this procedure for discrete systems, simplifying its
implementation and clarifying the physical meaning of all the elements of the dynamic response.

Although the complex modal superposition method is well established, at least in the case of
discrete systems, it remains inherently more involved than the classical one. For these reasons
several studies, aiming to perform approximately the dynamic analysis of such systems, have been
carried out.

Some of these studies are concerned with a modal superposition technique based on the use of
undamped modes of vibration. The approximate dynamic response can then be obtained simply by
neglecting the off-diagonal terms of the generalised damping matrix and adjusting the modal
damping ratios in order to account for the modal damping coupling, as suggested by Roesset et al.
(1973), Bielak (1976) and Cronin (1976). However, the errors induced by this diagonalisation
procedure are difficult to estimate, especially in the case of closely spaced natural frequencies. To
this end several criteria have been developed, such as those presented by Hasselman (1976),
Warburton and Soni (1977), Shahruz and Ma (1988), Xu and Igusa (1991) and Hwang and Ma
(1993). Moreover Prater and Singh (1986) and Nair and Singh (1986) have worked out some
numerical indices to determine quantitatively the extent of non-classical damping in discrete systems
and the errors induced by the decoupling approximation.

A different technique has been proposed by Clough and Mojtahedi (1976) for discrete systems
and subsequently extended by Warburton (1978) to continuous ones. Firstly the equations of motion
are transformed in terms of undamped modal co-ordinates. Then, assuming that only the first few
modal contributions are significant, the dynamic response is obtained by direct integration of a
truncated set of these coupled equations. However Duncan and Eatock Taylor (1979) have shown
that, for non-classically damped systems, coupling may occur between the first modes and a much
higher one. For this reason accuracy in the results can be ensured only including in the analysis a
much larger number of modal contributions than it is usually done for classically damped structures.

Of course, the method of Clough and Mojtahedi (1976) can also be applied using a Ritz vector
basis, even if they are orthogonal only with respect to the mass matrix of the system. In this case
the transformed equations of motion are coupled by the off-diagonal terms of generalised damping
and stiffness matrices. More recently an alternative approach has been presented by Ibrahimbegovic
et al. (1990), which is based on the use of a complex Ritz vector basis, also derived by the load
depended vector algorithm.

The purpose of this paper is to compare the results of some techniques for the dynamic analysis
of a non-classically damped linear system. These are the complex modal analysis and other methods
based on the direct integration of a truncated set of transformed-coupled equations of motion using
a Ritz vector basis. 

In the following these methods will be firstly reviewed. Subsequently, with reference to a
parametric non-classically damped structural linear system, the rate of convergence of the
considered techniques will be shown as a function of the number of co-ordinates required to achieve
the same accuracy. In particular the effects of the amount of the overall damping and of the extent
of non-classical damping will be clearly outlined. Two error norms will be considered in order to
obtain an estimate of the accuracy of the dynamic response analysis. The first is based on the spatial
distribution of the applied forces, while the second on the shear force at the base due to impulsive
loading. It will be shown that, whatever norm is considered, the rate of convergence is strongly
influenced by the spatial distribution of the applied forces.
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2. The Ritz method

For a discrete system, having N degrees of freedom, the equations of motion in terms of nodal
displacements are expressed as 

(1)

where M, C and K are the N × N mass, damping and stiffness matrices, f (t) is the N × 1 loading
vector and u(t) is the N × 1 nodal displacement vector which describes the dynamic response of the
structure. It is worth noticing that, for complicated structural systems, N can be very large. In the
case of linear systems, the Ritz method (Clough and Penzien 1993, Chopra 1995, Wilson et al.
1982, Nour-Humid and Clough 1984) can be employed in order to reduce the number of unknowns,
leading to an approximate solution. The basic assumption is that the displacement vector u(t) can be
expressed as a linear combination of a small set of assumed shapes ϕϕ i of amplitude yi (t) as follows

(2)

where n < N. The Ritz vectors ϕϕi, which are the columns of the N × n matrix Φ, must be linearly
independent vectors satisfying the geometric boundary conditions, while y(t) is the vector of the n
generalised co-ordinates yi (t) representing the approximate solution. It can be noticed that Eq. (2)
carries out the projection of the original space of nodal co-ordinates u(t) onto the subspace of
generalised co-ordinates y(t). Therefore ϕϕi (i = 1, ..., n) can be interpreted as the set of projection
vectors, that is the subspace vector basis. 

The introduction of co-ordinate transformation (2) into Eq. (1) leads to a new set of differential
equations defined on the subspace

(3)

where

 (4)

are respectively the n × n mass, damping and stiffness generalised matrices, usually fully populated,
and the n × 1 generalised load vector.

Being n < N, the main advantage of this co-ordinate transformation is the drastic reduction in the
number of equations to be solved. Obviously the accuracy of the results depends on the choice of
the set of Ritz vectors. 

2.1 The standard mode superposition method

If the real undamped modes of vibration of the system, obtained by solving the original
eigenvalue-eigenvector problem

(5)

are employed in the co-ordinate transformation (2), the standard mode superposition method is
recovered. In this case, it is well known that in the Eq. (3) the mass and stiffness generalised

Mu·· t( ) Cu· t( ) Ku t( )+ + f t( )=

u t( ) ϕϕi yi t( )
i 1=

n

∑ Φy t( )= =

M̂y·· t( ) Ĉy· t( ) K̂y t( )+ + f̂ t( ),=

M̂ ΦTMΦ, Ĉ ΦTCΦ= , K̂ ΦTKΦ, f̂ t( ) ΦΦTf t( )===

K ω2M–( )ϕϕ 0,=
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matrices,  and , are diagonal, while the damping generalised matrix, , usually presents off-
diagonal terms.

However, as shown by Caughey and O’Kelly (1965), if the damping matrix C satisfies the identity

 (6)

the generalised damping matrix  is also diagonal and the system of Eq. (3) is uncoupled in modal
co-ordinates as follows

 
. (7)

Structural systems which satisfy Eq. (6) are said to be classically damped and this physically
means that damping mechanisms are uniformly distributed along the structure.

2.2 The load dependent vector algorithm

A very effective set of Ritz vectors, often called Lanczos vectors, can be derived by the load
dependent vector algorithm (Clough and Penzien 1993, Chopra 1995, Wilson et al. 1982, Nour-
Humid and Clough 1984). Compared to the standard mode superposition method, this procedure
presents two main advantages: (i) the eigenvalue-eigenvector problem (5) needs not to be solved, (ii)
the rate of convergence to the exact solution is increased because, as it will be shown later, the static
correction method is automatically included. 

The load dependent Ritz vectors are generated starting from the equations of motion (1) without
taking into account the dissipative term, that is 

(8)

Furthermore it is assumed that the loading term is of the form

(9)

where the vector p represents the constant spatial distribution of forces and f (t) is a dimensionless
scalar function of time t which defines the time dependence of all forces. It is important to note that
load vectors in the form of Eq. (9) are appropriate for many important applications, e.g., earthquake
excitations.

The first vector of the sequence, q1, is the deflected shape due to the application of the constant
load distribution p and is obtained as the solution of the static equilibrium equation

(10)

Subsequently this vector is scaled by the normalising factor

(11)

in order to obtain the vector

(12)

which provides a unit generalised mass, that is

(13)

M̂ K̂ Ĉ

CM 1– K KM 1– C,=

Ĉ

y··i 2ξiωi y·i ωi
2yi+ + fi t( ), i 1 2 … n, , ,==

Mu·· t( ) Ku t( )+ f t( ).=

f t( ) pf t( )=

Kq1 p.=

β1 q1
TMq1=

ϕϕ1
1
β1

-----q1=

ϕϕ1
TMϕϕ1 1.=
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It is worth noticing that, because the vector ϕϕ1 corresponds to the static displaced shape, the static
correction procedure is automatically taken into account. 

The other vectors of the sequence account for the inertial effects and are generated using the
dynamic matrix K −1M. Assuming that the first j Lanczos vectors have been determined, the vector
q j+ 1 is obtained as the deflected shape due to the inertial load Mϕϕj through the equation

 (14)

This vector contains components from each of the preceding vectors and needs to be purified. To
this end the Grahm-Schmidt procedure is used, which makes the new vector M-orthogonal to all the
previous vectors. Denoting the purified vector as , it follows that

(15)

where, considering the M-orthogonality of the Lanczos vectors, the first two coefficients, αj, βj, take
the form

(16)

while all the others vanish (Clough and Penzien 1993, Nour-Humid and Clough 1984). Therefore,
being γj = δj = … = 0, the Grahm-Schmidt procedure has to be applied only to the previous two
vectors. Moreover βj turns out to be equal to the preceding normalising factor, i.e.,

(17)

Afterwards the vector ϕϕ j+1, orthonormal with respect to the mass matrix M, is obtained
normalising  as follows

(18)

where

 (19)

By this procedure any desired number of vectors can be obtained. Nevertheless, because the
orthogonality is ensured with only the two preceding vectors at each step of the sequence, loss of
orthogonality with respect to earlier vectors can occur due to round-off errors. When such errors
reach a critical size, they must be corrected imposing the orthogonality with respect to all preceding
vectors. Further details can be found in the literature.

2.3 Transformed equations of motion

The equations of motion transformed in terms of generalised co-ordinates by using the load
dependent Ritz vectors can be written as

(20)

where  due to the M-orthogonality property of these vectors. Furthermore this property allows

qj 1+ K 1– Mϕϕj .=

q̃j 1+

q̃j 1+ qj 1+ αjϕϕj– βjϕϕj 1–– γjϕϕj 2– δjϕϕj 3– …–––=

αj ϕϕj
TMqj 1+= , βj ϕϕj 1–

T Mqj 1+ ,=

βj q̃j
TMq̃j=

q̃j 1+

ϕϕj 1+
1

βj 1+

----------q̃j 1+=

βj 1+ q̃j 1+
T Mq̃j 1+ .=

Iy·· t( ) Ĉy· t( ) K̂y t( )+ + f̂ t( ),=

M̂ I=
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obtaining a set of transformed equations of motion which look slightly different from Eq. (20) and
which may be, sometimes, more efficient from a computational point of view. In fact, premultiplying
all the terms of Eq. (1) by  and considering the co-ordinate transformation (2), the
following equation is obtained

(21)

where

(22)

is the n × n three-diagonal matrix made up by the coefficients of Eq. (15),  is the
n × n generalised damping matrix,  is the n × n unit matrix and 

 is the n × 1 load vector, the first component of which is the only one different from
zero.

The coupled transformed equations of motion, in the form (20) or (21), can be conveniently
solved by a numerical time-stepping algorithm. 

3. The complex mode superposition method

For non-classically damped systems the decoupling of the equations of motion (1) can be
rigorously performed by means of the complex mode superposition method, which will be briefly
described in this section. 

3.1 Eigenvalues and eigenvectors

The natural frequencies and modes of vibration of the damped system can be evaluated solving
the following linear eigenvalue-eigenvector problem of size 2N

(23)

where

(24)

In Eqs. (23) and (24) s is the generic eigenvalue, z is the generic eigenvector, the matrices A and
B describe the dynamic properties of the system, and ψψ and sψψ represent the generic mode of
vibration in terms of displacements and velocities of the degrees of freedom. Usually the
eigenvalues and the eigenvectors of problem (23) occur in complex conjugate pairs, but for highly

ΦTMK 1–

Tn y·· Cny· I ny+ + gn f t( )=

Tn ΦTMK 1– MΦ

α1 β2 0 … 0 0

β2 α2 β3 … 0 0

0 β3 α3 … 0 0

0 0 0 … αn 1– βn

0 0 0 … βn αn

= =

Ã

Ã Ã Ã Ã

Ã

Cn Φ= TMK 1– CΦ
I n ΦTMΦ= gn = ΦTMK 1– p =

β1 0 … 0[ ]T

B sA+( )z 0=

A
0 M

M C
, B

M– 0

0 K
, z

sψψ
ψψ
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damped systems an even number of them can be real (Inman and Andry jr. 1980). 
Moreover for each couple of eigenvectors corresponding to distinct eigenvalues, even if conjugate,

the following orthogonality conditions hold (Veletsos and Ventura 1986)

(25)

(26)

3.2 Modal impulsive response functions

For an impulsive loading term of the form

(27)

where δ (t) is the Dirac delta function, the equations of motion can be written as

(28)

According to the standard mode superposition method, the displacement vector can be expressed
as a linear combination of the natural modes of vibration as follows

(29)

where ψψj and qj (t) are, in general, complex. Owing to the impulsive nature of the excitation, the
generic generalised co-ordinate can be assumed of the form

 (30)

Substituting Eq. (29) into Eq. (28) it follows that

(31)

Considering the relationships between the generalised co-ordinates (30) and their derivatives, the
Eq. (31) can be rewritten as

(32)

Premultiplying by  both terms of Eq. (32) it follows that
 

(33)

Taking into account the orthogonality condition (26), Eq. (33) can be written as

(34)

Because the term in square brackets represents the orthogonality condition (25), only one term in

sj sk+( )ψψj
TMψψk ψψj

TCψψk+ 0=

ψψj
TKψψk sjskψψj

TMψψk 0=–

f t( ) pδ t( )=

Mu·· t( ) Cu· t( ) Ku t( )+ + pδ t( )=

u t( ) ψψjqj t( )
j 1=

2N

∑=

qj t( ) Bjexp sj t{ }.=

q··j t( )Mψψj q·j t( )Cψψj qj t( )Kψψj+ +[ ]
j 1=

2N

∑ pδ t( ).=

qj t( ) sj
2Mψψj sjCψψj Kψψj+ +[ ]

j 1=

2N

∑ pδ t( ).=

ψψk
T

qj t( ) sj
2ψψk

TMψψj sjψψk
TCψψj ψψk

TKψψj+ +[ ]
j 1=

2N

∑ ψψk
Tpδ t( ).=

sjqj t( ) sj sk+( )ψψk
TMψψj ψψk

TCψψj+[ ]
j 1=
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the summation is different from zero, thus decoupling the equations of motion. These can be written
in the form

(35)

where

(36)

Integrating the modal Eq. (35) in the interval  it follows that

(37)

from which the modal constant Bj can be derived

(38)

Therefore the modal impulsive response functions take the form

(39)

It is worth noticing that these functions are complex when the couple sj and ψψj is complex, while
they are real in the other case. However, each complex modal impulsive response function has a
correspondent conjugate one and, therefore, the total response is obviously real. In fact, adding each
complex modal contribution to its conjugate, it follows that

(40)

where  is the number of complex conjugate pairs of eigenvalues and eigenvectors. Furthermore,
introducing the following real vectors

(41)

Eq. (40) can be written in terms of real algebra as follows

(42)

where

(43)

represents the impulsive response function of a single degree of freedom viscous linear system
having natural frequency , damping ratio  and damped frequency

 (Veletsos and Ventura 1986).
Even for real eigenvalues and eigenvectors the modal impulsive response functions can be written

in the form of Eq. (42). To this aim it is worth noticing that these real eigenvalues, each associated
with a real eigenvector, occur in an even number of negative values and, therefore, they can be
grouped in Nr couples. Let sj, ψψj and sk, ψψk be a couple of such eigenvalues and eigenvectors with

2Mjq··j t( ) Cjq
·

j t( )+ Ljδ t( ) j 1 2 … 2N, , ,==

Mj ψψj
TMψψj ; Cj ψψj

TCψψj ;= Lj ψψj
Tp.==

0–, 0+[ ]

2Mjq
·

j 0+( ) Cjqj 0+( )+ Lj=

Bj

Lj

2sjMj Cj+
-------------------------=

hj t( ) Bjψψjexp sj t{ }.=
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c t( ) 2Re Bnψψnexp snt{ }[ ] n 1 2 … Nc, , ,==

Nc N≤

bn 2Re Bnψψn[ ], cn 2Im Bnψψn[ ]= , an ξnbn cn– 1 ξ n
2–== ,
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c t( ) an ωn hn t( ) bnh

·
n t( )+=

hn t( ) 1
ωDn

---------exp ξn ωn t–{ } ωDntsin=

ωn Sn= ξn Im Sn[ ] Sn⁄–=
ωDn = ωn 1 ξn

2–
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|sk | > |sj |. For computational purposes it is convenient to express this pair of eigenvalues in the form

(44)

in which

(45)

Introducing the real vectors

(46)

where Bj and Bk are determined from Eq. (38), it follows that

(47)

where

(48)

represents the impulsive response function of a single degree of freedom overcritically-damped
viscous linear system having natural frequency ωj and damping ratio ξj, with .

3.3 Response to an arbitrary force distribution

The dynamic response to an arbitrary force distribution

f (t) = pf (t) (49)

can be obtained by means of the convolution integrals

(50)

which refer to the contribution of complex and real modes respectively. For computational purposes
it is convenient to express the dynamic response in terms of response integrals as follows

(51)

where

(52)

(53)

It is worth noticing that Dn(t) and  represent the response in terms of displacement and
velocity of a single degree of freedom viscous linear system having natural frequency  and
damping ratio ξn excited by the force f (t), while  and  represent the response in terms of
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displacement and velocity of a single degree of freedom overcritically-damped viscous linear system
having natural frequency ωj and damping ratio ξj excited by the force f(t).

4. Numerical applications

Some numerical applications have been conducted in order to compare the use of load dependent
Ritz vectors with the use of real and complex exact eigenvectors in dynamic mode superposition
analysis of non-classically damped systems.

4.1 The structural model

A planar N-storey shear-type building frame, shown in Fig. 1, has been considered. The mass of
the first floor and the damping and stiffness coefficients of the first interstorey are denoted with m1,
c1 and k1 respectively. For the other storeys, the mass, damping and stiffness coefficients have been
taken constant and are indicated with m, c and k.

For this system the mass, damping and stiffness matrices take the following form

(54)

while the loading term will be assumed in the form of Eq. (9).

M

m1

m

m

, C

c1 c+ c–

c– 2c c–

… … …
c– c

, K

k1 k+ k–

k– 2k k–

… … …
k– k

,===
Ã

Fig. 1 The structural system
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4.2 Dimensionless parameters

The dynamic behaviour of the system may be described in terms of few dimensionless
parameters. These have been identified as follows

N number of storeys
α = m1/m floor mass ratio
β = c1/c interstorey damping ratio
γ = k1/k interstorey stiffness ratio

damping parameter

It can be noted that the ratio δ = β /γ represents the extent of non-classical damping within the
system. In fact, for δ = 1 the damping matrix is proportional to the stiffness matrix and the system
is classically damped. On the contrary, the more δ is lower or greater than one, the more the
damping of the system is non-classical.

4.3 Error estimation

An appropriate number of Ritz vectors should be included in the dynamic analysis in order to
ensure a sufficient degree of accuracy. Two error norms will be considered, which are based on the
spatial distribution of forces and on the base shear respectively.

4.3.1 Spatial distribution of forces
Ritz vectors should represent accurately the vector p that defines the spatial distribution of forces.

In the case of a real vector basis, because the Ritz vectors are M-orthonormal, the vector p can be
expanded as

(55)

where

(56)

is the modal participation factor, which is a measure of the degree of participation of the i-th vector
in the dynamic response. Therefore the error vector in the representation of the loading vector by a
smaller number of Ritz vectors is given by

(57)

and an error norm can be defined as (Chopra 1995, Wilson et al. 1982)

(58)

It can be noted that the error norm en is equal to zero when all N Ritz vectors are considered,
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while it is equal to one when no Ritz vectors are considered.
In the case of a complex vector basis the following expansion holds

(59)

where , A and zi are given by expression (24),  is the number of complex
conjugate pairs of eigenvalues and eigenvectors,  is the number of pairs of real
eigenvalues and eigenvectors and λi is the complex or real participation factor given by

(60)

which coincides with the modal constant (38). The error vector can be written as

(61)

where nc and mc are, respectively, the number of complex conjugate and real modal contributions
included in the analysis. Even in this case the error norm can be expressed in the form of Eq. (58).

4.3.2 Base shear
The maximum shear force at the base is the most significant parameter in order to represent the

overall dynamic stresses on the structure. For this reason a new error norm has been introduced
taking into account the maximum shear force at the base due to the impulsive loading

f (t) = pδ(t). (62)

This error norm can be expressed in the following form

(63)

where  is the maximum base shear due to the contribution of the i-th Ritz vector, Vmax is the
maximum base shear due to the contributions of all Ritz vectors and n is the number of
contributions included in the analysis.

4.4 Parametric analysis

A parametric analysis has been carried out in order to compare the rate of convergence of the
previously described procedures with respect to the overall amount of damping, the extent of non-
classical damping and the distribution of loading. 

Therefore three of the dimensionless parameters have been taken constant, that is N = 10, α = 1,
γ = 1, which correspond to a 10-storey frame with constant mass and stiffness, while the other two,
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namely η and δ, have been varied. Four cases of damping have been considered, corresponding to
η = 0.2 or η = 0.5 and δ = 2 or δ = 5. Increasing η leads to a more damped system, while increasing
δ leads to a greater extent of non-classical damping. 

The characteristics of the structural system in terms of frequency moduli and damping ratios,
evaluated solving the eigenvalue-eigenvector problem (23), have been reported in Table 1 for the
values of damping parameters considered. It is worth noticing that for η = 0.5 and δ = 5 one of the
complex conjugate pairs of eigenvalues appears as two different real negative numbers, equal to
−0.8 and −2.0 respectively. The corresponding frequency modulus and damping ratio, evaluated by
Eq. (45), are  and ξ = 110.1% and the modal contribution is, therefore, overcritically-
damped.

Furthermore two different loading distributions have been considered which, in the following, will
be termed loading condition 1 and 2. The first loading vector is of the form

(64)

which corresponds to the excitation induced by a rotating machinery acting at the first floor of the
building frame, while the second is 

(65)

which is typical of a seismic excitation.

4.4.1 Loading condition 1
The error norm of the spatial distribution of forces, given by Eq. (58), is shown in Fig. 2 as a

function of the number of modal contributions. 
It should be noted that the curves corresponding to the Lanczos algorithm and to the standard

modal analysis (denoted by “Lanczos” and “Real” in Fig. 2 respectively) do not depend on the

ω̂ 1.281=

pT 1 0 0 … 0[ ],=

pT 1 1 1 … 1[ ],=

Table 1 Frequency moduli and damping ratios of the structural system

η = 0.2 η = 0.5

δ = 2 δ = 5 δ = 2 δ = 5

ξ (%) ξ (%) ξ (%) ξ (%)

1 0.150 1.78 0.150 2.62 0.150 4.44 0.151 6.39
2 0.445 5.25 0.450 7.44 0.447 13.06 0.462 16.27
3 0.732 8.50 0.743 11.56 0.737 21.06 0.775 23.48
4 1.001 11.42 1.024 15.22 1.008 28.33 1.069 29.79
5 1.248 13.93 1.283 19.04 1.256 34.81 1.281 110.1
6 1.466 15.98 1.451 24.15 1.470 40.35 1.334 35.50
7 1.651 17.55 1.591 20.12 1.641 44.54 1.563 40.46
8 1.800 18.68 1.767 19.38 1.780 46.91 1.749 44.52
9 1.909 19.42 1.895 19.60 1.897 48.46 1.887 47.53
10 1.977 19.86 1.974 19.89 1.974 49.59 1.972 49.38

ω̂ ω̂ ω̂ ω̂
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values of η and δ, because the derivation of the corresponding vectors does not take into account
the damping matrix. The error is always smaller in the case of Lanczos vectors because they are
derived from the load-dependent algorithm and, therefore, include the static correction concept. On
the contrary, the very first natural modes of vibration look very different from the static deformation
due to the force distribution of loading condition 1. Therefore, in this case, the rate of convergence
of the standard mode superposition method is very slow.

The curve corresponding to the complex modal analysis (denoted by “Complex” in Fig.G 2), is
obviously dependent on the values of η and δ, because the complex eigenvectors are derived
solving the eigenproblem (23) which includes the damping matrix. When non-classical damping has
a small extent, i.e., δ = 2, the curve shows a rate of convergence more or less similar to that of the
standard modal analysis, becoming slower when η increases, that is when the overall damping of
the system increases. On the other hand, when non-classical damping has a great extent, i.e., δ = 5,
the curve shows an unusual trend. The error is greater than one when only a few modal
contributions are considered and decreases abruptly with the inclusion of the fifth modal

Fig. 2 Errors in spatial distribution of forces (loading condition 1)
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contribution when η = 0.2, or the inclusion of the sixth modal contribution when η = 0.5.
The error norm of the base shear, evaluated by Eq. (63), is reported in Fig. 3. In this case all the

curves depend on the value of η and δ, that is on the amount of damping and on its distribution
along the system. It can be noted that the Lanczos algorithm gives the best result for all the cases of
damping considered. Here its rate of convergence is even faster than that of the spatial distribution
of forces, shown in Fig. 2. 

Furthermore the standard and the complex mode superposition methods show the same trend,
corresponding to quite similar error curves.

4.4.2 Loading condition 2
The curves of the error norm of the spatial distribution of forces are reported in Fig. 4. In this

case all the methods present a very fast rate of convergence. This is because the first natural and
complex modes of vibration are similar to the static deformation due to the force distribution of this

Fig. 3 Errors in base shear (loading condition 1)
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loading condition. However, when η = 0.5 and δ = 5, the complex mode superposition method
shows, at the beginning, a slight lower rate of convergence and a relative high importance of the
fifth real overcritically-damped modal contribution.

The error norm of the base shear is shown in Fig. 5. Even in this case all the methods present a
fast rate of convergence, but, unlike the loading condition 1, the Lanczos algorithm gives slightly
worse results.

5. Conclusions

In this paper some techniques for the dynamic analysis of a non-classically damped linear system
have been reviewed and compared. All the methods lead to a reduction of the number of unknowns
obtained by transforming the equations of motion through the use of an appropriate vector basis.

Two of these methods are based on a real basis of Ritz vectors. The first is the standard mode
superposition analysis, which uses the normal undamped modes of vibration. These are given by the

Fig. 4 Errors in spatial distribution of forces (loading condition 2)
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solution of the real eigenproblem, the order of which is equal to the number of degrees of freedom.
The second is based on a set of Lanczos vectors obtained by the load dependent vector algorithm,
which includes the static correction concept. The third method is the so-called complex mode
superposition analysis, in which the vector basis is constituted by the true complex conjugate
eigenvectors. These are obtained by solving the complex eigenproblem, the order of which is twice
the number of degrees of freedom, considering the non-classical damping matrix of the structural
system. 

Both the first two methods lead to a truncated set of transformed coupled equations of motion
which have to be solved simultaneously, while the third decouples the equations of motion exactly.

The rate of convergence of the three considered methods has been evaluated with reference to a
parametric structural system. To this aim two error norms have been taken into account. The first is
based on the spatial distribution of the loading, while the other is based on the shear force at the
base due to impulsive loading. Four cases of damping have been considered, varying the amount of
the overall damping and the extent of non-classical damping within the structural system.

It has been shown that, in general, the rate of convergence is strongly influenced by the spatial

Fig. 5 Errors in base shear (loading condition 2)
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distribution of the applied forces. When the load vector is non-uniform the method based on the
Lanczos vectors gives the best result, although, as observed by Chopra (1995), the standard mode
superposition method has the advantage to provide uncoupled modal equations. On the contrary in
the case of uniform load vectors all methods almost present the same rate of convergence. 

However it should be emphasised that the method which uses the Lanczos vectors should be
recommended because it is much less expensive, from a computational point of view, than the other
two. In fact, although it leads to a coupled reduced system of transformed equations of motion, it
avoids the solution of the eigenproblem that, especially in the case of complex modal analysis,
requires a great computational effort.
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