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Abstract. Parallel execution of computational mechanics codes requires efficient mesh-partitioning
techniques. These mesh-partitioning techniques divide the mesh into specified number of submeshes of
approximately the same size and at the same time, minimise the interface nodes of the submeshes. This
paper describes a new mesh partitioning technique, employing Genetic Algorithms. The proposed
algorithm operates on the deduced graph (dual or nodal graph) of the given finite element mesh rather
than directly on the mesh itself. The algorithm works by first constructing a coarse graph approximation
using an automatic graph coarsening method. The coarse graph is partitioned and the results are
interpolated onto the original graph to initialise an optimisation of the graph partition problem. In practice,
hierarchy of (usually more than two) graphs are used to obtain the final graph partition. The proposed
partitioning algorithm is applied to graphs derived from unstructured finite element meshes describing
practical engineering problems and also several example graphs related to finite element meshes given in
the literature. The test results indicate that the proposed GA based graph partitioning algorithm generates
high quality partitions and are superior to spectral and multilevel graph partitioning algorithms.

Key words: load balancing; mesh partitioning; genetic algorithms; multilevel approaches; unstructured
meshes; parallel processing; dual graph.

1. Introduction

Complex engineering problems, which are modelled through partial differential equations, require
large size meshes and the solution of these problems demand enormous computer resources in terms
of both memory and CPU. Hence, they are often too large to solve on sequential computers,
because of either memory limitations or computational demands, or both. Parallel processing is one
of the cost-effective ways to overcome this situation. In order to solve these problems on distributed
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memory parallel systems, the data need to be partitioned and sent to the processing units, so that the
computational work load among the processors is approximately equal and at the same time the data
exchange among the processors is minimum.

The problem of finite element mesh decomposition is equivalent to partitioning the deduced graph
of the finite element mesh into subgraphs of roughly equal size such that the partitions cut the least
number of edges of the graph. Tir@vay graph partitioning problem can be defined as follows: Let
G =G(N, E) be an undirected graph wheyeds the set of vertices withN|| vertices andt is the set
of edges with [|| edges, partitiolN into n subsetsN;, N», N3, ... .. N, such thatN; " N;= 0
fori #j, |INi]| = IN|I/h andU; N; = N, and the number of edges Bfwhose incident vertices belong
to different subsets is minimised. The problem of graph partitioning is well known in the graph
theory literature and is not solvable in polynomial time. It is in fact classified\#&sheard problem
(Garey and Johnson 1979). Fortunately, it is not necessary to find an optimal solution to the
problem, as a good quality sub-optimal partition is usually adequate.

The n-way partitioning problem is generally solved by recursive bisection orKhyay
partitioning. A great deal of effort has been invested in studying the graph partitioning problem and
as a result, a large number of successful partitioning methods have been developed. These include
methods based on heuristic searches most notably the Farhat's greedy (Farhat 1988), and Kernighan-
Lin heuristics (Kernighan and Lin 1970), coordinate based bisections (Jones and Plassmann 1994),
inertial methods (De Keyser and Roose 1992), methods based on geometric partitioningt(lsfiller
1998) such as graph growing algorithms, techniques employing neural networks (Rama Mohan Rao
et al 1998, Painet al 1999), simulated annealing (Williams 1991, Bouhmala and Pahud 1998),
graph bisection algorithms like spectral bisection algorithms (Simon 1991, Barnard and Simon
1994) and finally multilevel-graph bisection algorithms (Karypis and Vipin Kumar 1999,
Hendrickson and Leland 1995, Walshaw and Cross 1999) which usually combine a graph
contraction algorithm with a coarse graph partitioning algorithm and local refinement algorithms.
Spectral bisection algorithm has established a reputation for producing high-quality partitions. Since
spectral bisection algorithm requires calculation of the (Fiedler vector) eigenvector associated with
the second largest eigenvalue of a Laplacian matrix, it is computationally expensive. In view of this,
these spectral algorithms are usually combined with multilevel algorithms (Barnard and Simon
1994, Hendrickson and Leland 1995) to produce fast and high quality graph partitions. A detailed
review of these techniques is given elsewhere (Rama Mohan Rao 2001).

The multilevel algorithms (Karypis and Vipin Kumar 1999, Hendrickson and Leland 1995,
Walshaw and Cross 1999) which permit to use any of the partitioning methods discussed earlier,
emerged as faster and qualitatively superior graph partitioning algorithms. In these multilevel
algorithms, the coarse graph representations of finer graphs are typically obtained by vertex
collapsing (Karypis and Vipin Kumar 1999). Partitions on the coarsest graph are quickly obtained
even when relatively expensive partitioning methods are used. These partitions are then mapped
onto a finer mesh after which typically local searches (Kernighan-Lin heuristics or its variances) are
performed to improve the partition quality, before proceeding to map the resulting partition onto the
next finest graph or so on until target graph is partitioned. These algorithms are found to be
extremely fast. In this paper, development and implementation of a new partitioning algorithm based
on these multilevel concepts is presented. The proposed algorithm has been devised employing
traditional binary encoded genetic algorithms.
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2. Genetic algorithms

Genetic Algorithms (GA), first conceived by Holland (Holland 1975) in the 1970s, have received
substantial attention during the last decade and have been applied in engineering domains (design,
simulation, synthesis etc.) as well as many other domains (Aktah 1993, Mitchelet al 1976,
and Punchet al 1993). Based on a set of probabilistic rules, GAs utilise the processes of natural
selection by mimicking the concept of survival of the fittest. GAs are excellent all-purpose
optimisation algorithms because they can accommodate both discrete and continuous valued design
variables and search through nonlinear or noisy search spaces by using payoff (objective or cost
function) information only. Genetic algorithms have number of unique features. First, GA does not
search for a single solution, but infact maintains a set of perhaps thousands of solutions, which are
termed as population. Second, GA attempts to increase the fitness of this population at each
generation. Each solution is evaluated as to its fithess based on some domain specific function
(usually the cost function). The solution is then kept or discarded based on that evaluation. If
discarded, that member of the population is replaced by a new solution that is created by
recombination of parts of existing good solutions. This process is repeated thousands, perhaps
millions of times, combining different aspects of good solutions, and searching for a combination of
solution features that is optimal under the evaluation function.

In genetic algorithms, a solution (i.e., a point in the search space) is called a chromosome, string,
or genome. A typical GA approach requires population of chromosomes, each representing a
combination of features from the set of features, and requires a cost fuifctibme algorithm
manipulates a finite set (population) of chromosomes, based loosely on the mechanism of natural
evolution. In each generation, chromosomes are subjected to certain operators, such as crossover,
mutation, analogous to processes that occur in natural reproduction. The crossover of two
chromosomes produces a pair of offspring chromosomes that are syntheses or combinations of the
traits of their parents. A mutation on a chromosome produces nearly identical chromosome with
only local alterations of some regions of the chromosome.

The optimisation process is performed in cycles called generations. During each generation, a set
of new chromosomes is created using the GA operators like crossover and mutation. Since the
population size is finite, only the best chromosomes are allowed to survive to the next cycle of
reproduction. There is considerable variation among various implementations of the genetic
algorithm approach in the strictness with which the principle of “survival of the fittest” is applied.

In some systems, the fithess affects only the probability of survival, whereas in others, dwly the
most fit individuals are allowed to survive in each generation. The crossover rate is usually assumed
as quite high values (in the order of 80 to 90%), while mutation rate is small (typically upto 15%)
for efficient search (Goldberg and Segrest 1997). The cycle repeats until the population converges
i.e., all the solutions are reasonably same and further exploration seems pointless or until the answer
is good enough. Detailed discussion on these Genetic Algorithms can be found in reference
(Goldberg 1989). Hence, in order to apply Genetic Algorithms one need to arrive at the objective
function and one must choose the most appropriate representation of genome.

Literature on mesh-partitioning techniques employing genetic algorithms is scanty. Khan and
Topping (1998) have used genetic algorithms for partitioning finite element meshes. However, rather
than explicitly representing the patrtition, their approach used a population of cutting planes which
bisected the finite element domain. A well-balanced partition is not sought by the technique, since it
was designed for short run-times and thus used as an estimation of number of elements to appear in
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final refined sub-meshes. Mansoor and Fox (1991, 1994), partitioned graphs with a genetic
algorithm using a direct encoding, where the sub-mesh membership of each vertex was explicitly
represented by the value of a gene. Since these values were unconstrained, partitions of arbitrary
imbalance were possible. These genes were concatenated and subjected to two-point crossover. The
imbalance constraint was progressively enforced during evolution through the use of a penalty term
in the fithess function. Wendl (1996) has devised a seed based decomposition procedure employing
parallel genetic algorithms and concluded that the results of the GA based algorithm are comparable
to simulated annealing but lacks consistency in providing continuously optimal solutions. Genetic
algorithm using the direct coding has also been applied bgtGil (1998) to graph partitioning in

the context of circuit partitioning. However, it was reported by the authors that GA based approach
was outperformed by an approach devised synthesizing simulated annealing with tabu search. Soper,
Walshaw and Cross (2000) have devised a graph partitioning technique by combining a multilevel
algorithm with an evolutionary search procedure. The results reported are quite superior to all the
state-of-the-art mesh partitioning algorithms.

In this paper, a new graph partitioning algorithm is proposed and it also combines multilevel
scheme with GA. However, our algorithm is distinctly different from the work of Soper, Walshaw
and Cross (2000). In the proposed work, traditional GA has been employed to develop graph
partitioning algorithm. The ideas related to graph coarsening and projection schemes popularly
being used in multilevel algorithms are borrowed and utilised in our work to devise an efficient
problem representation as outlined in the subsequent sections. In contrasetSp@000) have
proposed the evolutionary algorithm as a layer over their multilevel graph partitioning algorithm
called JOSTLE (Walshaw and Cross 1999). Hence, the evolutionary algorithm will not perform
graph partitioning. Instead, it helps in improving the quality of mesh partitions generated by
JOSTLE. It can also be noticed that the evolutionary search algorithm of Soper et al. is not a
traditional GA since no problem representation (or genotype) is maintained. The crossover and
mutation operators are simulated to suit the JOSTLE multilevel graph partitioning algorithm. In the
present work, traditional GA with the conventional selection, crossover and mutation operators has
been employed to devise a graph partitioner with efficient problem representation (Genome
construction). In view of these differences, obviously, the cost function employed in these two
algorithms also differs. Finally, the proposed GA based graph partitioning algorithm is formulated as
recursive bisection algorithm while the Soper's evolutionary algorithm ksveay partitioning
algorithm.

3. Problem formulation

In this paper, the problem of mesh partitioning has been formulated as recursive bisection which
gives rise to 2 submeshes. The genetic algorithms operate on the dual graph of the finite element
mesh. Due to their recursive character, the problem can be formulated for a single bisection. By
repetitively applying the same algorithnf, artitions can be obtained. The proposed formulation is
based on mapping of the dual graph vertices to a bit string or genome, which is suitable for selected
optimizer (GAs). Each bit corresponds to a single graph vertex and its bit value determines whether
this vertex belongs to the one or other partition. In genetic algorithms, its fithess score expresses the
performance of each bit-string representing a candidate solution. A cost function which is built with
the requirements of the mesh partitioning problem i.e., load balance and also minimum interface
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size, returns a single value (fithess score) for each bit string.
3.1 Cost function

The cost function for graph partitioning problem can be written as:
H= Hcalc + H Hcomm (1)

WhereHc, represents load imbalance and is minimised when all the processors have the same load
andH.,mmmeasures the communication cost anepresents a factor which can be used to indicate
the relative importance of the two terms in that particular context.

For graph bisection, the first term can be written as:

Hcalc = Vl — V2 (2)
VIV OV

In addition, the second term, which represents the communication cost, can be written as:

N
Heomm = ——ro®—r 3
comm mln(|Vl|, |V2|) ( )

WhereN is the total number of cut edges in the graghandV, represent the number of vertices

in each partition. The terrAl.,c become zero if the partitions are perfectly balanced. Among all
possible solutions withv}| = V5|, the optimum solution is the one with minimiNg. In contrast to

this, minimisation of the second term, which measures the interface length is not stand alone and is
to be considered in conjunction with the first termNas= 0 will lead to a meaningless solution.

The value ofu need to be adjusted according to the size of the mesh. A Low valuéeadl to
perfectly balanced partitions with an optimum or near optimum number of edge cuts. On the other
hand, a higher value @f may reduce the edge cuts at the cost of some imbalance in partitions. In
order to obtain optimal value fqr, several test graphs of varying size have been solved. The value
of u is adjusted for all these test graphs in such a way that the partitions are perfectly balanced (i.e.,
near zero imbalance) with optimal cut edges. The following expression has been arrived at based on
the outcome of these studies

u =10 (5.5-1In||) 4
Where Y| is the number of vertices in the graph.

3.2 GA operators

For efficient implementation of Genetic Algorithms, a judicious selection of the three basic
operators i.e., selection, crossover and mutation are necessary. They need to be tuned if necessary to
the needs of the specific problem. The parent selection operators use the fithess score to decide
which of the individuals will be mated in order to produce offspring. These individuals are copied to
the mating pool where the crossover and the mutation operators are applied.

Several crossover and mutation operators are reported in the literature and some of them are
customised specifically to the application. A simple one point crossover takes two individuals and
cuts their chromosome strings at some randomly chosen position to produce two ‘head’ segments
and two ‘tail' segments. The tail segments are then swapped over to produce two new full-length
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chromosomes as illustrated in Fig. 1. The two offspring can inherit some genes from each parent.
The crossover operator will not be applied on all selected individuals and will be applied with a
probability usually chosen by the user depending upon the application on hand.

The mutation operator is applied to each child individually after crossover. It randomly alters each
gene with a small probability (typically of the range 0.001 to 0.002). Fig. 2 shows the fifth gene of
the chromosome is being mutated. The mutation operator helps in exploring a search space.
Mutation is traditionally seen as a “background operator” (Beasley, Bull and Martin 1993)
responsible for re-introducing inadvertently ‘lost’ gene values (alleles), providing genetic drift and
also provides a small element of random search in the vicinity of the population, which has largely
converged.

Studies have initially been conducted on several test graphs in order to asess the effectiveness of
various selection operators like roulette wheel selection method, tournament selection method and
the stochastic remainder selection method. Similarly on various crossover operators like single point
crossover, multi-point crossover and also uniform crossover. The studies indicated that tournament
selection with two-point crossover performs better than any other combination of selection and
crossover operators. Tournament selection technique has several variants. In the present work, the
simplest binary tournament selection has been employed where pairs of individuals are picked at
random from the population and the individual (genome) which has higher fitness is copied into the
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mating pool. This is repeated until the mating pool is full. Similarly, in the two-point crossover
employed in the present work, the strings (chromosomes) are regarded as loops formed by joining
the ends together. To exchange a segment from one loop with that from another loop requires the
selection of two cut points as shown in Fig. 3.

It has been observed that the convergence of the GAs is faster when applied with crossover
probability of 0.85 and mutation probability of 0.0015 for the test problems and the same
parameters have been employed for all the examples solved and reported later in this paper.
Experiments have also been conducted on these smaller test graphs with variable mutation
probability. Initially the probability is chosen as constant for the entire graph. Once majority of
solutions is converged to a reasonable good bisection (say after few generations) the mutation
probability is varied for each vertex according to its position in the graph. For this purpose, the
interface vertices (i.e., the vertices associated with the cutedges of the bisected graph) are identified.
The quality of solution is improved, when an increased mutation probability of 0.0025 is chosen for
the interface vertices and 0.001 for non-interface vertices. These preliminary studies have been taken
as basis for choosing appropriate parameters for GA operators. The details of these studies have
been omitted, as they are of least consequence in the present context.

The cost function is computed for each of the genome (i.e., fithess) by using Eq. (1). The number
of cutedges\.. can be evaluated by employing the Laplacian madtrif the graph

Nee = X'LX (5)

Wherex is the vector consisting of the vertices of two partitions represented in the form of +1
and -1.

3.3 Representation of genome

Proper representation of genome in the genetic algorithms has a great influence over the
performance of the solution. Hence, care must be taken to choose an appropriate representation. In
K-way graph partitioning problems, the most obvious choice would be to define a genome as a list
of N integers from 1 td, each one specifying subgraph to which the corresponding vertex belongs.
Similarly, in graph bisection problems, binary representation looks quite appropriate. However, this
representation has disadvantages when applied to large size problems, due to the following reasons:

i. In practice, parallel processing techniques are employed only to solve large and complex

problems. These problems are described by very large meshes consisting of thousands of
elements. Applying GA for these problems is extremely difficult as the genome length depends
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on the size of the graph associated with the mesh and population size is directly related to the
genome length. This will exhaust the resources of any computer and will be highly
computationally inefficient. This defeats the purpose of obtaining faster and robust solutions for
graph partitioning problem. Moreover, large chromosome size associated with large population
size may provide solutions corresponding to local minima.

ii. If the genome is constructed with random values, vast majority of the resulting solutions is
absurdly bad ones. Even if one arrives at fairly well load-balanced graph partitioning, it will
result in large edge cuts making the solution worthless.

In view of this, it will be preferable to reduce the size of the genome and it is also preferable to
start with some reasonably good or feasible solution (initialization of the genome). Some of the
experiments made in the representation of the genome and the results are discussed in the next
section.

As already discussed, the GA based graph partitioning algorithms are devised as recursive
algorithms and binary encoding has been employed for employing GAs. However as already pointed
out, it is impossible to solve larger problems with this representation unless the problem size is
reduced. In order to reduce the problem size, two different approaches have been employed. One is
by making use of the multilevel approach and the other is based on approximate bisection of the
graph, followed by an interface refinement employing GA.

3.4 Multilevel approach

Multilevel approach is analogous to multi-grid methods of solution of simultaneous equations and
can be effectively employed to improve the quality of the partition optimisation. This can be
achieved by grouping together (clustering) small numbers of adjacent vertices to form a coarse
graph. If this is done on the entire graph, it results into a coarse graph. The edge weight between
the coarse vertices might then be taken as the value of the sum of the weights of all the edges
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Fig. 4 Multilevel approach for graph partitioning
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Fig. 5 Genome representation

running on the fine graph between the two coarse graph vertices. The optimisation would then have
a smaller search space and quality of the partition will generally be better than that of the finer
graph. Moreover, with the reduction in size, the problem becomes manageable enough to employ
GA. Once the partition of the coarser graph is obtained, it is then mapped onto the finer grid and
the optimisation on the finer graph is initialised with the resulting partition.

In multilevel approach, sequence of coarsened graphs is constructed until the coarsest graph of
desired size is obtained. Once the sequence of coarsened graphs has been obtained, these can be
used to help in partitioning the largest graph. This is achieved by first partitioning the coarsest
graph, then projecting the resulting partition onto the next graph level to initialise the optimisation
on that level. The sequence of projection and refinement is carried out on all levels of coarsened
graphs until the original finer graph is obtained with refined partition. This multilevel approach is
schematically shown in Fig. 4.

The GA based mesh-partitioning algorithm has been developed within the framework of the
multilevel approach. Here the binary encoding has been employed for applying genetic algorithms.
It is based on direct mapping of each graph vertex to a bit or a single gene in a genome as shown in
Fig. 5. Genes marked with 0 or 1 denote graph vertices that belong to the one or the other partition.

4. Computational procedure
The dual graph of the finite element mesh is constructed and during coarsening a sequence of

smaller graphsG'(V;, E) is constructed from the original gra@@P(V,, E,). The strategy of the
graph coarsening exercise is to choose graph vertices from the graph to be coarsened, such that the
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coarse graph vertices are evenly distributed throughout the original graph. Their position and
connectivity (represented by edges between coarse graph vertices) define a graph, which is a good
coarse representation of the original graph.

For coarsening the graph, first the maximal matching of the graph is found. A matching is a
subsetM C E of edges in such a way that no two edges share an end point. A matching is maximal
if no other edges fronk can be added. All vertices in the gra@ii' are visited one by one in a
random manner. All the edges connected to the vertex are sorted by their weights. The edge having
the maximum weight is selected and the two corresponding vertices are collapsed and formed as a
new vertex inG™?. The weight of the new vertex &@™* is equal to the sum of the weights of the
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Fig. 6 Flow chart showing the coarsening technique employed in GA based partitioning algorithms
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two G™ vertices. At the end, the remainit®™ vertices are directly upgraded @™?, with the

same weights. However, in the last few coarsening steps, the edges of the graph are sorted according
to their weights and edge having the maximum weight is chosen and the corresponding vertices are
collapsed. This method tends to maximise the weights of the collapsed graph edges and
consequently minimise the weights of the act&™ edges. Decreasing the total edge-weight of

the coarser graph, edge cut size of the coarsened graph and also the edge cut size of the original
graph can be minimised. The size@f and the desired final coarse graph size determine the total
number ‘m’ of the coarsening steps. For employing GA, the size of coarsest graph has been limited
to 50 vertices. The graph coarsening procedure is shown in the form of a flowchart in Fig. 6.

The second phase of a multilevel algorithm is to compute balanced bisection of the coarsest graph
GXVi«, E). For this purpose, two different alternatives have been attempted. One alternative is to
employ any one of the cost-effective heuristic mesh-patrtitioning algorithms for bisecting the coarsest
graph. The other alternative is to bisect the graph employing genetic algorithms. The first alternative
has been termed as MLGA-1 (Multi-Level Genetic Algorithm-1) and greedy algorithm (Farhat
1988) has been employed for bisecting the coarsened graph. However, greedy algorithm is known to
be sensitive to the chosen seed vertex (Rama Mohan Rao 2001). In view of this, greedy algorithm is
repetitively employed on the coarsest graph choosing each time a different seed vertex and the best
partition (i.e., with minimum edge-cuts) among them is chosen. In the second alternative, MLGA-2,
the coarsest graph is bisected using genetic algorithm.

In the proposed GA implementation, tournament selection scheme has been employed with two-
point crossover. A customized mutation operator has been employed during bisection of the coarsest
graph. Contrary to the conventional mutation operator, the customized operator changes bits either
from zero to one or vice versa in a particular string. This will be decided randomly on each string.
If the initial population is generated randomly, this one way mutation helps in improving the load
balancing in some strings and may cause damage to others. The damaged ones are generally
eliminated in selection. If they are not eliminated, they can recover in the subsequent generation.

As already pointed out earlier, if the population is initialised with random values of 0 and 1, then
the fitness of the population is expected to be very low. In view of this, some sort of an operator
which can quickly improve fitness of this population will ultimately help in accelerating the
convergence characteristics of GA. For example, if a particular gene value is zero in a typical string
and all it's neighbours have value one, then it is preferable to swap this gene value to one. In other
words if a particular element in a mesh is marked to the first submesh (with corresponding gene
value as 0) and its surrounding elements (with gene value as 1) belonging to the other submesh, it is
preferable to change the ownership of this typical element. This is achieved by the gene-repair
strategy employed in the present work. This will be operated only in the first few generations. In
order to minimise the overheads associated with this operator, this gene repair strategy is applied
only at every '8 generation. As already explained, its objective is to change the value of isolated
genes. The gene repairing strategy is employed after the mutation and before computing the fitness.
In every 3 generation, 5% of the strings are randomly picked from the population. Each string is
scanned through for isolated genes and their values will be altered to the values of the surrounding
ones. Once the quality of the partitions is improved after few generations, the gene repair strategy
will not be employed.

However, after obtaining a reasonably good bisection of the graph, mutation with variable
probability has been employed. The mutation takes into consideration the graph connectivity. Higher
probability (0.0025) is given to the interface vertices and lower (starting from 0.001 and adaptively
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Algorithm: Balance
1. Identify the direction of swapping based on the size of the two projected subgraphs.
Mark it as active

2. Collect a pool of vertices from the active subgraph in such a way that they are either
interface vertices or vertices of a disjointed part of the subgraph or others in the same
order of preference.

3. Unmask all vertices in the pool
4. Set the balance parameter as the difference in sizes of vertices of the two subgraphs

5. While (balance parameter >1), DO
i. Extract an unmasked vertex from the pool of the active subgraph list
ii. Checkif edge cuts can be reduced by swapping the vertex
If, yes
(a) Move the vertex to the inactive subgraph
(b) Update the interface vertex data structure
(c) Update the balance parameter
Else
Mask the vertex in the pool
Endif
ENDDO
6. Update the vertex list of the active subgraph

7. if(balance parameter>1)

i. Unmask all vertices
i. Collect pool of vertices as in Step-2 and go to step-5
End Algorithm

Fig. 7 Heuristic balancing algorithm

reduces to zero as the solution converges) probability is given to the internal vertices.

The third phase of the proposed algorithm is uncoarsening. During uncoarsening phase, the
partition of the coarsest graph® is projected back to the original graph by going through the
graphsG'™, G'2,.... G'. Since each vertex € V' contains a distinct sub skt of verticesV'™,
projecting the partition o6’ to G'™! is done by simply assigning the verticedUirio the same part
that vertexu belongs to. Even if the original coarsest graph is in local minima, the projected graph
may not be at local minima. Since the projected graph is much finer and has more degrees of
freedom, these vertices can be used for improving the quality of partition. Once the graph is
projected to the next finer level, the balancing is performed using the new heuristic-balancing
algorithm given in Fig. 7. The balancing algorithm is terminated as soon as the partitions are balanced.

After balancing, the genetic algorithm is employed for improving the quality of partitions.
However, the genetic algorithm can only be applied by considering only limited number of vertices
in the graph. Otherwise the problem becomes quite unmanageable. In view of this, only the
interface layers of the projected graph are considered and attempts have been made to improve the
partitions employing the genetic algorithm. The genetic algorithms are employed at each alternative
projection in order to minimise the computational cost. The maximum number of vertices for
genetic algorithms will be of the order of 50 to 80 depending on the size of the problem. If the
population in GA is initialised with random values of 1 and 0, the schema will be generally of poor
guality and convergence will be rather slow. In view of this, at least 50% of the population are
initialised with the reasonably good partitioned information available at the projected level after
balancing (elitism). This certainly helps in accelerating the convergence. The sequence of projection,
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Fig. 8 Flow chart of GA based mesh partitioning algorithms

balancing and GA refinement is carried out until the coarser graph is projected back to the original
graph G° and refined using genetic algorithms. The implementation of MLGA-1 and MLGA-2 is
shown in the flow chart given in Fig. 8.

During refinement, the adaptive mutation based on the graph connectivity has been employed. The
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mutation probability has been fixed to each vertex according to its position. Customized mutation
has been implemented by using a mutation factor. The bias for each bit in the string is based on the
mutation factor. This mutation factor can be defined as the gain of a vertex (in terms of reduction in
number of cut edges) if it is swapped to the next partition. This customized mutation contributes in
swapping the bits (corresponds to the vertices with high gain) and thereby enhance the quality of
partition.

5. Local Refinement With GA (LRGA)

In this approach, the graph coarsening procedure is dispensed with. Instead, the graph associated
with the finite element mesh is bisected using any of the fast heuristic partitioning algorithm and the
interfaces are identified. In the present implementation, greedy algorithm (Farhat 1988) has been
employed. A few strips surrounding the interface vertices are considered and GA is employed on
this reduced Graph. However, objective function is evaluated using the total graph in order to avoid
local partitioning. The computation of objective function is faster as it involves only in identifying
the interfacesN, and the vertices within the strip of the graph belonging to different partitions.
This avoids the process of identifying all the vertices belonging to different groups in the entire
graph, which in fact includes many vertices that are not expected to change the sides. In this
approach, only a single strip of the graph surrounding the approximately identified interface vertices
are considered in order to bring down the size to a manageable level on which GAs can be
employed efficiently.

6. Evaluation of partitioning algorithms

The proposed GA based mesh partitioning algorithms have been integrated into PSTRAIN
(Parallel STructural Analysis INterface) software, which consists of variety of mesh partitioning
algorithms (Rama Mohan Ras al. 1998). PSTRAIN is built with powerful Graphic User Interface
using X, Motif and OpenGL in order to facilitate visualisation.

In order to demonstrate the effectiveness of the proposed mesh partitioning algorithms, several
unstructured meshes of practical engineering problems have been considered as a first set of
numerical examples. In this paper four of such numerical examples are presented. For the numerical
examples discussed in this paper, population size is taken as 50. Two-point crossover has been
employed with probability as 0.85 and mutation with probability as 0.0015. Customized adaptive
mutation as discussed in the earlier sections has been employed. As already discussed earlier, the
GA is employed for refining the alternative projected graphs solely to cut down the computational
cost. The solution is assumed to have converged if eight consecutive generations fail to improve the
solution.

The first numerical example considered is an unstructured mesh of a typical joint (JOINT1) of an
off-shore platform. The number of vertices in the corresponding dual graph are 1182 and edges are
957. The mesh is partitioned intd Rartitions wheren is varying from 1 to 5. The cut edges and
also the CPU time for generating the partitions is given in Table 1. It can be seen from the results
that the GA based algorithms generate minimum cut edges. However, the computational cost is
considerably high. The local refinement algorithm (LRGA) appears to be faster than the multilevel
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Table 1 Performance of GA based partitioning algorithms for JOINT1

NP MLGA-1 MLGA-2 LRGA MRSB
EC CPU time in Sec. EC CPU time in Sec. EC CPU time in Sec. EC

2 68 28.48 66 42.3 88 15.86 102

4 178 48.88 172 89.91 192 27.92 189

8 319 98.40 314 139.56 342 48.31 338

16 482 216.94 486 264.78 502 73.89 495

32 676 444,61 699 509.08 716 103.43 696

NP: Number of partitions, EC: Cut edges
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Fig. 9 Generation of four partitions of an unstructured mesh describing a typical joint of an off-shone platfor
employing MLGA-2

Table 2 Performance of GA based partitioning algorithms for JOINT2
CUT EDGES (EC)

NP MLGA-1 MLGA-2 LRGA MRSB
2 90 90 122 92
4 196 187 214 192
8 319 316 347 326

16 527 522 588 516

32 812 804 916 814

NP: Number of partitions

algorithm with rather larger cut edges. Fig. 9 show the partitioning results of the unstructured mesh
employing MLGA-2.
Similarly, the second numerical example considered is a joint (JOINT2) of a space frame
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employing MLGA-2

Table 3 Performance of GA based partitioning algorithms for 3D FEMESH
CUT EDGES(EC)

NP MLGA-1 MLGA-2 LRGA MRSB
2 371 368 392 -

4 2789 2778 3301 3292
8 6576 6531 6946 6895
16 9979 9967 10486 10397
32 13221 13164 14489 14499
64 18896 18826 19823 19772

NP: Number of partitions

described by an unstructured mesh with triangular elements. The number of vertices in the
corresponding dual graph is 12900 and edges are 18880. The partitioning results of the tube are
presented in Table 2. In this example, also the cut edges obtained by LRGA are high when
compared to multilevel implementation. The partitioned mesh is shown in Fig. 10.

The third numerical example considered is a thick metal sheet described by a graded three-
dimensional mesh. It consists of 19334 brick elements. The corresponding dual graph has 19334
vertices and 55305 edges. The partitioning results are shown in Table 3. It can be seen from the
results that the number of cut edges obtained by MLGA-1 and MLGA-2 are more or less same.
However, the MLGA-1 is slightly faster than MLGA-2 as GA is not employed in the bisection of
the coarsened graph. Instead, a faster heuristic algorithm has been employed. The numerical studies
indicate that GA based algorithms outperform the Multi-level spectral algorithms (MRSB) (Barnard
and Simon 1994) in terms of minimising the cut edges. However, the computational cost of these
GA based algorithms is much higher than the multilevel spectral approaches.

The fourth numerical example considered is body of an automobile (AUTO-B) described by an
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Table 4 Performance of GA based partitioning algorithms for mesh describing body of an automobile
CUT EDGES(EC)

NP MLGA-1 MLGA-2 MRSB
4 20684 20589 33214
8 32432 31887 61326
16 54947 54855 82127
32 80522 80631 128369
64 126832 126653 193291

NP: Number of partitions

SSSSo
mmm§§§§§“
: Y
%I?;QA\NA

AYAV,v,y
iV
e

£}

(V\
Avavy,
s

~R
RIS
N
NN,

g
PO
<

N

BN
1

AN

/N

RRANSY

NN ]
NN

VAVAY

17
VaViri
A

/7]
VAl
VAPATATA
1
i
7
]

N

i
U7
A,
1/
V1A
A
)

1
7
\\7

!
A
VA%
W4

S/
\

ol
1
o
X
AL

A
v

VY

VIV

),

i /4
\
¢

|/

\VAVAYAYLY

AL
A
W

T
M

(a) Recursive Spectral Bisection algorithm (b) Genetic algorithm (MLGA-2)
Fig. 11 Generation of four submeshes of an unstructured mesh employing RSB and MLGA-2

unstructured finite element mesh. The vertices in the associated dual graph are 327468 and the
edges are 9557804. Table 4 shows the results obtained with spectral algorithm and GA based
partitioning algorithm. A close look at the results indicate that, the GA based patrtitioning algorithms
are superior to spectral approaches in terms of minimisation of cutedges.

Fig. 11 shows the partitions generated by employing recursive spectral algorithm and also MLGA-
2 of a mesh describing a mechanical bracket. Dual graph of the mesh is used for partitioning. It can
be observed that the partitions generated by both these algorithms are distinct. The number of cut
edges of the associated partitioned graphs is 179 and 162 respectively for RSB and MLGA-2.

The next set of numerical experiments have been conducted by solving some of the test graphs of
finite element meshes (both 2D and 3D) available in the literature and accessible through net. The
details of these test graphs are shown in Table 5. The results of the proposed GA based graph
partitioning algorithm have been compared with the multilevel graph partitioning algorithm METIS.
For this purpose, METIS Ver 4.0 is implemented and results are obtained by employipgnbtth
and kmetis The comparison between METIS and the proposed GA based graph partitioning
algorithm is shown in Table 6. MLGA-2 is used to generate the partitions. The results shown in the
Table 6 are the total number of cutedges generated by the partitioning algorithms. It is appropriate



642 A. Rama Mohan Rao, T.V.S.R. Appa Rao and B. Dattaguru

Table 5 Details of test graphs

SNO Graph Name Number of Vertices Number of Edges Description
1. 3ELT 4720 13722 3D finite element mesh
2. 4ELT 15606 45878 3D finite element mesh
3. CRACK 10240 30380 3D finite element mesh
4, CTI 16840 48232 3D finite element mesh
5. FE_4ELT2 11143 32818 3D finite element mesh
6. FE_BODY 45087 163734 3D finite element mesh
7. FE_SPHERE 16386 49152 3D finite element mesh
8. T60K 60005 89440 2D finite element mesh
9. UK 4824 6837 2D finite element mesh
10. WHITAKER3 9800 28989 3D finite element mesh
11. WING 62032 121544 3D finite element mesh
12. WING-NODAL 10937 75488 3D finite element mesh
13. BRACK2 62631 366559 3D finite element mesh
14, FE_ROTOR 99617 662431 3D finite element mesh
15. FE_TOOTH 78136 452591 3D finite element mesh
16. AUTO 448695 3314611 3D finite element mesh
17. WAVE 156317 1059331 3D finite element mesh
18. 144 144649 1074393 3D finite element mesh
19. 598a 110971 741934 3D finite element mesh
20. Cs4 22499 43858 3D finite element mesh

Table 6 Comparison of cut-edge results of MLGA-2 and METIS
SNO Graph Algorithm NP =2 NP =4 NP =8 NP =16 NP =32 NP =64 NP =128

MLGA-2 98 201 344 608 1006 1585 2480
1. 3ELT PMETIS 110 215 388 684 1087 1726 2628
KMETIS 109 257 376 645 1066 1662 2571
MLGA-2 128 324 554 998 1692 2746 4408
2. AELT PMETIS 142 368 602 1072 1804 2861 4628
KMETIS 149 359 744 1148 1823 2878 4426
MLGA-2 187 434 736 1187 1864 2784 3966
3. CRACK PMETIS 209 476 804 1269 1961 2899 4277
KMETIS 219 478 784 1310 1939 2846 4063
MLGA-2 311 973 1868 2941 4487 6347 8419
4, CTI PMETIS 371 1030 1962 3079 4661 6522 8552
KMETIS 330 1098 2201 3479 4667 6627 8852
MLGA-2 112 312 594 1046 1643 2652 3936
5. FE_4ELT2 PMETIS 130 359 663 1140 1800 2809 4151
KMETIS 130 391 657 1127 1753 2744 4022
MLGA-2 237 592 1064 1965 3388 5576 9218
6. FE_BODY PMETIS 283 689 1220 2109 3566 5758 9434
KMETIS 292 843 1224 2285 3513 7992 10190
MLGA-2 382 766 1182 1832 2744 3885 5527
7. FE_SPHEREPMETIS 424 843 1328 2031 2964 4200 5921

KMETIS 446 847 1318 1982 2867 4042 5679
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Table 6 Comparison of cut-edge results of MLGA-2 and METIS (continued)
SNO Graph Algorithm NP =2 NP =4 NP =8 NP=16 NP =32 NP =64 NP =128

MLGA-2 88 228 506 918 1536 2408 3552
8. T60K  PMETIS 102 266 519 1012 1629 2503 3751
KMETIS 102 307 573 1006 1638 2501 3684
MLGA-2 27 46 104 169 297 438 727
9. UK PMETIS 27 53 115 199 326 491 778
KMETIS 31 52 116 195 305 477 778
MLGA-2 128 398 698 1164 1768 2636 3824
10. WHITAKER3PMETIS 131 429 716 1216 1839 2817 4116
KMETIS 135 431 746 1198 1832 2676 3962

MLGA-2 742 1883 2806 4366 6465 8862 11627
11. WING PMETIS 882 1986 2012 4634 6717 9153 12387
KMETIS 929 1997 2984 4445 6761 9029 11937

MLGA-2 1788 3682 5994 8964 12014 16061 21689
PMETIS 1813 4033 6256 9346 13333 18003 23286
KMETIS 1927 3801 6185 9087 12832 17051 22039

MLGA-2 666 3016 7543 12369 19234 28884 40876
13. BRACK2 PMETIS 742 3426 8000 13358 19524 29481 41485
KMETIS 742 3216 7960 13001 19976 29350 42429

MLGA-2 2052 8010 14022 24121 35214 51680 73854
14. FE_ROTORPMETIS 2647 8354 15359 24841 35993 52309 75250
KMETIS 2237 8430 14733 25128 38131 53601 74082

MLGA-2 4298 7767 13092 19642 27911 38396 52596
15. FE_TOOTHPMETIS 4618 7854 13970 20682 28952 40170 54549
KMETIS 4382 9002 13640 20069 28715 39160 53290

MLGA-2 8604 28412 46864 86019 127981 185852 254903
16. AUTO  PMETIS 9336 30240 53326 90291 138008 197461 270117
KMETIS 10924 31856 49733 89731 130086 188087 259264

MLGA-2 8812 19212 32166 46984 67156 91096 123694
17. WAVE PMETIS 9336 21349 35835 52243 71419 96445 130043
KMETIS 9355 20168 33553 48594 69501 93195 125100

MLGA-2 6212 16328 26586 41124 61011 84026 114007
18. 144 PMETIS 6919 17647 29270 43253 63576 89309 121319
KMETIS 6996 17647 28416 43172 63415 86262 116471

MLGA-2 2208 8133 17656 29586 43164 61644 84412
19. 598a PMETIS 2444 8631 18328 30170 44555 64150 88658
KMETIS 2555 9003 18133 30274 43877 62617 85830

WING-

12 NopAL

MLGA-2 388 1022 1643 2387 3187 4608 5916
20. Cs4 PMETIS 421 1137 1732 2540 3527 4776 6383
KMETIS 494 1102 1759 2464 3404 4724 6164
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to point out here that while generating the partitions employing the proposed algorithm for these test
meshes, greater emphasis is placed on quality rather than on computational time. Hence the
computational time is not measured for these problems. In order to improve the quality, the GA is
employed for refining the projected graph partitions at each level. The GA is terminated when there
is no improvement in the solution for twenty consecutive generations. A close look at Table 5
indicates that the cutedges generated by the proposed GA based graph patrtitioning algorithm are
lower than the multilevel algorithm.

Comparisons have also been made with another graph partitioning package CHACO. Since
CHACO code is not accessible, the values available in the literature (Soper, Walshaw and Cross
2000) for CHACO version 2.0 are taken for comparison purposes and the results are furnished in
Table 7. A close look at these results also indicates the superior performance of the proposed GA
based graph partitioning algorithm. Similar comparisons have been made with JOSTLE 2.2. It is
again preferred to borrow results (cut edges) of JOSTLE from the literature (Soper, Walshaw and
Cross 2000) rather than implementing and testing on our own. The comparison of cutedges is
shown in Table 8. It can be observed that the proposed algorithm is effective in minimising the cut
edges in most of the situations. Only in very few instances, JOSTLE is found to be marginally
better.

Table 7 Comparison of cut-edge results of MLGA-2 and CHACO

Graph NP =4 NP =8 NP =16 NP = 32
rap MLGA-2 CHACO MLGA-2 CHACO MLGA-2 CHACO MLGA-2 CHACO
CRACK 434 466 736 794 1187 1246 1864 1978
CTI 973 1006 1868 1946 2941 3091 4487 4583
T60K 228 244 506 526 918 994 1536 1601
UK 46 63 104 121 169 202 297 318
WING 1883 2104 2806 3409 4366 4880 6465 6800
WING-NODAL 3682 3979 5994 6145 8964 9353 12014 13272
BRACK?2 3016 4116 7543 9183 12369 14683 19234 22610
4ELT 324 384 554 682 998 1155 1692 1745

Table 8 Comparison of cut-edge results of MLGA-2 and JOSTLE

Graph NP =4 NP =8 NP = 16 NP = 32
ra|
P MLGA-2 JOSTLE MLGA-2 JOSTLE MLGA-2 JOSTLE MLGA-2 JOSTLE
CRACK 434 413 736 751 1187 1191 1864 1804
CTI 973 1329 1868 2086 2941 3262 4487 4683
T60K 228 229 506 530 918 984 1536 1588
UK 46 71 104 106 169 180 297 315
WING 1883 1844 2806 2911 4366 4681 6465 6404
WING-NODAL 3682 4055 5994 5965 8964 8947 12014 12635
BRACK2 3016 2999 7543 7808 12369 13164 19234 19238

4ELT 324 434 554 656 998 1012 1692 1687
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7. Conclusions

In this paper, an unstructured mesh-partitioning technique employing genetic algorithms has been
presented. The algorithms discussed in this paper have been devised as recursive algorithms. In
order to formulate GA based mesh-partitioning algorithms, the genome is constructed by using
binary representation and by mapping the graph vertices to the bit string. Both direct as well as
multilevel methods have been devised employing this formulation. It has been observed that
customized mutation operator and elitism contributes for faster convergence of GA in multilevel
implementation. GA based partitioning algorithm (MLGA-1) is slightly faster if coarsest graph is
bisected using any of the fast heuristic graph partitioning algorithms

An alternative approach is also presented, which utilizes the greedy algorithm for approximate
bisection of the mesh and GA is applied on the vertices along the interfaces. This not only reduces
the size of genome but also have an effect on the computational time, as the cost function evaluation
is limited to only the negotiable vertices, i.e., the interface vertices. In other words, GA works in
this particular context as a local refinement algorithm. However, the cut edges obtained using this
formulation are inferior to the multilevel approach.

Numerical studies employing various practical engineering problems indicate that the proposed
GA based algorithms outperform the popular spectral approaches in terms of minimising the
cutedges. Among the three different implementations, the MLGA-2 is qualitatively superior.
However, the computational cost is high. Similarly several test graphs of various finite elements
meshes have also been solved employing MLGA-2. The cut edges generated by the proposed graph-
partitioning algorithm are much lower than several state-of-the-art mesh partitioning algorithms like
METIS, CHACO.

In this work, the finite element meshes with mixed element are not tested. However, it is worth
mentioning here that the finite element meshes with elements of varying order and also meshes with
mixed finite elements, (which result in weighted graphs) can be solved employing the proposed
algorithm without any difficulty.

In the light of the numerical studies and the comparisons with various popular mesh partitioning
algorithms, the merits of the proposed GA based graph partitioning algorithm and their potential
applications can be compiled as given below:

1. The GA based partitioning algorithm is robust and guarantees to provide a solution. The
quality of solution improves with time.

2. The proposed GA based graph partitioning algorithm produces high quality meshes. Hence
they are recommended for finite element applications of large models typically say for
nonlinear static or dynamic analysis (where incremental and/or iterative form of solutions are
usually employed) whose runtime on parallel machines will usually be high. For example, the
crash worthiness studies will generally be carried out for about 100,000 time steps (Plaskacz
et al 1994) and the run time of this sort of applications will be about few hours. In such
situations, superiority in the quality of partitions is preferred at the expense of slightly higher
run time in generating the partitions. In other words, if one can minimise the cut edges further
even at the expense of an additional computing time, considerable savings can be expected
during finite element solution as these applications(nonlinear/nonlinear dynamics) require
interprocessor communication in each time stepf/iteration or increment. Similarly the proposed
algorithm is effective for computational fluid dynamics (CFD) applications.
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3. The proposed algorithm attempts to optimise the cost function associated with graph
partitioning. Hence the user has flexibility to tune the cost function to his specific requirements
or improve the cost function by introducing additional partitioning information like aspect ratio
optimisation etc. The same code can still be used with this improved/tuned cost function. This
flexibility is lacking in most of the state-of-the-art graph partitioning algorithms.

4. Since GA is an excellent candidate for parallel processing, the proposed GA based graph-
partitioning algorithm is more adaptive for parallel implementation than the multilevel
algorithms.

5. The major disadvantage of the proposed algorithm is the high run time. In view of this, the
proposed algorithm is not recommended for problems whose run time on parallel processors is
very small. For example, problems like parallel sparse solvers are expected to take only few
seconds. For these class problems, fast multilevel graph partitioning algorithms like METIS,
CHACO, JOSTLE are still preferable when compared to the proposed algorithms.
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