Structural Engineering and Mechanics, Vol. 14, No. 5 (2002) 505-520 505
DOI: http://dx.doi.org/10.12989/sem.2002.14.5.505

Coupled buffeting response analysis of long-span bridges
by the CQC approach

Quanshun DingT, Airong Chent and Haifan Xiang3T

State Key Lab for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China

(Received January 24, 2001, Accepted March 13, 2002)

Abstract. Based on the modal coordinates of the structure, a finite-element and CQC (complete
quadratic combination) method for analyzing the coupled buffeting response of long-span bridges is
presented. The formulation of nodal equivalent aerodynamic buffeting forces is derived based on a
reasonable assumption. The power spectral density and variance of nodal displacements and elemental
internal forces of the bridge structure are computed using the finite-element method and the random
vibration theory. The method presented is very efficient and can consider the arbitrary spectrum and
spatial coherence of natural winds and the multimode and intermode effects on the buffeting responses of
bridge structures. A coupled buffeting analysis of the Jiangyin Yangtse River Suspension Bridge with
1385 m main span is performed as an example. The results analyzed show that the multimode and
intermode effects on the buffeting response of the bridge deck are quite remarkable.

Key words: long-span bridges; aerodynamic coupling; buffeting analysis; finite-element and CQC
method; multimode and intermode; Jiangyin Yangtse River Suspension Bridge.

1. Introduction

Natural winds are turbulent in nature. Buffeting is an aerodynamic random vibration of bridge
structures due to the wind fluctuation. The buffeting response of a bridge deck increases
considerably as the main span of the bridge lengthens. The buffeting response also appears within a
wide range of wind speeds and lasts for almost the whole design life of the bridge. Thus, frequent
occurrence of buffeting response of relatively large amplitude may influence the endurance of
structure and cause fatigue damage to the bridge components. Therefore, aerodynamic design must
ensure that the bridge does not vibrate excessively under gusty winds.

To the writers’ knowledge, Davenport (1961, 1962) first applied statistical concepts to the
buffeting analysis of structures and suggested the aerodynamic admittance to reduce the error caused
by the quasi-steady forces. However, the aerodynamic stiffness and coupling effects among modes
were neglected. Scanlan (Scanlan and Gade 1977, Scanlan 1978, Scanlan and Jones 1990) proposed
a basic theory for multimode buffeting analysis of long-span bridges which the self-excited forces
were taken into consideration. Chen (1993) utilized the characteristics of the two approaches and
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presented a response-spectrum method for the buffeting response analysis of long-span bridges.

For the buffeting response analysis of long-span bridges, the conventional mode-by-mode
approach is widely used. Matsumotd al (1994) pointed out the importance of aerodynamic
coupling among modes of vibration when estimating the buffeting response, particularly at higher
wind velocities. Jairet al (1996) considered both multimode and intermode buffeting response
using the random vibration-based mode superposition method in the frequency domain. Katsuchi
et al (1999) refined this frequency domain approach and applied it to the Akashi-Kaikyo Bridge,
which is the longest suspension bridge built in the world so far. This approach only considers the
aerodynamic forces on the bridge deck and the computational efforts of the dual integral are usually
large. Xu (1998) combined the finite element method and the pseudo-excitation approach in the
computation of the buffeting response of a bridge. Chen (2000) investigated the effects of
aerodynamic coupling among modes of vibration on the buffeting response of long-span bridges.
Although the time-domain buffeting analysis is also developed recently (&iah 1999, Cheret
al. 2000, Cao 1999), the frequency-domain method is more attractive and widely applied for its
simplicity and efficiency.

This paper describes a method similar to Chen (2000) with some details and revisions. Based on
the modal coordinates of the structure, a finite-element and CQC (complete quadratic combination)
method for analyzing the coupled buffeting response of long-span bridges is presented. The
formulation of nodal equivalent aerodynamic buffeting forces is derived based on a reasonable
assumption. The power spectral density and variance of nodal displacements and elemental internal
forces of bridge structures are computed using the finite-element method and the random vibration
theory. Moreover, a coupled buffeting analysis of Jiangyin Yangtse River Suspension Bridge with
1385 m main span is performed as an example.

2. Equation of motion

The governing equation of motion of a bridge structure excited by aerodynamic forces is given in
a matrix form by

MX + CX+KX = Fgo+ Fy (1)

where M, C, and K = structural mass, damping, stiffness matrices, respectiVelyé,)'(' = nodal
displacement, velocity, and acceleration veckorindicates the nodal equivalent force vector, and
the subscriptse andb represent the self-excited and turbulence-induced buffeting force components,
respectively.

For the harmonic motion, the self-excited forces per unit span are expressed in Scanlan’s extended
format below (Scanlan 1978, 1993):

L.(t) = —pU (2B)§<H1 + KHZ—U—+ K’Hia+ K H4D + KHSS* K HGED (22)
Dy(t) = lpUZ(ZB)%P* + kPB4 k2Pt kPR kpily k2pi O (2b)
se 2 1 2 U 3 4 5U GBD

M(t) = %pUZ(ZBZ)%(AZU KAZBUG + K20+ K A4g+ KA58+ K AGEE (2¢)
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Fig. 1 Displacements and forces on bridge section Fig. 2 Directions of 12-DOF frame member
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where p = air density;U = mean wind velocity;B = 2b = bridge deck width)K = wB/U = reduced
frequency, w=circular frequency of vibrationh, p, and a =vertical, lateral, and torsional
displacements, respectively; the over-dot denotes the partial differentiation with respect ttp time
and HI PI Ai* (= 1~6) = non-dimensional flutter derivatives, which are functions of the reduced
frequency and depend on the geometrical configuration of the bridge section and the approach flow.
The aerodynamic forces and the displacements are shown in Fig. 1.

The expressions (2) are the real-number form of self-excited forces. In complex notation, the
corresponding expressions of self-excited forces read (Starossek 1998)

Le(t) = &’ pB*(Cyh+ CLp+ BC Q) (32)
Dedt) = &’pB*(Cpph + Copp+ BGy,Q) (3b)
Mo(t) = w’pB*(BCyph + BCyp+ B°Cyya1) (3¢c)

whereC (r =D, L, M; s=h, p, a) = complex coefficients of self-excited forces.
The relationships between real and complex aerodynamic coefficients can be established by
comparing the corresponding self-excited force expressions. The following relations are found:

CLh:H;+iH*l, CLp:H;+iH;, CLa=H;+iH; (4a)
Con = P+ iPy, Cpp=P,+iPy, Cp,=Ps+iP; (4b)
Cun=As+iA1, Cup = Ac+iAs, Cyg = Ay +i) (4c)

In the FEM analysis, the distributed forces of the bridge deck are converted into nodal equivalent
forces at member ends as follows:

Fée = WALX (5)
where AS, =12 by 12 self-excited force matrix of the member; the subsarggiresents the local

coordinates of the member (see Fig. 2). The lumped self-excited force matrix of a bridge deck
member withL length is
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c = h ﬂ ©)
where
o 0 0 00
C,h Cp BC, 0 0
Con Cop BCps 0 O -

BCun BCyp B°Cya O O
0 0 0 00

0
0
Al=%szL0
0
0
0 0 0 0 0 0

Since the self-excited forces are non-conservative, the self-excited force matrix of the member is
generally asymmetrical and is a function of reduced frequency. When these matrices of the members
are converted into the global coordinates and are assembled, then

2
Fse = w Asex (8)
whereA,. = self-excited force matrix of the structure. Obviously is a complex matrix.

The buffeting forces per unit span on bridge structures due to wind fluctuations are given by
Davenport (1962) and Scanlan (1978, 1993):

1 u’ ' w'
Ly = 5PU°B| 2Cux + (CL + ColXuu | (%)
1 u' ' w'
Dy = 5PU°B| 2CoXou(; + CoXouy; | (9b)
1 u’ ' w'
My = 5PU°B"| 2CuXia(j *+ Cu X | (90)

where C_, Cp, and Cy = static lift, drag, and moment coefficients (referred to deck wig}th
respectively;C, = dC,/da, C, =dCy/da , andCy, dCu/da; Xiu, Xiw» Xous Xows Xnus X =
aerodynamic admittance functions, which are functions of reduced frequency and dependent on the
geometrical configuration of the bridge section; amdand w'=two components of wind
fluctuations on the local coordinates of the member. It is assumed here that the member is located
on the plane perpendicular to the longitudinal wind velocity. Thesu, w' = wcosd, whereu and
w are the longitudinal and vertical wind fluctuations, respectively, Giglthe angle between the
local axisx® and the gobal axiX.

The aerodynamic buffeting forces aforementioned can be expressed as below

Py, = 0.50U(Cpu+ Cp,W) (10)



Coupled buffeting response analysis of long-span bridges by the CQC approach 509

where
g e cof
P, = DDbE Cou = Bg2C, E Cow = BCOSGE CD’ E
Mo 2BCup 0BG O

When the member is small enough, it can be assumed approximately that the longitudinal and
vertical wind fluctuations are distributed linearly on the member, then

(M1
X E“l% = Au° (11a)
-| [U2

—iIx
i

W1
)_( 0 lD: AWe (11b)
L_ W20

wherex andL = axial location and length of the member, respectively; and the subscripts 1 and 2
indicate the two ends of the member.

The consistent buffeting forces at the member ends in the local coordinate system can be obtained
by the following definite integral:

Fe IBTPbdX
L

0.5pU HB'Cy,Adxu’ + [BCpAdxw
L L

0.5pU (Apu + Ap, W) (12)
where Ay, andA;, = buffeting force matrices of the member corresponding to the longitudinal and
vertical wind fluctuations, respectivel; = matrix of interpolated functions
O-N; O 0 O0O-N;O-N, 0O O O N,
B=/0 0-N, 0ON OOO-N, O -N,0 (13)
00 0-NsO O OO O0-Ng O O

- s g aXO L oOXD N = oDXT_SIXD . = O XO
where the functionsN; = 1 3D|_D+ZD|_D NZ—BDLD ZDLD N3 x%l 0
2
- X0 _XO -1_X =X
N“'L%L Lo Ns=1-7 Ne=p

Inserting Eq. (13) into Eq. (12) and integrating, yields

.
e ==BL[0 2IC 21C, 20BCy —3LCp 3LC, 0 9C, 9C, 10BCy 2LC, —2LC
"7 30 |0 9c, 9C, 10BC, —2LC, 2LC, 0 21C, 21C, 20BC, 3LC, —3LC,



510 Quanshun Ding, Airong Chen and Haifan Xiang

—BLcosf|0 21(C, +Cp) 21C, 20BC, -3LCg 3L(C, +Cp)

AEW = 60 12 ] ] I 1
0 9(C/ +C,) 9C; 10BC, —2LCg 2L(C/ +Cp)

.
0 9(C/ +Cp) 9Cp 10BC, 2LCp -2L(C/ +Cp)
0 21(C/ +Cp) 21C, 20BC,, 3LC, -3L(C/ +Cp)

The nodal local buffeting forces expressed by Eq. (12) can be converted into the global coordinate
system using the coordinate transformation matrix. As a result, the nodal global buffeting force
vector can be obtained as

Fb = OSPU(AbUU +AbWW) (14)

where A,, and A, = global buffeting force matrices; andandw = the r-row nodal fluctuating
wind vectors for the longitudinal and vertical components, respectively, whisr¢ghe number of
nodes subjected to wind fluctuations.

Apart from the bridge deck, the buffeting forces also act on the bridge towers, cables, and other
components. It is therefore desirable to have a buffeting analysis of the whole bridge other than the
bridge deck only. Besides the bridge deck, these formulae above are suitable to other bridge
components, and hence the method presented could be applied to examine interactions between
bridge components.

3. Multimode buffeting analysis
Based on the preceding part, the governing equations of motion of the bridge structure are given as
MX +CX + KX — A X = Fp, (15)

It is assumed that the buffeting response of the bridge structure can be approximately expressed
by the first m structural natural modes as

X = ®q (16)

where @ =n-row by m-column matrix of natural modes, can be provided by the dynamic
characteristic analysis in the loaded states m-row vector of generalized coordinates; and

total number of degrees of freedom. Inserting Eq. (16) into Eq. (15) and multiplyi®g by the

left yields

G+Cq+Ag—w'Ased = Q, (17)

WhereA diagonal eigenvalue matrix from the dynamic characterlstlc analgsist' Co and
Ase=D' A P; Qp=(Abuu+AbwW) (Where Apy = o' A,, andApy = o' A, ) =generalized buffeting
force vector.

In terms of the random vibration theory, the power spectral density (PSD) matrices of the vectors



Coupled buffeting response analysis of long-span bridges by the CQC approach 511

of generalized modal respong@&and nodal displacemekltare obtained by
Sy(@) = H (@)Se,(w)H () (18)
Sx(w) = ®H (w)Sq (WH (W' (19)
whereH(w) = transfer function matrix.
H(w) = [-6’(1 +Asg +iwC+ Al (20)

and| = unit matrix; the subscript * arlidenote the complex conjugate and transpose, respectively.
Because of the aerodynamic coupling among modes of vibration, the off-diagonal components of
matrix generally have nonzero values depending on the dynamic and aerodynamic characteristics of
the bridge. These components may strongly influence the buffeting response as the wind velocity
increases.
The PSD matrix of the generalized buffeting forces is given by:

So,(@) = S,(e) + Sg/(w) (21)
SS(w) = 0.250°U(AbuS,Abu + AbuSyAbu)
SO (w) = 0.250°U(AnuSuuAbw + AouSyuAn)

whereS,, andS,,, = PSD matrices ofi andw components, respectivelg,,, = S:VLF cross-spectral
density (CSD) matrices between thendw components, an8,,(w) = Cy.(w) + iQ.w), with Cy,
and Q,, being the cospectra and quadrature spectra, respec (hﬁw) is induced by the PSD
matrices ofu andw components andsgg(w) reflects the effects of the CSD matrices between
andw components. It has been noted that the difference of positive directions of the longitudinal
and vertical wind fluctuations can change the sigrsé)f(w) and it is associated with the static
wind coefficients. Therefore, it is necessary to divide the PSD matrix of the generalized buffeting
forces into two parts to analyze the buffeting response.

The power spectra of the wind componan@ndw in the atmospheric boundary layer, expressed
as functions otw, are (Simiu and Scanlan 1986)

2 2
S.(a) = 2000’z . Sule) - 3.36u*zwz - (22ab)
2nU(z)[1+ 50—2nU(Z)J 2nU(z)[1+ 10EQD—nU(z)D 3}

wherez = elevation above ground; = friction velocity, is a function of the surface roughness; and
U(2) = wind velocity at height. An empirical formula for the cospectru@,,, similar in form to
the autospectra and suitable for engineering application (Keinzhl 1972, Jonest al. 1992), is

14ufz

nowz f*
2nU(z)[1+ e J

Con(®) =

(23)



512 Quanshun Ding, Airong Chen and Haifan Xiang

No quantitative assessment of the quadrature spe€urhas yet been made (Joresal 1992,
Panofsky and Dutton 1984).

The spanwise cross-spectral densities of the wind components are expressed in conventional form
as (Simiu and Scanlan 1986)

Sl @) =[Sz @) Sl W)€ (24)
Suull, @) = Syl W)E ™ (25)

172

i o wlC@=-2)+Ci-y)T" ;. wCuyizy
u 1 w = 2
SN (SICARAVIER m e

wherey;, y, andz, z = the spanwise and vertical coordinates of the two paltsndC, = the
decay factors of the vertical and spanwise coherence of longitudinal wind fluctuatiad,, anthe
decay factor of the coherence of vertical wind fluctuation, are suggested as 10, 16, and 8 (Simiu and
Scanlan 1986), respectively.

From Egs. (18) and (19), the componentsSpf= Sgl) + Sff) spa= S+ S matrices can
be expressed as

(26)

S = 3 3 H@SH (@M, (6) (27)

kK="11="1
@) = 3 5 as@a (29)
K=11="1

wherer = 1 or 2. Thus the variances of the generalized modal responses and nodal displacements
are given by

T = [1(S) (@) + |S(w))dw (29)
0% = [1(S(w) + [S2(w)))dw
= 3 3 @l (S0 + [$2(@))dw)g (30)
kK=11=1

when the static wind coefficients of bridge deck sections or the positive directions of the
longitudinal and vertical wind fluctuations vary, the sign of the PSDs of the generalized modal
responses and nodal displacements caused by the CSDs betweeanthe components may be
different. Thus, the absolute values are used in these formulae.

Based on the PSDs of nodal displacements, the PSDs of elemental internal forces of the bridge
structure can be determined. The determinant relationship between the elemental internal forces and
nodal displacements is

P® = K°X® = KT, (31)
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where P® = elemental internal force vectdk® = elemental stiffness matrixi® = global-to-local

coordinate transformation matriX;® = nodal displacement vector in the elemental local coordinates;

X1 = nodal displacement vector in the structural global coordinates related to the element.
DenotingG = K°T¢, then the PSD matrices of the elemental internal forces are

sY(w) = GSN(WG' (=12 (32)

where Sgl)(w) ¢ =1, 2) = PSD matrices of the nodal displacement ve¢toOnce the PSDs of the
elemental internal forces are obtained, both the variances and RMS values can be determined
similar to the nodal displacement.

When the CSDs between different generalized buffeting forces are negligible in comparison with
the PSD,SG}, (w) , i.e.S5} (w) = 0(i #]) , the componentsSyfe) become

(@) = 3 H(@S (@)H (@) (33)
K=

When the aerodynamic coupling among vibration modes is neglected, i.e., the non-diagonal
elements oA are taken as zero amdf;(w) = 0(i #j) , thsﬁl’f(w) r =(1, 2) is given as

SH(@) = Hi(w)SG), (W)H;(w) (34)

When both r’ql(w) = 0(i#j) and the aerodynamic coupling among vibration modes are
neglected, the following expression is obtained:

SP(®) = |Hi(w)|*SGh (w); SP(w) =0  (i#],r=12) (35)

For the purpose of evaluating the response in the multimode sense from single-mode response, the
square-root of the sum of square (SRSS) of single-mode responses is used, i.e.,

SRSG ¥ = Joh 1+ ot . + T (36)

wherem = the number of natural modes

4. Example

To illustrate the reliability and effectiveness of the method presented and the analyzing software,
numerical buffeting analysis has been performed on two typical examples: a simply supported beam
structure with a thin-plate section and Jiangyin Yangtse River Suspension Bridge.

4.1 A simply supported beam structure

The first example considered is that of a simply supported beam structure with a thin-plate section
and it mainly serves as a check on the method presented. The structural properties are given as
follows: spanL =300 m; width B=40 m; vertical bending stiffnesgl,=2.1 x 16 Mpalm®*
lateral bending stiffnes&l, = 1.8 x 10 Mpalm® torsional stiffnessGl;=4.1x 16 Mpalm*
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Fig. 3 Comparison of the RMS values of displacement buffeting responses at the span center

mass m= 20,000 kg/m; mass moment of inertig=4.5x 16 kgCm¥m; and air mass density
p=1.25 kg/mi. The structural damping ratio for each natural mode is assumed to 0.005.

The self-excited aerodynamic lift and moment acting on the thin-plate section can be represented
approximately by Theodorsen’s function, and the flutter derivatHés Aén'dz 1~@4) can be
determined from Theodorsen’s function (Scanlan 1993). The static wind coefficients of the section
at the zero attack angle are takenGas= 0.128, Cp, =0.0697, Cy =-0.0074, dC./da = -5.5577,
dCo/da = 0.0, dCy/da = 1.2662. The simply supported beam is divided into 30 elements. The first
20 natural modes of the structure are computed, which are used in the buffeting analysis. Both the
present method and method of Scanlan and his coworkers are applied to analyze the coupled
buffeting response problem. The comparison of the RMS values of displacement buffeting responses
at the span center is shown as Fig. 3 at the mean wind velocity of 40 m/s. It can be seen that the
results of the present method have very good agreement with those of the Scanlan’s method.

4.2 Jiangyin Yangtse River Suspension Bridge

The coupled buffeting analysis of the Jiangyin Yangtse River Suspension Bridge with 1385 m-long
main span in the completed stage, which is the longest-span bridge that has been constructed in
China shown in Fig. 4, is performed as an actual example. The bridge deck section is a streamlined
box with 36.9 m width and 3.0 m height (see Fig. 5) (Xiahgl 1996).

A section model of the bridge deck with two degrees of freedom is used to measure flutter



Coupled buffeting response analysis of long-span bridges by the CQC approach 515

/M]MWWWMWWWWW\

| 336.5m 1385m 309.34m

Fig. 4 Jiangyin Yangtse River Suspension Bridge

36.9

- 325 ‘
- 295 ]
/ 1

<wmm =

22.94 -

Flg. 5 Cross section of the bridge deck

flutter derivatives
flutter derivatives

usie u/ie

Fig. 6 Flutter derivative$d; and;  of the bridge deck

derivatives Hi* andAi* iE1~4) in a wind tunnel; the results are shown in Fig. 6. The static lift,
drag, and moment coefficients of the section at different angles of incidence are measured in
laminar flow. The static coefficients of the deck section at zero degree of incider@Ce=0el 28,

Cp =0.0697,Cy = -0.0074,dC /da = -5.5577,dCo/da = 0.0, anddCy/da = 1.2662. Since there is

no measured result of flutter derivatives related to the lateral motion, these flutter derivatives are
computed based on the quasi-steady theory. The structural damping ratio for each natural mode is
assumed to be 0.005. To simplify the discussion of the fundamental characteristics of the buffeting
response, only the aerodynamic forces acting on bridge deck are involved. The aerodynamic
parameters are assumed to be uniform along the bridge axis, and the deformation due to the static
wind is ignored.

The analytical model of the suspension bridge is established based on the design data. The first 50
natural modes are computed by the Lanczos method, and the major modes of the bridge deck are
listed in Table 1. The Sturm check on the first 50 modes is conducted to prevent the missing of
modes, and no mode is found missing.

The first 50 natural modes are taken into consideration in the buffeting response analysis. Fig. 7
indicates the effect of aerodynamic coupling among modes on the damping ratios of the first 15
complex modes as the reduced velocity increases. The solid lines and dashed lines are the results
with and without coupling, respectively. It is noted that there are some significant difference in the
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Table 1 Major modes of the bridge deck

No. Mode  Frequency (Hz) Mode shape No. Mode  Frequency (Hz) Mode shape

1 0.0516 S-L 15 0.2730 S-T
2 0.0891 A-V 16 0.3107 A-V
3 0.1237 A-L 27 0.3707 S-v
4 0.1316 A-V 30 0.4132 ST
5 0.1338 S-Vv 31 0.4322 A-V
6 0.1883 S-v 36 0.4990 S-v
7 0.2005 A-V 38 0.5304 A-T
12 0.2468 S-L 41 0.5690 A-V
13 0.2583 S-V 44 0.6444 S-v
14 0.2677 A-T 45 0.6640 S-T

Note: S - Symmetric; A - Antisymmetric; V - Vertical; L - Lateral; T - Torsional
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010
008
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0.04
002
000

Damping ratio
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-0.04 4
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u/iB
Fig. 7 Damping ratios versus reduced wind veloeity With coupling; ---- without coupling)

vertical and torsional modes of the bridge structure.

The elevatiorz of the bridge deck at the main span center above ground is 60 m and thegdength
of surface roughness is 0.01 m. To compute the buffeting responses in the interesting frequency
range, a frequency interval about 0.002 is used within the range from 0.035 to 0.80Hz. The
aerodynamic admittance function of the bridge is not considered due to the lack of information. The
power spectral densities of the displacement responses at the main span center are shown in Fig. 8
at a mean wind velocity of 60 m/s. The solid lines and dashed lines indicate the results by the
present CQC method and by the conventional SRSS method, respectively. It has been noted that
there are some difference near the first-order frequency for the PSDs of the vertical and torsional
displacement responses due to the intermode effects. Furthermore, to illustrate the multimode effects
on the buffeting response, the results with single mode are also included in the figures. It can be
seen that for the suspension bridge, the multimode effects are significant for the PSDs of the
buffeting displacement.

Fig. 9 shows the RMS values of the displacement responses at the main-span center with the
mean wind velocity. It can be seen that the buffeting responses of vertical and torsional motions will
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main-span center

be underestimated using the single-mode analysis due to multimode and intermode effects. The
difference between the CQC results and the SRSS ones is very small for the RMS responses of
lateral displacement. However, the RMS response of vertical and torsional motions will be
significantly underestimated using the conventional SRSS method, particularly at higher wind
velocities. At the design wind velocity of 40 m/s, the RMS values of vertical and torsional
displacements by the CQC method presented are 0.442m and 0.573 deg, respectively. The
corresponding results by the SRSS method are 0.405 m and 0.521 deg, which are 8.4% and 9.1%
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smaller than the CQC results, respectively. Moreover, the corresponding results of the single-mode
analysis are 0.382m and 0.50 deg, which are 13.6% and 12.7% smaller than the CQC results,
respectively.

In order to examine the influence of the CSDs of the generalized buffeting forces on the coupled
buffeting responses, Eq. (30) excluding the influence is used. The RMS values of the buffeting
responses of the vertical, lateral, and torsional displacement at the main-span center are 0.387 m,
0.2617 m, and 0.59 deg, respectively. Although these lateral and torsional displacement responses
are slightly different from those including the CSDs of the generalized buffeting forces, there is
significant difference for the vertical displacement response. Therefore, the influence on the coupled
buffeting responses of long-span bridges due to the CSDs of the generalized buffeting forces can not
be neglected. Furthermore, the writers have drawn the same conclusion by Scanlan’s method.
However, this conclusion is different from that provided by Chen (2000).

The cross spectra between the longitudinal and vertical wind fluctuations are neglected in the
buffeting analysis aforementioned. However, if the real atmospheric turbulence is considered this
assumption is not always conservative. Preliminary studies by &orads(1992) indicated a 7%
underestimate in buffeting response as a result of neglecting the wind cross spectrum in one
instance. Another study (Attou 1993) demonstrated a 25% underestimate of the response due to the
exclusion of the wind cross spectrum. Here a comparison study is performed for the suspension
bridge.

Fig. 10 shows the comparison of the RMS values of displacement responses at the main-span
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center with and without the wind cross spectrum. It has been noted that there are some significant
difference between the two sets of results. The RMS values of the vertical, lateral, and torsional
displacement responses at the main-span center are 0.442m, 0.262 m, and 0.573 deg, respectively,
excluding the wind cross spectrum at the mean wind velocity of 40 m/s. However, the corresponding
results including the wind cross spectrum are 0.515m, 0.311 m, and 0.603 deg, 16.5%, 18.7%, and
5.2% more, respectively.

5. Conclusions

Based on the modal coordinates of the structure, the finite-element and CQC method for
analyzing the coupled buffeting response of long-span bridges is presented in this paper. The
formulation of nodal equivalent aerodynamic buffeting forces is derived based on a reasonable
assumption. The methodology for computing the power spectral density and variance of nodal
displacements and elemental internal forces of bridge structures is presented using the finite-element
method and the random vibration theory. The method presented is very efficient and can consider
the arbitrary spectrum and spatial coherence of natural winds and the multimode and intermode
effects on the buffeting responses of bridge structures.

To illustrate the reliability and effectiveness of the method presented and the associated analyzing
software, the coupled buffeting problem of a simply supported beam structure is chosen as a check
example. It has been noted that the results of the present method have very good agreement with
those of Scanlan’s method.

The coupled buffeting analysis of the Jiangyin Yangtse River Suspension Bridge with 1385 m
main span is performed. The results of analysis show that the aerodynamic coupling among the
vibration modes markedly affects the damping ratios of complex modes of the system. The
multimode effects on the vertical and torsional displacement responses of the bridge deck are quite
remarkable for the long-span suspension bridge. It is noted that there are some differences near the
first-order frequency for the PSD of the vertical and torsional displacement responses due to the
intermode effects. The RMS response of vertical and torsional motions will be significantly
underestimated using the conventional SRSS method, particularly at higher wind velocities. At the
design wind velocity of 40 m/s, the RMS responses of vertical and torsional displacements with the
SRSS method are 8.4% and 9.1% smaller than the CQC results, respectively. Furthermore, the
corresponding results of the single-mode analysis are 13.6% and 12.7% smaller than the CQC
results. The influence on the coupled buffeting responses of long-span bridges due to the CSDs of
generalized buffeting forces should not be neglected. Moreover, the cross spectra between the
longitudinal and vertical wind fluctuations have obvious effects on the buffeting responses for this
suspension bridge at the wind velocity of design and should be considered in its future study.
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