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Abstract. A state-space method is proposed to analyze the aerodynamically coupled flutter problems of
long-span bridges based on the modal coordinates of structure. The theory about complex modes is
applied in this paper. The general governing equation of the system is converted into a complex standard
characteristic equation in a state space format, which contains only two variables. The proposed method is
a single-parameter searching method about reduced velocity, and it need not choose the participating
modes beforehand and has no requirement for the form of structure damping matrix. The information
about variations of system characteristics with reduced velocity and wind velocity can be provided. The
method is able to find automatically the lowest critical flutter velocity and give relative amplitudes, phases
and energy ratios of the participating modes in the flutter motion. Moreover, the flutter analysis of
Jiangyin Yangtse suspension bridge with 1385 m main span is performed. The proposed method has
proved reliable in its methodology and efficient in its use.

Key words: long-span bridges; coupled flutter; state space method; multimode; complex mode;
Jiangyin suspension bridge.

1. Introduction

One important aspect in the design of a cable-stayed or suspension bridge is the analysis of their
aerodynamic stability because these structures are prone to the well-known flutter instability
phenomenon. Since the infamous Tacoma Narrows Bridge failure of 1940, the bridge engineering
community has been faced with the design consideration of aerodynamic flutter. Wind-tunnel tests
have been widely used for that purpose and considerable understanding has been obtained using this
tool. Furthermore, with progress in computer technology, analytical prediction methods in
combination with wind-tunnel testing are now more commonly applied. The analytical methods
provide a great deal of information about the aeroelastic phenomena and have made it possible to
design much longer bridges. Controlling the flutter instability is a key factor in the ability to realize
long-span bridges.

Flutter may occur in both smooth and turbulent flows. Natural winds are turbulent in nature. It is
thought that the effects of turbulence on flutter are included in the flutter derivatives of bridge deck
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measured in turbulent flow (Scanlan 1987, Scanlan and Jones 1990). So the flutter analysis method
in turbulence flow is the same as that in smooth flow.

The problem of flutter is closely associated with structural natural modes so the analysis in the
frequency domain is direct and convenient. Because of the large computational efforts, time-domain
methods are seldom used. A great deal of analytical investigations related to the flutter problems of
long-span bridges have been made (e.g., Bleich 1948, Scanlan 1978, Xie and Xiang 1985, Miyata
and Yamada 1988, Agar 1989, Namini 1992, Chen 1994, Jain et al. 1996, Dung et al. 1998, Chen
and Matsumoto et al. 2000). Scanlan (1978) proposed a basic theory for multimode flutter analysis.
He also suggested a mode-by-mode approach based on the fact that practical flutter problems of
long-span bridges are most likely damping-driven flutter and are dominated by the action of a single
mode. Xie and Xiang (1985) employed a planar model of unsteady aerodynamic forces and
presented a state-space method for multimode flutter problems. Agar (1989) converted the flutter
motion equation into the eigenvalue problem of a real unsymmetric matrix, but the flutter analysis
requires a two-parameter searching process. Namini (1992) proposed the pK-F method for
multimode flutter problems. The method is to solve iteratively nonlinear equations and can provide
the information about variations of structural dynamic behaviors with the wind speed. Chen (1994)
transferred the flutter problem into a complex generalized eigenvalue problem and proposed the M-S
method that did not require iteration in non-damping situations. Jain (1996) also presented a
complex method for the coupled flutter problem, but he solved the real and imaginary parts of the
characteristic polynomial. Dung et al. (1998) suggested a direct flutter analysis and solved the
characteristic equation by the mode tracing method. Chen et al. (2000) expressed the aerodynamic
forces of a bridge deck by rational functions whose coefficients were derived from flutter
derivatives. He analyzed the flutter problem by the state-space method. Those methods are mainly
based on the modal coordinates of the structure, so the computations are efficient and each method
has its own advantages. However, the participating modes in the flutter motion must be chosen
beforehand and much personal participation is required in the flutter analysis in those methods. 

In this paper, a new state-space method is proposed to analyze the aerodynamically coupled flutter
problems based on the modal coordinates of structures, and a simple and practical process of
automatic searching is introduced to find the critical flutter velocity. The model of self-excited
forces that contains 18 flutter derivatives is employed and is expressed as a complex form. The
general governing equation of the system is converted into a complex standard eigenvalue problem,
which contains only two variables, under the condition of reasonable approximation. It is noted that
the approximation does not affect the analytical results in the critical flutter state. The flutter
analysis is a single-parameter searching process so the proposed method has many advantages.
Finally, the flutter analysis of Jiangyin Yangtse suspension bridge with 1385 m main span is
performed as an example. 

2. General formulation

It is assumed that the buffeting forces have no influence on aerodynamic stability and are
excluded in the flutter analysis. Thus the governing equation of motion of a bridge structure excited
by aerodynamic forces is given in a matrix form by

 (1)MX
··

CX
·

KX+ + F se=
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where M, C, and K = mass, damping, stiffness matrices, respectively; X = nodal displacement
vector; each dot denotes the partial differentiation with respect to time t; Fse = nodal vector of the
self-excited force. 

The self-excited forces per unit span are expressed in Scanlan’s extended format below (Scanlan
1978, 1993):

(2a)

 (2b)

 
(2c)

where ρ = air density; U = mean wind velocity; B = 2b = bridge deck width; K = ωB/U = reduced
frequency; ω = circular frequency of vibration; h, p, and α = vertical, lateral, and torsional
displacements, respectively; the over-dot denotes the partial differentiation with respect to time t ;
and (i = 1~6) = non-dimensional flutter derivatives, which are functions of the reduced
frequency and depend on the geometrical configuration of the bridge section and the approach flow.
The aerodynamic forces and the displacements are shown in Fig. 1.

For the bluff bridge deck sections, the flutter derivatives can be determined experimentally. This is
actually done through a system identification method in the frequency or time domain using free
vibration or forced vibration testing in a wind tunnel. The measurement of the free vibration is
simple and is often applied. At present a two-degree-of-freedom section model of the bridge deck is
widely used to identify the flutter derivatives  and  (i = 1~4). The drag and components
associated with lateral motion are generally negligible, but may become important for certain bridge
deck configurations (Miyata et al. 1994). The quasi-steady theory is invoked to consider the effects
in the absence of the measured results in the wind tunnel.

 

  

(3)

Lse t( ) 1
2
---ρU

2
2B( ) KH1

* h
·

U
---- KH2

* Bα·

U
------- K2H3

* α K2H4
* h
B
--- KH5

* p·

U
---- K2H6

* p
B
---+ + + + + 

 =

Dse t( ) 1
2
---ρU

2
2B( ) KP1

* p·

U
---- KP2

* Bα·

U
------- K2P3

* α K2P4
* p
B
--- KP5

* h
·

U
---- K2P6

* h
B
---+ + + + + 

 =

Mse t( ) 1
2
---ρU

2
2B2( ) KA1

* h
·

U
---- KA2

* Bα·

U
------- K2A3

* α K2A4
* h
B
--- KA5

* p·

U
---- K2A6

* p
B
---+ + + + + 

 =

Hi
* Pi

* Ai
*, ,

Hi
* Ai

*

P1
* 1

K
----– CD, P2

* 1
2K
-------CD

′ , P3
* 1

2K2
---------CD

′===

P5
* 1

2K
-------CD

′= , H5
* 1

K
----CL, A5

* 1
K
----– CM==

P4
* P6

* H6
* A6

* 0= = = =

Fig. 1 Aerodynamic forces of bridge deck
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where CL, CD , and CM = static lift, drag, moment coefficients (referred to deck width B),
respectively;   and  (Scanlan 1987).

The expressions (2) are the real-number form of self-excited forces. In complex notation, the
corresponding expressions of aerodynamic force read (Starossek 1998)

(4a)

(4b)

(4c)

where Crs (r = D, L, M; s = h, p, α) are the complex coefficients of self-excited forces.
The relationships between real and complex aerodynamic coefficients can be established by

comparing the corresponding aerodynamic force expressions. The following relations are found:

(5a)

(5b)

(5c)

When comparing the real force expressions (2) with the equivalent complex expressions (4), the
complex equations are more compact. The reason is that the complex coefficients naturally represent
the phasing between displacements and displacement-induced aerodynamic forces. In the real
notation, the velocity terms are included in order to account for phasing properly. Although the two
forms of self-excited forces are equivalent in essence, the presented method will exhibit that the
complex expressions (4) are more beneficial. Moreover, the phasing between displacements and
aerodynamic forces becomes quite obvious in the complex form.

In the FEM analysis, the distributed forces of a bridge deck are converted into equivalent nodal
loads at member ends as follows:

(6)
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Fig. 2 Positive directions of 12-degree-of-freedom space frame member



A state space method for coupled flutter analysis of long-span bridges 495

where the subscript e represents the local coordinates of the member (see Fig. 2).  is a 12 by 12
aerodynamic matrix of the member, and has lumped and consistent forms as mass matrix. The
lumped aerodynamic matrix of a bridge deck member with L length is

(7)

where

 (8)

Since aerodynamic forces are non-conservative, the aerodynamic matrix of the member is
generally unsymmetrical and is a function of reduced frequency. When the aerodynamic matrices of
the members are transformed into the structural global coordinates and are assembled, then

(9)

where Ase = structural aerodynamic matrix. Obviously, Ase is a complex matrix.

3. Multimode flutter analysis

Based on the preceding part, the governing motion equations are expressed in complex form as

(10)

Let X = Rest, where R is the complex mode response of the system including the structure and
airflow; its corresponding complex frequency s = (−ξ + i)ω (where ξ and ω are the damping ratio
and circular frequency of the complex mode, respectively, and i 2 = −1), substituting this into Eq. (10)
yields

(11)

The complex mode response of the system can be expressed approximately by m structural natural
modes as

(12)

where Φ = an n-row by m-column matrix of natural modes, can be given by the dynamic
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characteristic analysis in the loaded state; q = an m-row vector of generalized coordinates; and n =
the total number of degrees of freedom. Inserting Eq. (12) into Eq. (11) and multiplying with ΦT by
the left yields

 (13)

where Λ = the diagonal eigenvalue matrix from the dynamic characteristic analysis; I  = unit matrix;
and the matrix  and .

Considering the fact that the damping ratios of the system (positive or negative) are small, the
circular frequency of a complex mode is approximately given by ω = −si (where i2 = −1), inserting
this into Eq. (13) yields

 (14)

The corresponding vibration of self-excited force expressions (4) is harmonic and constant-
amplitude. The effect of the damping ratio on self-excited forces is still an open problem for further
discussion. Note that the damping ratio of the system is equal to zero in the critical flutter state, i.e.,
ω = −si, so the above approximation has no influence on the critical flutter state and flutter velocity.

The above equation can be expressed in the following state-space format:

 (15)

where 

(16a)

  (16b)

For a nontrivial solution to exist and the exponential is never zero, the analysis of complex modes
of the system is converted into the following standard eigenvalue problem:

AY = sY  (17)

where the characteristic matrix of the system A is a 2 m by 2 m complex matrix, and has a single
variable, i.e., reduced frequency (or reduced velocity). Because the employed self-excited force
expressions (4) do not contain any term in U, neither does Eq. (17), and thus it is to be solved for
only two variables, s and K. Then a process of two-parameter searching is avoided for the flutter
analysis. After fixing K, standard linear eigensolvers are available to compute the 2 m sets of
eigenvalues s and corresponding eigenvectors Y from Eq. (17), and

 (18)

The m eigenvalues with positive imaginary part are the complex frequencies of the system and the
upper half vectors q in the corresponding eigenvectors Y are the complex mode shapes of the
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system, and the other m ones with negative imaginary part are meaningless. Because of
aerodynamic coupling, the mode shapes are coupled. In a prescribed complex mode shape, the
magnitude and phase of the kth natural mode are given as

(19)

If the damping ratios of all complex modes are positive the system is stable; if at least one
damping ratio is equal to zero the system is neutrally stable; if at least one damping ratio is negative
the system is unstable. Therefore, the flutter analysis is to find the critical state that at least one
damping ratio of the system is zero through searching reduced velocity V

r
. The corresponding

circular frequency is the flutter circular frequency ω f and the critical flutter velocity can be
computed by Ucr = Bωf /K. Several critical flutter states may occur in the range of reduced velocity.
It is not sure that the flutter velocity corresponding to the lowest V

r
 of flutter onset is actually the

lowest critical flutter velocity. An automatic searching procedure is therefore employed to find the
lowest critical flutter velocity in the following part.

At the critical flutter velocity, the generalized modal coordinate q(t) and nodal displacement are
expressed by the complex flutter mode as

(20)

  (21)

where φ i = the ith natural mode shape; ω f = flutter circular frequency; X0 and  = amplitude and
phase of X(t); m = the number of participating modes. It is clear that the coupled flutter motion is
three-dimensional and that the phase shift exists among mode components.

The total motion energy of the characteristic motion in the critical flutter state is

(22)

and the energy of the ith natural mode is

(23)

So the ratio of modal energy ei is equal to Ei /E. The ratios of modal energy also provide a
uniform measurement of the contribution of natural modes to flutter motion.

4. Procedure of automatic searching

First, one must choose a range of reduced velocity, from  to  in order to perform
searching. Generally  can be set at zero. Because the searching method presented will
automatically stop if the lowest critical flutter velocity is found, the upper bound  is only
required to be high enough (proper between 20 to 30). Although the choice of the increment of
reduced velocity  has no restriction and has no influence on the final results, use of a small
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 can improve the stability of searching process. The procedures of automatic searching are as
follows:

1. Compute the first m natural modes of the structure that are employed as the participating
modes in flutter analysis.

2. Compute the current reduced velocity , from within the range of reduced velocities  to
, and incrementing .

3. Compute the reduced frequency Ki = 2π / ; determine the corresponding complex matrix ,
interpolate or extrapolate if necessary.

4. Solve the standard eigenvalue problem of Eq. (17); compute the damping ratios and circular
frequencies of all complex modes of the system.

5. Loop over the kth complex modes, k = 1, 2, …, m, when the damping ratio of the kth complex
mode is less than zero, execute steps 6 and 7. After the loop, find out the minimum circular
frequency ω min in the stable complex modes and go to step 8.

6. Using a linear prediction scheme (see Fig. 3), choose the next value of V
r
 as

(24)

In the first computation,  and  are equal to  and , respectively;  and  are
the corresponding damping ratios of the kth complex mode.

7. Execute steps 3 and 4; when the absolute value of the damping ratio ξk of the kth complex
mode is below tolerance, return to step 5. Otherwise, if ξ k > 0,  and , else

 and , repeat steps 6 and 7.
8. Compute the lowest critical flutter velocity  below the reduced velocity  if possible,

and compute U1 = . When , continue step 2, otherwise skip the loop of
reduced velocity and stop.

For the undamped structures, the check value of damping ratio in step 5 should be a very small
number (e.g., 0.0001). The reason is that the damping ratio of some participating modes (e.g.,
modes of cable vibration) which have no relation with the aerodynamic forces is not just equal to
zero, but maybe positive or negative due to the error of numerical computation.

U1 is the lowest wind velocity that has been searched for the stable complex modes in the ith loop
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Fig. 3 Linear root predictor of reduced velocity
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of reduced velocity. If the lowest flutter velocity found is less than U1, it indicates that the critical
flutter of structure has occurred below wind velocity U1. Thus it is unnecessary to continue the
process of searching.

5. Jiangyin suspension bridge

The proposed method has been coded into an analyzing software, which is able to analyze the
spatial flutter problems of long-span bridges and take into consideration the nonlinear deformation
induced by static wind loads. The multimode flutter problem of Jiangyin suspension bridge is
analyzed with this software. Jiangyin Yangtse suspension bridge with 1385 m-long main span is the
longest-span bridge that has been constructed in China, as shown in Fig. 4. The bridge section is a
streamlined box one with 36.9 m width and 3.0 m height, see Fig. 5.

Structural properties are as follows. Center cables: area = 0.4825 m2, mass = 3974.3 kg/m; beside
cables: area = 0.5053 m2, mass = 4081.8 kg/m, E = 2.0× 108 kN/m2. Hangers: area = 0.0064 m2, mass =
50 kg/m, E = 1.4× 108 kN/m2. A single column of Towers: area = 33.389~43.148 m2, I (longitudinal) =
371.17~847.55 m4, I (lateral) = 137.15~183.52 m4, J (torsional) = 299.56~479.23 m4, ρ = 2550 kg/m3,
E = 3.5× 107 kN/m2. Deck: area = 1.1 m2, I (vertical) = 1.844 m4, I (lateral) = 93.32 m4, J (torsional) =
4.82 m4, mass = 18000 kg/m, moment of inertia = 1.426× 106 kgm2/m, overall deck width = 36.9 m.

A model of the bridge deck with two degrees of freedom is used to measure the flutter derivatives
 and (i=1~4) in the wind tunnel, the results are shown in Fig. 6. The static lift, drag, and

moment coefficients of the model at different angles of incidence are measured in laminar flow. The
static coefficients of the deck section at 0 degree of incidence are CD = 0.0697, CL = −0.128, CM

= −0.0074, dCD /dα = 0.0. Since there is no measured result of the flutter derivatives related to the
lateral motion, these flutter derivatives are calculated by Eq. (3) based on the quasi-steady theory.
The structural damping ratio for each natural mode is assumed to 0.005. To simplify discussion of
the fundamental characteristics of the flutter problem, only the aerodynamic forces acting on bridge

Hi
* Ai

*

Fig. 5 Cross section of the deck of Jiangyin bridge

Fig. 4 Jiangyin Yangtse suspension bridge
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deck are involved. The aerodynamic parameters are assumed to be uniform along the bridge axis,
and the deformation due to static wind is ignored.

The analytical model of the suspension bridge is set up based on the design data. The first 50
natural modes are computed by the Lanczos method, and the major modes of bridge deck are listed
in Table 1. The Sturm check on the first 50 modes is applied to prevent the missing of modes, and
no mode is found missing.

To confirm the reliability of the present method for analyzing flutter problems, both the present
method and the pK-F method are employed simultaneously to analyze the same flutter case. The
mode 5, 6, and 15 are chosen as the participating modes of flutter. The results in critical flutter state

Fig. 6 Flutter derivatives  and  of bridge deckHi
* Ai

*

Table 1 Main modes of bridge deck

No.
Mode

Frequency
(Hz)

Mode
shape

No. 
Mode

Frequency
(Hz)

Mode
shape

1
2
3
4
5
6
7
12
13
14

0.0516
0.0891
0.1237
0.1316
0.1338
0.1883
0.2005
0.2468
0.2583
0.2677

S-L
A-V
A-L
A-V
S-V
S-V
A-V
S-L
S-V
A-T

15
16
27
30
31
36
38
41
44
45

0.2730
0.3107
0.3707
0.4132
0.4322
0.4990
0.5304
0.5690
0.6444
0.6640

S-T
A-V
S-V
S-T
A-V
S-V
A-T
A-V
S-V
S-T

Note: S - Symmetric; A - Antisymmetric; V - Vertical; L - Lateral; T - Torsional

Table 2 Flutter results of different methods

The analyzing method Critical wind velocity (m/s) Flutter frequency (Hz)

The pK-F method 66.8 0.2410

The present method  66.95 0.2422
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are listed in Table 2. It is obvious that the two sets of results have good agreement, hence both the
proposed method and the corresponding analyzing software are proved reliable.

Since the proposed method has no limit on the number of modes, all of the first 50 natural modes
are employed as the participating modes of flutter. The automatic searching of flutter is performed

Table 3 Results of all critical flutter states found

Flutter
state

Reduced velocity 
(U/fB)

Critical wind 
velocity (m/s)

Flutter frequency 
(Hz)

Original
natural mode

1 7.585 67.55 0.2413 First symmetric torsion
2 8.621 111.74 0.3513 Second symmetric torsion
3 8.757 183.48 0.5676 Third symmetric torsion
4 8.820 73.73 0.2265 First antisymmetric torsion
5 9.055 148.01 0.4430 Second antisymmetric torsion

Fig. 7 Frequencies versus reduced velocity Fig. 8 Damping ratios versus reduced velocity

Fig. 9 Amplitude of coupled flutter motion along the bridge axis
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within the range of measured reduced velocity. Five critical flutter states are found totally and are
listed in Table 3. The lowest critical flutter velocity is 67.55 m/s, and the corresponding flutter
frequency is 0.2413 Hz. From the experiment of the full-bridge model in a wind tunnel, flutter
velocity is determined at 67 m/s (Xiang et al. 1996). Thus the analytical results have good
agreement with the experimental ones. The flutter motion initiates from the first symmetric torsion
and is obviously coupled. Figs. 7 and 8 show the variations of frequencies and damping ratios of
main complex modes with reduced velocity. It is noted that the proposed method is not subject to
the intersections of frequencies. And Fig. 9 shows the amplitude of the vertical, lateral and torsional
displacement along the bridge axis in the flutter motion. Since only the amplitude is presented here,
it should be noted that phase shifts exist among response components. 

Figs. 10, 11, and 12 show the relative amplitudes, phases, and energy ratios of the 50 participating
modes in the flutter motion, respectively. It is noted that modes 5, 6, and 15 are major participating
modes of flutter and the phase shifts among those modes are quite obvious. Although the lateral-
motion modes of bridge deck also participate in the flutter motion, the degree of participation is
small.

The proposed method can also analyze the flutter problem in different mode combinations. The
results in different mode combinations of the suspension bridge are listed in Table 4. It should be
noted that the participation of high-frequency modes has positive or negative effects on the critical

Fig. 12 Energy ratios of natural modes in flutter motion

Fig. 11 Phases of natural modes in flutter motion

Fig. 10 Relative amplitudes of natural modes in flutter motion
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flutter velocity. Even then the effects are small. Further research is needed for qualitative
conclusions.

6. Conclusions

This paper has proposed a state-space method for analyzing the aerodynamically coupled flutter
problems of long-span bridges based on the modal coordinates of structures, and a simple and
practical process of automatic searching is introduced to find the critical flutter velocity. The theory
about complex modes is applied in this paper. The model of self-excited forces that contains 18
flutter derivatives is employed and is expressed as a complex form. The general governing equation
of the system is converted into a complex standard eigenvalue equation in a state space format,
which contains only two variables. This format is used for flutter analysis by solving the complex
standard eigenvalue problem. 

The proposed method can be applied to analyze the aerodynamically coupled flutter of long-span
bridges in completed or construction stages. Based on the method, the effects of each flutter derivative
on the flutter of various bridges can be studied. The advantages of the proposed method are: 

1. It is a single-parameter searching method about the reduced velocity, simple and practical,
which proceeds automatically to a fair degree. 

2. It is not necessary to choose the participating modes beforehand and there is no requirement
for the form of the structural damping matrix. 

3. Information about variations of the main complex modes of the system with reduced velocity
and wind velocity can be provided. 

4. The process can automatically locate the lowest critical flutter velocity and give relative
amplitudes, phases and energy ratios of the participating modes in the flutter motion.

 
The proposed method has been coded into an analyzing software, which is able to analyze the

spatial flutter problems of long-span bridges. The multimode flutter problem of Jiangyin suspension
bridge is analyzed with the software as an example. It has been seen that the results of flutter
analysis have good agreement with the results of the previous method in the same flutter case and
with the experimental ones of full-bridge model in the wind tunnel. 

For the suspension bridge, flutter occurs in the first symmetric torsion mode and is obviously
coupled. Although the lateral-motion modes of bridge deck also participate in the flutter motion, the
degree of participation is small. From the flutter analysis of this bridge, it has been noted that the
participation of multimodes may have positive or negative effects on the critical flutter velocity.
These effects will be addressed in a future publication.

Table 4 Flutter results of different combinations of natural modes

Mode combinations Critical wind velocity (m/s) Flutter frequency (Hz)

5,15 85.89 0.2200
5,6,15 66.95 0.2422
1-6,15 66.88 0.2423
1-50 67.55 0.2413
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