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Abstract.  This paper presents several applications of an improved estimator of the constitutive relation
error (CRE) for plasticity problems. The cumulative aspect of the CRE estimator with respect to time is
analyzed and we propose a first analysis of the local effectivity indexes of the CRE estimator in plasticity.
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1. Introduction

The monitoring of F.E. calculations in history-dependent nonlinear analysis is an important
research topic. Three main approaches to the development of estimators can be found in the
literature: the estimators introduced by Babu ka and Rheinboldt §Babu ka and Rheinboldt 1978),
which use the equilibrium residuals to calculate the errors @abu ka and Rheinboldt 1982, Johnson
and Hansbo 1992, Tie and Aubry 1992, Huettal 1998, E. Stein and Schmidt 1998, Rannacher
and Stuttmeier 1999, Cirak and Ramm 2000); the estimators introduced by Zienkiewicz
(Zienkiewicz and Zhu 1987), which consist of comparing the finite element solution with a
smoothed solution (Zienkiewicz and Zhu 1987, Coupeal. 1998, Boroomand and Zienkiewicz
1998); the estimators introduced by Ladeveze (Ladeedzal 1986), which are based on the
concept of error in the constitutive relation (Gallimatdal. 1996, Gallimardet al 1997, Ladevéze
and Moés 1998, Ladeves al 1999, Gallimarcet al. 2000). In such calculations, the quality of
the finite element solutioatt depends not only on the quality of the mesh, but also on the quality
of the time discretization used since the beginning of the loading. Therefore, the error cannot be
fully controlled simply by improving the mesh quality after a given time step. Error estimators
which take into account all discretization errors over the whole time interva] e indispensable
in order to estimate the quality of the calculations. Estimators possessing such properties have been
developed for small-strain problems in quasi-static plasticity and viscoplasticity franp@steriori
error estimator based on the error in the constitutive relation (Ladeteake 1986). The CRE
estimators thus obtained are the Drucker-type error estimator (Gallietaed 1996) and the
dissipation error estimator (Ladevéze and Moés 1998). The state-of-the-art for time-dependent
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nonlinear F.E. analysis can be found in Ladevéze (2000).

Here, we will focus on the Drucker-type error estimator. The principle of the error in the
constitutive relation (Ladevéze and Leguillon 1983, Ladee¢zd. 1986) is based on the separation
of the equations of the problem into two groups. In what we call Drucker’s error estimator (DCRE),
the first group of equations combines the kinematic constraints with the equilibrium equation and
the second group contains the constitutive relation. A displacement-streq3J paios,) which
satisfies the first group of equations is constructed and its quality is estimated by measuring how
well it verifies the second group of equations (i.e., the constitutive relation). The finite element
displacementU,  verifies the kinematic constraints and the displacelthgnt can be obtained
easily byU,,(M,t) = U, (M, t) . The real difficulty lies in the construction of a strgsg M, t)
which verifies the equilibrium.

The quality of this estimator depends on the quality of the stress fields recovered. In Gaflimard
al. (2000), an improved recovery technique derived from (Ladevéze and Rougeot 1997), which takes
into account both the constitutive relation and the error measure, was developed. This technique led
us to the definition of an improved DCRE estimator in plasticity. The numerical tests developed in
Gallimardet al. (2000) show that this improved error estimator yields a significant improvement in
the global effectivity index thanks to the good quality of the recovered equilibrated stress field. The
advantage of this global error estimator is that it helps control the plastic computation with little
additional cost.

However, recent works have made the calculation of the local quality of the quantities considered
possible. These works were developed in elasticity (Rannacher and Stuttmeier 1997, Cirak and
Ramm 1998, Peraire and Patera 1998, Ladewtzel 1999, Prudhomme and Oden 1999,
Stroubouliset al 2000), but also for nonlinear problems in plasticity (Rannacher and Stuttmeier
1999, Cirak and Ramm 2000). They are based on the calculation of a finite element approximation
of Green’s functions defined by a dual problem. In addition, in plasticity, it necessary to linearize
this dual problem at each time step. These approaches, although admittedly very interesting, have a
relatively high cost and are especially difficult to introduce into an industrial code. A relatively
inexpensive alternative was proposed for elasticity in Ladeseak (1999). This method, based on
the error estimator in the constitutive relation and on an improved technique for constructing
equilibrated stress fields, makes it possible to measure the local quality of the stresses obtained by
F.E. analysis directly.

In this paper, we study the behavior of the improved DCRE on several examples to see whether
this direct method can be extended to plasticity. For this purpose, we analyze both the global
effectivity of the error and the effectivity of the local contributions to the error. The advantage of the
improved DCRE is that it is a global error which incorporates all discretization errors (due to the
mesh, due to the discretization in time, due to the iterative algorithm used to solve the nonlinear
problem...).

We show that the error at tintecan be split into one part which depends only on the solutibn at
and another which takes into account the loading history. Only the first part can be controlled by
modifying the mesh at timé In this paper, we also study the behavior of the error estimator
through time and, particularly, the cumulativeness of the local time errors in the case of complex
loadings. For example, for a cyclic loading in plasticity, one can observe that the global effectivity
of the error is independent of the number of cycles. The good behavior of the improved DCRE can
be explained by its strong mechanical foundation.
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2. Preliminaries
2.1 The reference problem to be solved

Let us consider that, under the assumption of small perturbations and small displacements, the
structure lies in a domai®, bounded byQ , which is independent.oDver the time interval [O[],
the structure is subjected to:

« a prescribed displacemeb,(M, t) a portié of the boundary,

e a traction F,(M, t) the complementary portiohQ

« a distribution of body forced (M,t) on the dom&in

In a time-dependent nonlinear calculation, the stress value at tgre function of the history of
the strain until timd, which can be defined at each pdiftof the structur& by the relation:

o(M,1) = A(g(U(M, 1));T<1) 1)

whereA is an operator characterizing the material amithe strain field.
Let /%™ designate the space of the displacements which verify the kinematic constraints:
U™ = fum, t) ou*"
such thatU|, ,(M, t) = U,(M, )0t 0[O0, T]} (2)
where/®™ is the space of the displacement fieldgM, t) definedon[0, T] and letS "
designate the space of the stresses which are solutions to the equilibrium equations:
ST = {g(M,t) 08T such thatOU" 04,0t O [0, T]
[, Trlog(U)]dQ =, flU'dQ + [,  FiU’ds} 3)
wheres T is the space of the stress fiellgM, t)  af= {U (M, t) 027 such thay |, =
Then, the nonlinear problem can be formulated in the following manner:

[0,T]

Find (U(M, t), a(M, t)) DU ™ x S5 ™ which satisfies Eq. (1) (%)
We will denote(U_(M, t), 0.(M, 1)) the solution of the nonlinear reference problem, Eq. (4).
2.2 Constitutive relation: the Prandltl-Reuss plastic model
The state of the material is characterized at each point by the totalestthéinelastic straig?

and the cumulative plastic strain which is a scalar variable designatedrbg associated variables

are the stress f@ande® and the hardening parameRefor p. They verify the relationg = &°+ &°
The free energy is of the form:

PY(E' P) = STrEKET +G(p) (5)
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whereG is a strictly convex function characterizing the hardening law.
The derivation ofyy leads to the state equations:

o= Ke and R=%|5@=g(p) ©)
We use a nonlinear hardening law:
G(p) = 7= p”*" and g(p) = Hp’ 7)
P)=774P g(p) =Hp

whereH is a scalar quantity and Ooc< 1.
The dissipation potential is the indicator function of the elasticity convex. Here, the elasticity
convex is the setg{ R) which satisfies:

2(o,R) = ||6”| -R-Ry<0 8)

whereg?® is the deviatoric part o andR, the initial yield stress.
Then, the evolution laws are given by:

p_ 302 . _ 30z
£ _/\da and p-/\a.,R 9)
with:
A=0 and [(z<0,A=0) or (z=0,2<0,Az=0)] (10)

2.3 The finite element solution

Within the framework of the F.E.M., an approximate solution to the problem of Eq. (4) is obtained
by using an incremental method along with a finite element discretifatom a time discretizatio.

Assuming that the histories of both the displacements and the stresses are knotn, tindil
problem is then to calculate these histories on the incremantt] (with A ={t;, ..., t;} and
tp=0 <t; < ... <ty <ty =T). A number of algorithms based on the displacement approach are
available to solve this problem (Owen and Hinton 1986).

At the end of each time incrementthese algorithms provide:

« a finite element displacement field which satisfies the kinematic constraints

Un(M, t) = N(M) q(t) (11)

where N(M) designates the matrix of the shape functions agftd the vector of the nodal
displacements df; -

e a stress fields;,(M, t;) which satisfies the equilibrium equations of the finite element moglel at

« a stress fields, (M, t;)  which is linked 10,(M, t;) by the constitutive relation.

Assuming that the data are piecewise linear orT]Qjt is easy to complete the F.E. solution on
[0, T] in order to obtain both a displacemdsi(M, t) that satisfies the kinematic constraints and a
stress fieldo,,(M, t) that satisfies the equilibrium equations of the finite element modelTdn [0,
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3. Error in the constitutive relation
We consider models which satisfy Drucker’s inequality (1964) strictly. For such models, the error
in the constitutive relation was introduced in Ladeveze (1985) and associated error estimators
appeared in Ladevez al. (1986) and in Gallimareét al. (1996, 1997).
3.1 Drucker’s inequality
Let (¢, g) and (g, 0 ) be two arbitrary strain-stress pairs which satisfy the constitutive relation
described in (1) on [0T], with (¢, 0)=(&, 0)=(0, 0) att=0. The material is said to satisfy
Drucker’s inequality if it verifies (12). Moreover, if (13) is verified, the material is said to satisfy
Drucker’s stability
Ot O [0, T]I;Tr[(a— g)(&-£)]dt=0 (12)
Otad[o, T]I;Tr[(a— 0)(é€-¢€)]dt=0 - OtO[0, T](g, 0) = (&, 0) (13)
Let us introduce the cumulated plastic strpimssociated withg o) and R=g(p) and the
cumulated plastic strair_p associated weghd) and R = g(p) . It was shown in Ladeveze and

Pelle (2001) that:

[iTrl(o- 0)(&- &)]dt = 3r((01,- 0] )K (0], a])]

+ (RI=R)(Pl= | g+ fo 12 + i+ it (14)
with
i2>0 %20 5,20

i; = %(D(R—B—(p—_p)g'(g))+_|'0(B—R—(9—p)g’(p))) (15)
iv, = (P— p)(z(0,R) - 2(g, R)) (16)

. . . O Trd°c®] O
i = (pllo®l| + p||e°) D - =00 (17)

Al b1t

whereg® and gD are the deviatoric parts@fnd g respectively.
Remark For the sake of completeness, the splitting’éd‘fr[(a—g)(é— £)]dt is detailed in the
appendix.
3.2 Error measure based on Drucker’s inequality
[0

Let s.a= (Uga Osp) be an admissible pair belongingaé%ﬂ X Shd and let us define the scalar
quantity:
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N(M,t,8,q) = RTr[(GSA(M’ t) = Gka(M, 1)) (Esa(M, t) — Eka(M, )] dt (18)

where oy, is the stress field associated with the displacerbignt through the constitutive relation
Eqg. (1) onQ x [0, T] and &s, is the strain field associated with
For a material which satisfies Drucker’s inequality strictly:
e N(M,t,s,4) is positive or zero o x [0, T],
e N(M,t,s,9) =0 0nQ x [0, T] if and only if (U, Os,) is the exact solution to the reference
problem (2.1).

In order to evaluate the quality efy= (U, Os,) as an approximate solution to the model

problem, the previous relations lead us to the definition of the follotinng-globalerror measure
atT:

er = Sup ¢[0,1] (19)
to[o, T
where the contribution to the error over {is:
2

e0,t] = [,N(M,1,5,5)dQ (20)
This error measure takes into account all error sources.
3.3 Recovery of the improved admissible solution on Q x [0,T]
We will assume that the data is piecewise linear ovef J[§an assumption which, in practice, is

not restrictive). Therefore, the displaceméhj, can be easily recovered from the finite element
solutionU, (M, t;) by linear interpolation:

t—t; t—t
Uaa(M, 1) = =—=Uy (M, t) + ——U, (M, t; 1) (21)
t—t_y t—t_,
We focus on the construction ofres (M,t) , wher@ea (M, t) is obtained by linear

interpolation. Following (Ladevéze and Rougeot 1997), we introduce a weak prolongation condition
in order to relate the statically admissible stress to the finite element stress.

DECOED O OI IETr[(a'S“QP(M, t) - 0n(M, t;))&(w)]dQ = 0 (22)

wherel is associated with the non-vertex nodes.
Let us designate b§,,' the space of the stresses which satisfy the equilibrium equations at

S.d = {008 such thatOU" O,
J’QTr[as(L_J*)]dQ =

fo fa(M, 6)TU7dQ + [, s Fy(M, 1)U’ dS} (23)
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whereS is the space of the stress fields and let us défﬁaje, as the set of stresses:
Saan = {{a(M, 1), ...,0(M, t,)} OS" such that
0i0{1,....,n} o(M,t)0S.y ando(M,t,) satisfies Eq. (22)} (24)
oon (M, t) (JiO{41, ...,n}) is obtained by solving the following minimization problem:

Find{osa (M, t,), ...,0en (M, t,)} OSag » Which minimizes

the error in the constitutive relatien defined in Eq. (19) (25)
Remark The practical construction afey  is detailed in Gallimatdl. (2000).

3.4 The improved DCRE error estimator

Let suy = (UgnTea) be the improved admissible pair. The definition of the improved error
estimator (improved DCRE) is given by:
IMP

e’ = sup "7[0,1] (26)

to[o, T]

where the contribution to the error on {Pis given by:

e""[0,T] = [ n(M, t, 54")dQ (27)

The stress fieldoex  is obtained by minimizing the DCRE in a subspace of the space of
admissible stress fields. Within that subspaggy’ is the best stress field possible. This is the
reason why this error estimator is very effective.

Let us define a contribution to the error on elenteoter [0,t] as:
ez[0,t] = [.n(M,t siq )dE (28)
the relative error is given by:

g = supe™f[0,t]/D
ta[o, 1]

IMP .IMP

D = 2[ [, [Tr[Gadical + TrOS" 54 ]1dQ dit (29)

4. Analysis of the error measure

An exact error measure based on Drucker's inequality can be defined between the exact solution
and the prolongation over [@)] of the finite element solutiot), (M, t;):U, (M, 1)

00, = [,N(M, 1, (Uyy, Gc))dQ (30)
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4.1 Effectivity index

The performance of the global error estimator can be evaluated by calculating a global effectivity
index defined on [0f]:

oMP 0.t

€l 0, 1]
The error estimator is accurate(ift) is close to 1. It is on the conservative sidé(tf) is greater

than 1.
In order to measure the local performance of the error estimator, one compares the local

contributions to the error with the exact local error on an elem@ftthe mesh calculated between
0 andt (Eq. 28). A local effectivity index can be defined by:

e[ 0, t]
eex, E[ Oa t]

Note: In practice, the exact solution is not known analytically. To represent this exact solution, we
use a very refined finite element mesh and a very refined time approximation.

(1) = (31)

¢el0 1] = (32)

4.2 Definition of the error indicators
By integrating the constitutive relation, we can derive fiop), the cumulated plasticpgitain

the vyield stressRxa=0g(pka) and the stresoi,. Relation (14) allows us to partition the error
measure defined by Eq. (30):

1 _
DM, t, Uy 0d = S(TrI(Gey = O ) K (Tl — O] )]
+ (Rex|t_ RKA|t)(pex|t _pKA|t))
o (12(M, t, Uy, ) +i5o(M, t, Uy, G

+i2AM, t, Uy, 0o0)dt (33)
with

i220 %520 i
. 1 . '
Z(M, 1, Uyps 00) = 5(Pex(Rex—Rea = (Pex—Pia)d' (Pra))

* Pra(Rea = Rex= (Pa = Pexd 9 (Pexd)) (34)

iiz(M’ t, Uar Oex) = (Pex—Pxa) (Z(Tex Rex) —2(Oka Ria)) (35)

Tr[ O Okal U

o] oz %)

: : g
i:p(M, t, Ugn Oex) = (pEXHUIEAH + pKAHUeDJ‘)Eﬂ.—
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where o> is the deviatoric part af, ag(p) = g—g
Thus, the DCRE estimator includes “instant” parts, which depend only on the variablesmdt
cumulative parts with respect to time, which depend on the history of the loading. Here, we are
proposing an interpretation of these cumulative parts:
lex 40, t], lex ep[O, t] and le, A0, t] defined in Egs. (37), (38) and (39) are positive, monotonically
increasing quantities.

ley 10, 1] = IQJ‘OiZ(M,t,gKA, g.,)dt dQ (37)
|, o101 = [ foiodM, t, Uy, 0e0dt dQ (38)
lex pd0,] = [ [oip M, t, Uy, G0 dt dQ (39)

lex 40, t] is equal to zero ifd(M, t) O[O, t], pex=Pxa - This quantity can be used as an error
indicator for the history of the cumulated plastic strain.

lex ¢P[0, t] is equal to zero (M, t) O[O, t], s.x= as., . This quantity can be used as an error
indicator in the direction of the deviatoric part of the stress or in the direction of the plastic strain
rate.

lex p40, t] is equal to zero if(M, t) O[0,t] the exact solution and the KA solution have the
same plastic zone. This quantity can be used as an error indicator for the history of the plastic zone.

Since the exact solution is unknown, in order to estirhatf0, t], lexp[0, t] andle 10, t], we
use the improved SA solution and calculate the following quantities:

LIO, T = [, foiz(M, t Uy, 053)dt dO (40)
[0, 1] = [, [oio(M,t, Uyy, o) dt dQ (41)
o0, t] = [, foipAM, t, Uy, 03 )dt dQ (42)

The cumulative part of the errtyyis defined by the sum of these indicators:
1[0, 1] =qer(12[0, 1] +12[0, ] + 15,00, 1)) (43)
In the same way, we also define a local error indicator on each el&ndiiese local error
indicators will be designated Byg[O, t], I.p g[0, t] andl,, g[O, t]. Finally, it is possible to calculate

local and global effectivity indexes for these indicators as in Section 3.2.
The “instant” part of the errdg is defined by:

— 1 Ty, -1
140 = 4er Ho 5T = Tald) K (G = Gica)

/2
+(Rex|1_RKA‘t)(pex|1_pKA|t))ngl (44)

The following relation is derived from (33):
e[0,1] = (1Z() + 1[0, )" (45)



390 L. Gallimard, P. Ladeveéze and J.P. Pelle

5. Analysis of the effectiveness of the improved DCRE estimator

In Gallimardet al (2000), we showed that the improved DCRE estimator leads to better global
effectivity indexes than the standard version of the DCRE (Gallingarchl. 1996). This is
particularly true for anisotropic meshes or nearly perfect plasticity. Besides, on all the examples
considered, these global effectivity indexes were greater than 1.

Here, we consider the local effectivity indexes calculated directly with the improved DCRE
estimator. The example studied is described on Fig. 1. The loading is monotonous from 0 to 15,000
N/mm. The material parameters are: Young's mod#Hus200,000 Mpa, Poisson ratie= 0.3,
initial yield stressRy=240 Mpa, hardening moduliis= 1000 Mpa, hardening exponemt= 0.5.

Two different meshes (one coarse, one refined) of 6-node triangular elements were used to study
the behavior of the improved DCRE estimator. The plastic deformation at the end of the loading is
shown on Fig. 2 the coarse mesh and on Fig. 3 for the refined mesh.

The evolutions of the global errors and of the global effectivity indexes with respect to kinematic
time are represented on Fig. 4 and Fig. 5. One can observe that the behavior of the improved DCRE
estimator and that of the exact error are similar and that the effectivity index varies between 1.8 and 3.
The plasticity effect, however, is more pronounced for the coarse calculation.

In order to study the local effectivity indexes, we eliminated the elements in which the error
density was less than 2% of the average error density in the whole structure. The local effectivity
indexes were calculated for the coarse finite element analysis at the first (elastic) time step (Fig. 6)
and at the end of the loading (Fig. 7). The minimum local effectivity index was 1.02 for the first
time step and 1.42 for the last time step. We plotted the effectivity indexes for the refined finite
element analysis at the same instants (Fig. 8 and Fig. 9). In this case, the minimum effectivity
indexes were 1.20 (elasticity) and 1.38 (plasticity). Let us observe that both calculations led to local
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effectivity indexes larger than one and that, although the effectivity indexes were more scattered
when the structure was plastified, their values remained mostly under 4.

6. Analysis of the effectivity indexes of the error indicators

In this section, we compare the error indicators introduced above with the reference quantities
lex 40, T], lexep[0, T] andle, 0, T]. We use the example described on Fig. 1 again. The results are
shown on Table 1 for the coarse calculation and on Table 2 for the refined calculation. We can
observe that the error indicators we introduced are greater than the reference quantities.

In the following example, we show that one can use these indicators to obtain information about
local quantities. We are considering the calculatioh,of in the refined analysis. The local values
are represented on Fig. 10 (calculated values) and on Fig. 11 (exact values). The qualitative

Table 1 Global effectivity indexes: coarse calculation

l, I.p |z
Calculated quantities 0.639 0.699 0.508
Reference quantities 0.165 0.270 0.202

Effectivity indexes 3.0 2.6 2.7
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Table 2 Global effectivity indexes: refined calculation

l, I.p lpz

Calculated quantities 0.240 0.246 0.180

Reference quantities 0.081 0.144 0.065

Effectivity indexes 3.0 1.7 2.8
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Fig. 10 Calculatedl,, on the refined mesh

comparison of Fig. 10 and Fig. 11 shows thd0D, T] describese, {0, T] correctly. In order to
achieve a numerical comparison, we calculated the local effectivity indexgscdor the elements

with a significant error indicator. The results are shown on Fig. 12. We can observe that the
effectivity indexes vary between 1.4 and 6.

7. Cumulative aspects of the improved DCRE estimator

For a first study of the behavior of the error in the constitutive relation in the case of structures
subjected to cyclic loading, we considered the very simple case of the Prandtl-Reuss plasticity
theory. For such a model, the limit cycle of plasticity is reached after only a few cycles and it leads
to the stabilization of the cumulated plastic strpirand of the elasticity convex. The example
studied is described on Fig. 13. The material parameters are: Young's mBduRG0000 Mpa,
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Fig. 13 Loading
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Fig. 14 Mesh with 6-node triangular elements
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Poisson’s ratiov=0.3, initial yield stressRy=240 Mpa, hardening modulusl = 1000 Mpa,
hardening exponerst = 0.5. The mesh is shown on Fig. 14.

The cyclic loading is represented on Fig. 15. The limit cycle was reached after 10 cycles with an
accuracy of 10.e-5 on the value of the yield stress (Fig. 16).

The evolution of the error estimator is represented on Fig. 17. The error kept increasing as the
yield stress increased. When the limit cycle was reached after the 10th cycle, the error remained
constant. In order to study the cumulative part of the error as shown in Section (4.2), we split the
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global error into two parts: an “instant” pagft) and a cumulative patt[0, t]. The evolutions of

these error indicators are represented on Fig. 17. We can observe that the evolution of the global
error contributionel0, t] was due to the indicator on the cumulative part and It{@tremained
constant after the first cycle. To show the stability of the global error estimator, the effectivity index
was calculated using a very fine finite element analysis. The error estimator did not increase with
the iterations.

8. Conclusions

In this paper, we showed not only that the improved DCRE leads to a good estimate of the global
error, but also that the local effectivity indexes calculated from the contributions to the error of an
elementE are good-quality indicators. Since the error measure proposed is a global error measure
which includes all the sources of error, we proposed to split this error measure into two parts, one
of which depends only on the solutiontathile the other integrates the history of the loading. We
introduced error indicators associated with these parts. We showed on examples that the global
effectivity and the local effectivity of these indicators are good. Finally, we showed on a simple
cyclic loading example that the global quality of the improved DCRE remains constant during
cycles. In the case of cyclic loading, some quantities depend on the history and others do not. We
are currently working on the definition of specific error estimators for quantities which do not
depend on the history.
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Appendix

For the Prandtl-Reuss plasticity model

J’Tr[(a g)(€E- €)]dt —j Tr[(o- 0)(e —_ée)] dt (46)
o o s Y
(A)
+, Trl(0-0)(&"= €M) dt = (47)
o o e Y
(B)
we have
[o(A)dt = Tr[(o—a)K(a-0)], (48)
and the evolution law is classically written:
g = = P E (49)
[zl
and if €’#0 then
2(0,R) = [lo”] -R-R, (50)
Thus,
(B) = Tr[(a a)[p e gD E} (51)
Pl e’
Introducing Eq. (50):
(B) = p(z(0,R) + R+ R)) + P((z(0, R) + R+ R)
D : D T D_D
<0+ Bl r s 52)

(Callicyl

After reorganizing the terms:
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(B) = (- P)(z(a.R) —2(g, R)) + (b— P)(R-R)

_ . O Trlg°a”10
+(pl|@”l| + £||aDII>EIL—W‘-D—Hg (53)
If we note that
R = Dgp = pg'(p) (54)

we obtain:
(B) = (8- P)(2(0,R) - (g, R))
+3(R=R(p- p)
+2(BR-R-g'(P)(p~ P) + B(R~R-g'(p)(P~P)))

. O Trlg°c’]10
+(p||a®|| + Blla®p - =0 (55)

This expression leads directly to (14).





