
Structural Engineering and Mechanics, Vol. 14, No. 1 (2002) 57-70 57

Iterative mesh partitioning strategy for improving the
efficiency of parallel substructure finite

element computations

Shang-Hsien Hsieh†

Computer-Aided Engineering, Department of Civil Engineering, National Taiwan University, Taipei, Taiwan

Yuan-Sen Yang‡

National Center for Research on Earthquake Engineering, Taipei, Taiwan

Po-Liang Tsai‡†

Military Police Headquarter, Taipei, Taiwan

(Received March 28, 2001, Accepted April 24, 2002)

Abstract: This work presents an iterative mesh partitioning approach to improve the efficiency of
parallel substructure finite element computations. The proposed approach employs an iterative strategy
with a set of empirical rules derived from the results of numerical experiments on a number of different
finite element meshes. The proposed approach also utilizes state-of-the-art partitioning techniques in its
iterative partitioning kernel, a cost function to estimate the computational cost of each submesh, and a
mechanism that adjusts element weights to redistribute elements among submeshes during iterative
partitioning to partition a mesh into submeshes (or substructures) with balanced computational workloads.
In addition, actual parallel finite element structural analyses on several test examples are presented to
demonstrate the effectiveness of the approach proposed herein. The results show that the proposed
approach can effectively improve the efficiency of parallel substructure finite element computations.

Key words: mesh partitioning; graph partitioning; parallel finite element computations; parallel sub-
structure method.

1. Introduction

The parallel substructure method (Nour-Omid et al. 1987) is extensively used in parallel finite
element computations. This method first partitions the structure into several substructures and
assigns each substructure to a separate processor, as shown in Fig. 1, from (a) to (b). Each processor
then forms its substructure equilibrium equations:

† Associate Professor
‡ Associate Research Fellow
‡† Captain

DOI: http://dx.doi.org/10.12989/sem.2002.14.1.057

58 Shang-Hsien Hsieh, Yuan-Sen Yang and Po-Liang Tsai

(1)

in which the subscript index k denotes the kth substructure, while the subscript indices I and E
denote the internal and interface degrees of freedom, respectively. Then, static condensations of
substructure interior degrees-of-freedom are performed independently and concurrently within each
substructure without inter-process communication:

 (2)

(3)

The condensed system of each substructure is then gathered and assembled, and then usually
solved by a parallel solver:

(4)

(5)

(6)

in which the subscript g denotes the global system. Finally, the internal degrees of freedom of each
substructure are then solved concurrently within each processor:

(7)

(8)

Fig. 1 shows the procedures of the parallel substructure method. Notably either the modified
condensation method (Han and Abel 1984) or the multifrontal method (Geng et al. 1997) is usually

K[]k u{ }k

KII KIE

KEI KEE k

uI

uE 
 
 

k

fI

fE 
 
 

k

= =

K[]k KEE[]k KEI[]k KII[]k
1– KIE[]k–=

f E{ }k fE{ }k KEI[]k KII[]k
1– fI{ }k–=

KEE[]g P[]k KEE[]k P[]k
T()

k 1=

NP

∑=

f e{ }g P[]k f E{ }k()
k 1=

Np

∑=

uE{ }g KEE[]g
1–

f E{ }g=

uE{ }k P[]k
T uE{ }g=

uI{ }k KII[]k
1– fI{ }k KIE[]k uE{ }k–()=

Fig. 1 Sketch of procedures of parallel substructure method

Iterative mesh partitioning strategy for improving the efficiency of parallel substructure...59

used to perform the static condensation procedures rather than directly computing the matrix inverse
and multiplications. Parallel finite element computations using the substructure method reduce the
cost of inter-process communication and are, therefore, usually more efficient than the parallel
solver in solving the entire set of uncondensed equations.

The finite element mesh of the structure is partitioned so that, among processors (or
substructures), computational workloads are well balanced and inter-process communication is
minimized, to make the parallel substructure method highly efficient. Although many mesh
partitioning algorithms have been proposed (Hsieh et al. 1997), most of them use only simple and
general assumptions in their load balancing optimization process without taking into account the
characteristics of parallel solution algorithms. Therefore, the mesh partitions produced by these
algorithms usually do not result in optimal parallel efficiency for a specific solution algorithm
(Vanderstraeten et al. 1996, Yang and Hsieh 1997).

This work presents an iterative mesh partitioning approach to obtain better mesh partitions for
parallel substructure finite element computations. The approach employs an iterative strategy with a
set of empirical rules derived from results of numerical experiments on a number of different finite
element meshes. The approach utilizes an existing partitioning algorithm as the kernel mesh
partitioning algorithm and employs a set of empirical rules in an iterative process to improve the
mesh partitioning results. Actual parallel finite element structural analyses using several test
examples are also presented to demonstrate the effectiveness of the approach.

2. Optimization criteria in mesh partitioning

Most mesh partitioning algorithms (e.g., Farhat 1988, Simon 1991) use the following two criteria
for optimization in their heuristic approaches. (1) Balancing the size of the substructures (for
example, balancing the number of elements or nodes) and (2) Minimizing the overall size of the
interface among substructures (for example, the number of interface nodes). As well known, the
more the workload is balanced among processors, the less waiting time is for those processors with
lighter workloads. Accordingly, the first criterion is mainly to balance computational loads (in this
case, static condensation) among substructures, assuming the workload is proportional to the number
of elements or nodes. The second criterion is to reduce both the overall size of the message
exchanged in the inter-process communications and the size of the linear system associated with the
interface degrees-of-freedom. Minimizing the size of the linear system can help to improve the
overall parallel efficiency because it is usually difficult for a parallel equation solver to achieve high
efficiency.

In the parallel substructure method, however, a balanced number of elements or nodes among
substructures does not imply balancing of workloads among processors. Mesh partitioning based on
the above criteria often does not produce partitions that give a good balance of computational loads
among processors. Accordingly, the overall efficiency of parallel analysis is not optimized. A better
optimization criterion is needed to yield a better balance of workloads among substructures.
However, the workload related to the matrix condensation of each substructure depends on several
factors, such as nodal numbering, nodal adjacencies, and matrix sparsity, and can not easily be
predicted using a simple formula.

However, the authors found that a substructure with more interface nodes should have fewer
elements to achieve a good balance of workloads among substructures. Therefore, this work presents

60 Shang-Hsien Hsieh, Yuan-Sen Yang and Po-Liang Tsai

an iterative approach with a set of empirical rules to take into account the number of internal and
interface nodes within each substructure to balance substructure workloads. Section 4 discusses the
approach in detail.

3. Computing environments

The proposed mesh partitioning approach is implemented in an object-oriented mesh partitioning
environment, called MPE++ (Hsieh et al. 1998), in which several conventional algorithms have
already been implemented for mesh partitioning. MPE++ can translate a finite element mesh into a
communication graph (Hsieh et al. 1995), so that a graph partitioning algorithm or library can be
implemented (or embedded) in MPE++. Each vertex in a communication graph denotes a single
element, while each edge between two vertices denotes one or more nodes shared by the
corresponding elements. This work embeds, in MPE++ a graph partitioning package, called
JOSTLE (version 1.1.8) (Walshaw 1999). JOSTLE can not only produce graph partitioning results
with balancing overall vertex weights in each submesh and a feasible minimum of edges crossing
through different submeshes (so-called ‘edge cuts’), but it can also tune partitioning results as the
vertex/edge weights are changed. These functions are useful for partitioning an adaptive mesh and
dynamic load balancing.

An object-oriented parallel finite element program FE2000 is used to perform the parallel finite
element analyses. The general sparse matrix technique is used using a package, SPARSPAK
(George and Liu 1981). Much research has shown that the general sparse matrix approach usually
outperforms the widely used skyline (or envelope) matrix approach in terms of numerical operation
counts and storage requirements in solving a large-scale sparse linear system. In FE2000,
SPARSPAK is slightly enhanced so that it can perform substructure matrix condensation using a
modified decomposition method presented by Han and Abel (1984). The Multi-Stage Minimum
Degree method (MSMD) (Ashcraft et al. 1999) is used to perform the substructure matrix ordering.
This work performs all substructure computations in parallel. However, the present FE2000
performs sequential matrix factorization on a single processor to solve the condensed set of
equations associated with the interface degrees-of-freedom because it is faster than the parallel one
in the present implementation for all of the examples studied herein. A message-passing interface
MPI (Message Passing Interface Forum 1994) is used by FE2000 to handle all message-passing
tasks among processors.

A Pentium II-350 PC running LINUX RedHat operating system is used for mesh partitioning. A
PC cluster consisting of four Pentium II-350 based PCs (each with 128 megabytes of memory and
running the LINUX RedHat operating system) is used for parallel finite element analysis. The
network system used in the PC cluster has a speed of 100 Mbps.

4. Iterative mesh partitioning approach

Iterative strategy has been widely used in optimization of graph partitioning. Most widely used
methods, such as KL (Kernighan and Lin 1970) and SA (Kirkpatrick et al. 1983), involve iteratively
exchanging some selected pairs of vertices among subgraphs to decrease the value of the specified
cost function. These methods can also be applied to improve mesh partitioning results. For example,

Iterative mesh partitioning strategy for improving the efficiency of parallel substructure...61

Vanderstraeten and Keunings (1995) employed some optimization methods for mesh partitioning to
reduce the total number of interface nodes among substructures.

An iterative approach with a set of empirical rules is presented to take into account the number of
internal and interface nodes within each substructure, to balance the substructure workloads. After
partitioning the finite element mesh using an existing mesh partitioning algorithm, this approach
adjusts the weights of the elements in each substructure to promote redistribution of elements from
substructures with more internal and interface nodes to substructures with fewer counterparts in the
subsequent partitioning steps of the iterative process. The element weights of each substructure are
adjusted mainly based on a cost function of the substructure workload calculated from the number
of internal and interface nodes of each substructure. This rule for weight adjustment and other rules
for terminating the iterative process are obtained empirically from results of several numerical
experiments conducted by the authors. Further discussion of estimating the cost of substructures in
the iterative partitioning process and empirical rules are given below.

Fig. 2 shows the proposed iterative mesh partitioning process. A powerful and effective mesh
partitioning algorithm is needed as the kernel algorithm for mesh partitioning in the Partitioning
Phase. This kernel algorithm may be one of the algorithms present in the literature and is assumed
to use the two common optimization criteria presented in Section 2. In any case, the algorithm
should satisfy the following requirements.

(1) The algorithm should permit assignment of different weightings to different elements and
nodes of the mesh and be capable of accounting for these weightings in mesh partitioning.

(2) The algorithm should be able to start from an assigned initial partitioning result before the

Fig. 2 Process of the proposed iterative mesh partitioning approach

62 Shang-Hsien Hsieh, Yuan-Sen Yang and Po-Liang Tsai

mesh is further repartitioned.
(3) The algorithm should efficiently produce good partitions such that the time taken for the

entire iterative mesh partitioning process is bounded within a reasonable fraction of the actual
parallel finite element computations.

Many state-of-the-art partitioning algorithms and packages have been proposed, e.g., Chaco
(1994), RST (Hsieh et al. 1995), JOSTLE (Walshaw 1999), and ParMETIS (Karypis et al. 2002).
This work selects the JOSTLE-MS (multilevel static) and JOSTLE-MD (multilevel dynamic)
methods respectively, in the JOSTLE graph partitioning package for the initial mesh partitioning and
repartitioning. JOSTLE is selected not only because it is competitive on its quality of partitioning,
but also because it allows for tuning a partitioned result through the adjustment on vertex and edge
weights. However, it should be noted that other partitioning algorithms with similar functionality
(e.g., ParMETIS) are also good candidates for the proposed iterative approach. In this work, the
effectiveness of the proposed iterative strategy is evaluated by comparing the final repartitioning
result with the initial partitioning result. In addition, Hsieh et al. (1995) have discussed mapping
from a mesh partitioning problem to a graph partitioning problem. This work employs the
communication graph approach and initializes the weights of all vertices and edges in the graph to a
unique value of 100.

An indicator Ei is used in the Evaluating Phase to indicate a time cost of the parallel finite
element analysis. The indicator Ei is defined as follows:

Ei = max(, for each substructure k) + (9)

in which

(10)

(11)

(12)

(13)

The notation max(.) denotes the maximum value in parenthesis, while AVG (.) denotes the average
value of all substructures in parenthesis. Superscripts i denote the i th iteration in mesh partitioning,
while j denotes the j th substructure. The superscript 0 means the initial partitioning (the first
iteration). Factors and respectively correspond to the computation loads of the static
condensation of each substructure and the interface solution time among substructures. and

 denote the internal nodes and interface nodes of substructure k in mesh partitioning iteration i.
 and denote the total number of nodes and total interface nodes of iteration i, respectively.

NP denotes the total number of substructures. I1 and I2 indicate the number of internal and interface
nodes of each substructure, respectively. These values are normalized by the average in each

E1 k,
i E2

i

E1 k,
i c1 I1 k,

i()
2

× c2 I2 k,
i()2×+=

I1 k,
i NIN k,

i

AVG NIN j,
i()

------------------------------=

I2 k,
i NEN k,

i

AVG NEN j,
i()

-------------------------------=

E2
i NEN

i

NEN
0

 
 
 

3

=

E1
i E2

i

NIN k,
i

NEN k,
i

NN NEN
i

Iterative mesh partitioning strategy for improving the efficiency of parallel substructure...63

substructure. Eq. (10) shows that the matrix condensation time of each substructure is presumed to
depend on the number of internal and interface nodes in the substructure. Constants c1 and c2 in
Eq. (10) are the weight coefficients of terms I1 and I2, respectively. The value I1 is raised to the
power of 2 because the operation count of matrix condensation is generally proportional to the
number of degrees of freedom to the power of 1 to 3 (usually depending on the sparseness of the
global system matrix). For example, the factorization of a matrix associated with a 2-D by
regular grid (similar to a five-point-finite-difference grid or a 2-D regular frame structure mesh) has
been shown to require at least O(n1.5) operations (George and Liu 1981). The number of interface
nodes is also assumed to affect greatly the computation loads of static condensation because it
constrains the matrix renumbering of the substructure (That is, the interface degrees of freedom
should be renumbered after the internal ones). The value I2 is raised to the power of 2, as shown in
Eq. (10). More constraints on matrix renumbering generally lead to worse renumbering results.
However, the effects of the constraints on the computation loads of matrix condensation can not
easily be evaluated precisely, especially when the substructures are modeled as irregular meshes.
Eq. (13) shows that the solution time for interface degrees of freedom is proportional to the cube of
the number of interface nodes. The result is based on the fact that the condensed matrix is nearly
always a dense matrix, and requires about O operations to factorize.

In the Tuning Phase, the weight of each element in the kth substructure is multiplied by a factor of
 as shown below, to promote redistribution of elements from substructures with larger to

substructures with smaller .

(14)

(15)

Eqs. (14) and (15) show that the tuning factor is normalized by the geometric mean of of
all substructures to prevent the weights of elements becoming very large or very small after several
iterations. The coefficient ω is used to relax the tuning factor (ω < 1) to prevent violent changes in
mesh repartitioning in the following iterations.

5. Examples

Several finite element meshes with different shapes are used and actual parallel finite element
analyses are performed on partitions of these meshes, to investigate the effectiveness of the
proposed mesh partitioning approach. In the iterative mesh partitioning, both c1 and c2 (see Eq. (10))
are set to 0.5, while the coefficient ω (see Eq. (14)) is set to 0.8. This section presents some
consistent results obtained from these numerical studies. A 2-D finite element model consisting of
Q4 elements is partitioned into three substructures to show how the mesh partitioning varies during
the iterations. A 3-D finite element model is then partitioned into four substructures by the proposed
iterative mesh partitioning, to demonstrate the relationship between indicator E and the parallel
finite element time, using different mesh partitioning results produced through different iterations.

n n

NEN
i 3()

Fk
i E1

i

E1
i

Fk
i E1 k,

i

meanE1
i()

ω

=

meanE1
i() E1 k,

i

k 1=

NP

∏
 
 
 
 

1
NP

=

Fk
i E1

i

64 Shang-Hsien Hsieh, Yuan-Sen Yang and Po-Liang Tsai

Finally, several 3-D finite element models are used and actual parallel finite element analyses are
performed, to demonstrate the effects of the proposed iterative mesh partitioning.

Fig. 3 shows the variations of mesh partitioning results during the iterations using a 2-D finite
element model consisting of Q4 elements. The middle substructure has more interface nodes than
others and gradually becomes smaller (with less internal nodes) during iterations. Fig. 4 presents
some statistical information on the mesh partitioning results during the iterations. Imb (E1) in Fig. 4
denotes the ratio of the maximum to the minimum of indicator E1 among substructures (with the
value one representing good balance). Each substructure in the initial partitioning has almost the
same number of elements because each element weight is set to a unique value (namely, 100).
However, the indicators of substructure workload E1 are not balanced because the middle
substructure has more interface nodes than the others. The number of interface nodes in the middle
substructure is twice that of the upper or lower substructure. The proposed iterative approach
reduces the size of the middle substructure to balance E1 among substructures, by increasing the
element weights in the middle substructure and decreasing the weights in the upper and lower
substructures. As the middle substructure shrinks, it has fewer internal nodes than the other

Fig. 3 Variations of mesh partitioning results

Fig. 4 Information about the mesh partitioning results

Iterative mesh partitioning strategy for improving the efficiency of parallel substructure...65

substructures, resulting in a better balance of indicators E1 among substructures (that is Imb (E1)).
The total number of interface nodes decreases during iterations (that is, the indicator E2 decreases).
Overall, the indicator E is reduced during the iterative procedures.

In the following test, a 3-D finite element model (named H20, as shown in Fig. 5) is partitioned
into four substructures by the proposed iterative mesh partitioning, to show the relationship between
indicators and the condensation times in actual parallel finite element analysis, and that between
indicator E and the total parallel analysis time. The mesh partitioning results of the first ten
iterations are used. TC in Fig. 6 denotes the substructure condensation time in actual parallel finite
element analysis. In this case, both E1 and TC become balanced during mesh partitioning iterations.

Fig. 5 Finite element model of H20

Fig. 6 Comparison between the imbalanced factor of
indicator E1 and substructure condensation
time using model H20

Fig. 7 Comparison between indicator E and parallel
finite element analysis time T using model
H20

66 Shang-Hsien Hsieh, Yuan-Sen Yang and Po-Liang Tsai

Fig. 8 Finite element model of BLADE

Fig. 9 Finite element model of HIGH60-1

Iterative mesh partitioning strategy for improving the efficiency of parallel substructure...67

Fig. 10 Finite element model of HIGH60-2

Fig. 11 Finite element model of BLD30

68 Shang-Hsien Hsieh, Yuan-Sen Yang and Po-Liang Tsai

(See Fig. 6). Fig. 7 shows indicator E and total elapsed time T normalized by their values according
to the initial partitioning. The result shows that E and T are approximately equal. Both E and T
decline and converge to smaller values during iterative partitioning.

In the following tests, four finite element models (namely, BLADE, HIGH60-1, HIGH60-2,
BLD30, as shown in Figs. 8 to 11 are used to demonstrate the effectiveness of the proposed iterative
mesh partitioning approach. A maximum of three iterations are performed for each model. If E rises
during the iterative partitioning, the preceding partitioning result (with minimal E) is chosen in
parallel substructure finite element analysis. Each model is partitioned into four substructures,
separated using only original partitioning (without iteration) and the proposed iterative partitioning
(with five iterations). In the iterative mesh partitioning, the result corresponding to the lowest (best)
indicator E is selected to perform parallel finite element analysis.

Table 1 lists various indicators of the initial partitioning results and the partitioning results with
best (smallest) E values (iteration i) from among ten iterations. TMP denotes the execution time for
the iterative partitioning with ten iterations. Indicators E1 among substructures become balanced in
all of these models. max(E1) among substructures and the indicator E both become small. In
addition, the numbers of interface nodes among substructures is also reduced in all the test models
even though the proposed iterative approach is originally designed to balance indicator E1

(representing a balance of the overall number of internal and interface nodes).
Table 2 shows the elapsed time of the actual parallel finite element analyses using four processors.

The superscript i denotes the iteration with the best indicator E over ten iterations. The value
max(TC) denotes the maximal elapsed time for matrix condensation among substructures; TI denotes
the time required for solving the interface degrees of freedom, while TTotal denotes the total elapsed
time for parallel finite element analysis. The results show that the proposed iterative mesh

Table 1 Indicators of initial partitions and best-E partitions

TMP

Iteration
of best E

(i)

E1

Ei/E0

Imb() Imb()

BLADE 0.9 3 2.05 1.11 0.68 0.75 0.95
HIGH60-1 8.8 2 2.16 1.26 0.84 0.69 0.78
HIGH60-2 3.3 2 2.08 1.16 0.82 0.65 0.73
BLD30 7.8 2 2.61 1.38 0.80 0.80 0.93

NEN
i NEN

0⁄
E1

0 E1
i max E1

i()
max E1

0()

Table 2 Elapsed time of parallel finite element analyses using four processors (in seconds)

TTotal

BLADE 0.54 1.04 46.7 35.9 0.77
HIGH60-1 0.49 0.47 560.2 283.0 0.51
HIGH60-2 0.77 0.41 97.0 50.3 0.52
BLD-30 0.56 1.16 211.5 174.0 0.82

max TC
i()

max TC
0()

--------------------- TI
i

TI
0

TTotal

0 TTotal
i TTotal

i

TTotal
0

Iterative mesh partitioning strategy for improving the efficiency of parallel substructure...69

partitioning approach reduces the matrix condensation time. The time required to solve the interface
degrees of freedom is also reduced significantly in two of the four tests. Overall, the proposed
approach efficiently reduces the total elapsed time for parallel finite element analysis.

6. Conclusions

This work has presented an iterative mesh partitioning approach to produce partitions that result in
more efficient parallel substructure finite element computations, as shown by tested examples. The
proposed iterative approach not only improves the balance of computational loads among
substructures, but also reduces the total number of interface nodes.

More finite element meshes of different shapes should be considered to further test the
effectiveness of the proposed approach. Further study should be conducted into the parameters and
rules derived empirically from results of numerical experiments. The use of a different kernel
partitioning algorithm (other than the JOSTLE algorithm used in this work) in the iterative process
can be considered. Moreover, the application of this iterative approach to parallel solution
algorithms other than the parallel substructure algorithm may be studied.

Acknowledgements

This work is an extension of a previous study presented in the Seventh East Asia-Pacific
Conference on Structural Engineering & Construction (Hsieh et al. 1999) and was sponsored by the
National Science Council, Executive Yuan, Republic of China under the Grant No. NSC 88-2211-E-
002-018. The authors would like to thank Prof. C. Walshaw of University of Greenwich for
providing the JOSTLE graph partitioning library, and Dr. C. Ashcraft of Boeing Shared Services
Group for providing the MSMD object for matrix ordering.

References

Ashcraft, C., Pierce, D., Wah, D.K. and Wu, J. (1999), “The reference manual for SPOOLES, Release2.2: An
object oriented software library for solving sparse linear systems of equations”, Boeing Shared Services
Group, USA. (available from http://www.netlib.org/linalg/spooles/).

Farhat, C. (1988), “A simple and efficient automatic FEM domain decomposer”, Comput. Struct., 28(5), 579-
602.

Geng, P., Oden, J.T. and van de Geijn, R.A. (1997), “A parallel multifrontal algorithm and its implementation”,
Comput. Method Appl. Mech. Eng., 149, 289-301.

George, A. and Liu, J.W.H. (1981), Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall,
Inc., New Jersey, U.S.A.

Han, T.Y. and Abel, J.F. (1984), “Substructure condensation using modified decomposition”, Int. J. Numer. Meth.
Eng., 20(11), 1959-1964.

Hendrickson, B. and Leland, R. (1994), “The Chaco user’s manual: Version 2.0”, Sandia Tech Report SAND94-
2692, Sandia National Laboratories, U.S.A.

Hsieh, S.H., Paulino, G.H. and Abel, J.F. (1995), “Recursive spectral algorithms for automatic domain
partitioning in parallel finite element analysis”, Comput. Method Appl. Mech. Eng., 121, 137-162.

Hsieh, S.H., Paulino, G.H. and Abel, J.F. (1997), “Evaluation of automatic domain partitioning algorithms for

70 Shang-Hsien Hsieh, Yuan-Sen Yang and Po-Liang Tsai

parallel finite element analysis”, Int. J. Numer. Meth. Eng., 40(6), 1025-1051.
Hsieh, S.H., Yang, Y.S., Cheng, W.C., Lu, M.D. and Sotelino, E.D. (1998), “MPE++: An object-oriented mesh

partitioning environment in C++”, Proc. 6th Asia-Pacific Conference on Structural Engineering &
Construction, January 14-16, 1998, Taipei, Taiwan.

Hsieh, S.H., Yang, Y.S. and Tsai, P.L. (1999), “Improved mesh partitioning for parallel substructure finite
element computations”, Proc. 7th East Asia-Pacific Conference on Structural Engineering & Construction,
August 27-29, 1999, Kochi, Japan, 123-128.

Karypis, G., Schloegel, K. and Kumar, V. (2002), “ParMETIS parallel graph partitioning and sparse matrix
ordering library Version 3.0”, Technical report, Department of Computer Science/Army HPC Research Center,
MN, U.S.A.

Kernighan, B.W. and Lin, S. (1970), “An efficient heuristic procedure for partitioning graphs”, The Bell System
Technical J., 49, 291-307.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), “Optimization by simulated annealing,” Science, 220, 671-
680.

Message Passing Interface Forum. (1994), “MPI: a message-passing interface standard”, Int. J. Supercomputer
Applications, 8(3/4), 159-416.

Nour-Omid, B., Raefsky, A. and Lyzenga, G. (1987). “Solving finite element equations on concurrent
computers”, in Noor, A.K. (ed.), Parallel Computations and Their Impact on Mechanics, New York, U.S.A.

Simon, H.D. (1991), “Partitioning of unstructured problems for parallel processing”, Computing Systems in
Engineering, 2(2/3), 135-148.

Vanderstraeten, D. and Keunings, R. (1995), “Optimized partitioning of unstructured finite element meshes”, Int.
J. Numer. Meth. Eng., 38, 433-450.

Vanderstraeten, D., Farhat, C., Chen, P.S., Keuning, R. and Ozone, O. (1996), “A retrofit based methodology for
the fast generation and optimization of large-scale mesh partitions: Beyond the minimum interface size
criterion”, Comput. Method Appl. Mech. Eng., 113, 25-45.

Walshaw, C. (1999), “Serial jostle library interface: Version 1.1.8,” Technical report, School of Computing and
Mathematical Sciences, University of Greenwich, London, UK.

Walshaw, C., Cross, M. and Everett, M. (1997), “Parallel dynamic graph partitioning for adaptive unstructured
meshes”, J. Parallel and Distributed Computing, 47(2), 102-108.

Yang, Y.S. and Hsieh, S.H. (1997), “Some experiences on parallel finite element computations using IBM/SP2”,
Proc. 7th KAIST-NTU-KU Tri-Laterial Seminar/Workshop on Civil Engineering, Kyoto, Japan, December 1-3,
1997, 63-68.

