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Abstract. Investigated in this study are the modal characteristics of the eccentric cylindrical shells with
fluid-filled annulus. Theoretical method is developed to find the natural frequencies of the shell using the
finite Fourier expansion, and their results are compared with those of finite element method to verify the
validation of the method developed. The effect of eccentricity on the modal characteristics of the shells is
investigated using a finite element modeling.
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1. Introduction

A fluid-surrounded cylindrical shells subjected to various loads have been widely used as
structural components in the engineering design. One example is reactor internals such as core
barrel and upper structure barrel coupled with each other by fluid-filled annulus (Song and Jhung
1999). To assure the reliability of those components and to verify structural integrity during normal
operations of a nuclear power plant (Jhung 1996), it is necessary to investigate extensively flow-
induced vibration, necessitating the investigation of the modal characteristics. Several monitoring
systems such as internal vibration monitoring system using neutron noise analysis are employed to
find in advance the defect which may cause severe damage on the reactor internals and steam
generator and to take actions to prevent such damage in time. One of major causes for accidents is
the eccentricity of inner shell when it is submerged in a fluid which came from the failure of
connections to other major components.
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Several previous investigations have been performed to analyze the free vibration of fluid-filled,
coaxial cylindrical shells (Chen and Rosenberg 1975, Yoshikawa et al. 1994), which were limited to
the approximated methods and could provide only the in-phase and out-of-phase modes of coaxial
shells with small annular fluid gap compared to the shell diameters. Therefore, an advanced general
theory was developed to calculate the natural frequencies for all vibrational modes of two coaxial
circular cylindrical shells coupled with fluid (Jhung 2000). Even though coaxial shells are
extensively studied very few studies of eccentric shells are found. Danila et al. (1995) suggested a
calculating method of the scattered field due to a plane wave incident on one or several cylindrical
fluid-fluid interfaces using the generalized Debye series expansion. The theoretical method is
applied to a concentric and a non-concentric fluid shell and then extended to the multi-layered
cylindrical structure. However, few theoretical studies on the free vibration of a circular cylindrical
shell submerged in a compressible fluid-filled cylindrical container were taken into consideration. 

This study develops an advanced general theory to calculate the natural frequencies for all
vibrational modes of two eccentric circular cylindrical shells with fluid-filled annulus. To support
the validity of the proposed theory, finite element analyses are carried out for various eccentricities.
The effect of eccentricity on the natural frequencies of the shells is investigated by comparing
frequencies according to the eccentricity.

 

2. Theory

2.1 Equation of motion

Consider a circular cylindrical shell with a clamped boundary condition at both ends, as illustrated
in Fig. 1. The shell can be concentrically or eccentrically submerged in a fluid-filled container. The
cylindrical shell has mean radius R, height L, and wall thickness h. The Sanders' shell equations
(Jeong and Lee 1996, Jeong 1998) as the governing equations for the shell where the hydrodynamic
effects are considered, can be written as : 

(1a)

(1b)

(1c)

where D = Eh / (1 − µ2), k = h2/12R2, γ 2 = ρR2(1 − µ2)/E, µ Poisson’s ratio, p dynamic liquid
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pressure, E Young’s modulus, and the comma in the equations denotes a partial derivative with
respect to the corresponding variable. For a complete description of the shell motions, it is necessary
to add boundary conditions to the equations of motion. Consider the simplest end arrangements of
the shell on the top and bottom supports. At both ends of a concentrically or eccentrically arranged
shell with respect to a rigid circular cylindrical container, all the boundary conditions will obviously
hold for the case of SCC (Sine-Cosine-Cosine) formulation (Chung 1981):

for the bottom support of the shell,

(2a)

for the top support of the shell,

(2b)

Mx 0( ) Nx 0( ) v 0( ) w 0( ) 0= = = =

Mx L( ) Nx L( ) v L( ) w L( ) 0= = = =

Fig. 1 Eccentric cylindrical shells with fluid-filled annulus
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where Mx and Nx denote the bending moment and the membrane tensile force, respectively. All
geometric boundary conditions applicable to the clamped-clamped shell can be reduced to the
following equations for the ends of the shell (Jeong and Kim 1998): 

.  (3)

The relationships between the boundary forces and displacements are

(4a)

(4b)

(4c)

(4d) 

where K = Eh3/12(1− µ2). Nxθ and Qx denote the membrane shear force and transverse shear force
per unit length, respectively.

2.2 Modal functions

A general relation for the dynamic displacements in any vibration mode of the shell can be
written in the following form for the cylindrical coordinate r, θ.

 (5a)

(5b)

(5c)

where u(x, θ ), v(x, θ ), and w(x, θ ) are modal functions corresponding to the axial, tangential, and
radial displacements for the shell, respectively. These modal functions along the axial direction can
be described by a sum of linear combinations of the Fourier series that are orthogonal. 

 (6a)

(6b)

(6c)
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the cylindrical shell were described in Jeong and Kim (1998).

2.3 Equation of fluid motion

The inviscid, irrotational and compressible fluid movement due to shell vibration is described by
the Helmholz equation :

(7)

where c is the speed of sound in the fluid medium equal to , B is the bulk modulus of
elasticity of fluid and ρ0 stands for the fluid density. It is possible to separate the function Φ with
respect to x by observing that, in the axial direction, the rigid surfaces support the edges of the
shell; thus

 (8)

where ω is the fluid-coupled frequency of the shell. Substitution of Eq. (8) into the partial
differential Eq. (7) gives

 (9)

It is possible to solve the partial differential Eq. (9) by the separation of the variables. The
solution can be obtained with respect to the original cylindrical coordinates, r, θ and x ;

for ,

 (10a)

and for 

 (10b)

where Jn and Yn are Bessel functions of the first and second kinds of order n, whereas In and Kn are
modified Bessel functions of the first and second kinds of order n. φ means the spatial velocity
potential of the contained compressible fluid. αsn is related to the speed of sound in the fluid
medium as follows;
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The Eqs. (10a) and (10b) automatically satisfy the boundary conditions that appear as follows: 
(a) impermeable rigid surface on the bottom is

at  x = 0 (12)

(b) as there exists no free surface, the axial fluid velocity at the rigid top is also zero, so 

at  x = L (13)

2.4 General formulation

For the eccentrically submerged shell, the velocity potential of Eqs. (10a) and (10b) can be
transformed to the shifted cylindrical coordinates, (a, ψ, x) by Graf’s addition theorem and
Beltrami’s theorem (Watson 1980);

for ,

 sinmψ

 (14a)

for ,

sinmψ
 

 (14b)

It is convenient to handle the boundary condition along the surface of the rigid container when the
velocity potential is transformed from the origin “O” to the shifted origin “O¶” . The radial fluid
velocity along the outer wetted surface of the shell must be identical to that of the flexible shell, so 

 at r = R (15)
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Substitution of Eqs. (6c), (14a) and (14b) into Eqs. (15) and (16) gives the relationships: 

for ,
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for ,
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Now, all unknown coefficients Don, Fon, Dsn, and Fsn related to the fluid motion will be written in
terms of the coefficients Con and Csn related to the shell motion using Eqs. (17a), (17b), (18a), and
(18b).
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(20g)

(20h)

(20i)

As the eccentric distance ε approaches zero, Jm(αsnε) and Im(αsnε) of Eqs. (20a)-(20c) will be zero
for m≠ 0 and Jm(αsnε) = Im(αsnε) = 1 for m = 0. Therefore, when ε = 0, Eq. (20) for the eccentric
arrangement of the shell obviously reduces to the equation of the concentric case. The
concentrically submerged shell will be a special case of the shell submerged eccentrically in a fluid-
filled container. 

When the hydrostatic pressure on the shell are neglected for simple formulation, the
hydrodynamic pressure along the outer wetted shell surface can be given by

 (21)
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where the end values u0, ul, v0, vl,  and  in Eqs. (23) and (24) are defined in Jeong and
Kim (1998). The matrix y1, y2, …, y8 are the derived column matrices. The equivalent hydrodynamic
mass effect on the shell is included in the coefficient. The forces Nxθ and Qx at the ends of the shells
can be written as a combination of some boundary values of displacement and their derivatives
using Eq. (4). The boundary values of displacement and their derivatives, v0, vl, , and  can be
transformed in a combination of the boundary values of u, , Nxθ , and Qx by Eq. (4), as written in
the form 

 (25a)
 

(25b)

 (25c)
 

(25d)

where the end values of the forces are defined in reference [10] and gk(k = 1, 2, ... , 7) can be
derived. Substitution of Eq. (25) into Eqs. (23) and (24), gives 

(26a)

 

(26b)

where zk(k = 1, 2, 3, 4) in Eq. (26a) are the derived coefficient matrices, and [Λik] (i = 1, 2, 3 and k = 1,
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Substitution of Eq. (26) for the coefficients Bon, Con, Asn, Bsn, and Csn into the four constraint
conditions that come from the geometric boundary condition, written as Eq. (27), leads to a
homogeneous matrix equation by omitting the details :

 

 (28)

The elements of the matrix, eik(i = 1, 2, 3, 4 and k = 1, 2, ..., 8) can be obtained from Eq. (27).
However, when the cylindrical shell is clamped at both support ends, the associated boundary
condition is 

u = v = w = w,x = 0    at  x = 0 and L (29)

Among these boundary conditions, the two geometric boundary conditions u = 0 and = 0 at
x = 0 and x = L are not automatically satisfied by Eq. (6), the modal functions set. Therefore the
first, second, third, and fourth rows of the matrix in Eq. (28) are enforced and the terms associated
with u0, ul , , and  are released. The 4 × 4 frequency determinant is obtained from Eqs. (28)
and (29) by retaining the rows and columns associated with  and . For the clamped
boundary condition, the coupled natural frequencies are numerically obtained from the frequency
determinant:

(30)

3. Analysis

3.1 Theoretical analysis

On the basis of the preceding analysis, the frequency determinant is numerically solved for the
clamped boundary condition in order to find the natural frequencies of the eccentric circular
cylindrical shells with a fluid-filled annulus. The inner and outer shells are coupled with a fluid-
filled annular gap. The inner cylindrical shell has a mean radius of 100 mm, a length of 300 mm,
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and a wall thickness of 2 mm. The outer cylindrical shell has a mean radius of 130 mm with the
same length and wall thickness. The physical properties of the shell material are as follows: Young’s
modulus = 69.0 GPa, Poisson’s ratio = 0.3, and mass density = 2700 kg/m3. Water is used as the
contained fluid with a density of 1000 kg/m3. The sound speed in water, 1483 m/s, is equivalent to
the bulk modulus of elasticity, 2.2 GPa. Dimensions and material properties used for the analysis are
shown in Table 1.

The frequency equation derived in the preceding section involves the double infinite series of
algebraic terms. Before exploring the analytical method for obtaining the natural frequencies of the
fluid-coupled shells, it is necessary to conduct convergence studies and establish the number of
terms required in the series expansions involved. In the numerical calculation, the Fourier expansion
term m is set at 100, which gives an exact enough solution by convergence.

3.2 Finite element analysis

Finite element analyses using a commercial computer code ANSYS 5.5 (ANSYS 1998) are
performed to verify the analytical results for the theoretical study. The finite element method results
are used as the baseline data. Three-dimensional model is constructed for the finite element analysis.
The fluid region is divided into a number of identical 3-dimensional contained fluid elements
(FLUID80) with eight nodes having three degrees of freedom at each node. The fluid element
FLUID80 is particularly well suited for calculating hydrostatic pressures and fluid/solid interactions.
The circular cylindrical shell is modeled as elastic shell elements (SHELL63) with four nodes. The
model has 3840 (radially 4 × axially 20 × circumferentially 48) fluid elements and 1920 shell
elements as shown in Fig. 2.

The fluid boundary conditions at the top and bottom of the tank are zero displacement and
rotation. The nodes connected entirely by the fluid elements are free to move arbitrarily in three-
dimensional space, with the exception of those, which are restricted to motion in the bottom and top
surfaces of the fluid cavity. The radial velocities of the fluid nodes along the wetted shell surfaces
coincide with the corresponding velocities of the shells. Clamped-clamped boundary conditions at
both ends are considered for the inner shell. The outer shell is considered to be rigid with zero
displacement and rotation.

Sufficient number of master degree of freedoms is selected to calculate 200 frequencies and the

Table 1 Dimensions and material properties

Unit
Shell

Fluid
Inner Outer

Length m 0.300 0.300
Mean radius m 0.100 0.130
Thickness m 0.002 0.002
Young’s modulus Pa 69E9 69E9
Poisson’s ratio 0.3 0.3
Density kg/m3 2700 2700 1000
Sound speed m/sec 1483
Bulk modulus of elasticity Pa 2.2E9
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reduced method is used for the eigenvalue and eigenvector extractions, which employ the
Householder-Bisection-Inverse iteration extraction technique.

4. Results and discussion

Mode shapes of the fluid-coupled shells are obtained by the finite element method and typical
modes are plotted in Fig. 3, which shows the deformed mode shape of the fluid and shell elements
for the modes of (1, 3), (2, 4), (3, 5) and (4, 5).

The frequency comparisons between analytical solution developed here and finite element method
are shown in Fig. 4 and Table 2 for the eccentricity = 0%. The discrepancy is defined as

The largest discrepancy between the theoretical and finite element analysis results is 2.7% for the
mode of (1, 2). Discrepancies defined by Eq. (31) are always less than 3%, therefore the theoretical
results agree well with finite element analysis results, verifying the validity of the analytical method
developed.

Frequency comparisons for the eccentricity of 20% are shown in Fig. 5. Not like the case of the

Discrepancy(%) =
frequency by FEM− theoretical frequency

 × 100 (31)
frequency by FEM

Fig. 2 Finite element model of cylindrical shells with fluid-filled annulus
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Fig. 3 Typical mode shapes for eccentricity = 0%

Fig. 4 Frequency comparisons for eccentricity = 0%
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Table 2 Natural frequencies for eccentricity = 0%

Circumferential
mode (n)

Axial mode 
(m’ )

Frequency (Hz)
Discrepancy (%)

Theory FEM

1

1 533 528 −0.95
2 1195 1221 2.13
3 1975 2015 1.99
4 2744 2738 −0.22
5 3362 3289 −2.22

2

1 535 521 −2.69
2 1163 1150 −1.13
3 1872 1868 −2.14
4 2545 2539 −2.36
5 3177 3101 −2.45

3

1 469 459 −2.18
2 1021 1004 −1.69
3 1680 1659 −1.27
4 2344 2308 −1.56
5 2962 2888 −2.56

4

1 471 465 −1.29
2 919 908 −1.21
3 1503 1484 −1.28
4 2132 2098 −1.62
5 2754 2689 −2.42

5

1 612 607 −0.82
2 937 928 −0.10
3 1429 1414 −1.06
4 2005 1976 −1.47
5 2614 2560 −2.11

6

1 880 876 −0.05
2 1111 1102 −0.08
3 1507 1491 −1.07
4 2018 1988 −1.51
5 2596 2544 −2.04

7

1 1249 1246 −0.02
2 1427 1416 −0.08
3 1747 1726 −1.22
4 2192 2154 −1.76
5 2729 2668 −2.29

8

1 1707 1704 −0.18
2 1858 1844 −0.08
3 2130 2100 −1.43
4 2520 2471 −1.98
5 3017 2938 −2.69
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0% eccentricity, there are several points to be noted. No (1, 1) mode appeared in the finite element
analysis and also modes of (2, 1), (1, 2) and (2, 2) have rather large discrepancies even though they

Fig. 6 Frequency comparisons for eccentricity = 40%

Fig. 5 Frequency comparisons for eccentricity = 20%

Fig. 7 Frequency comparisons for eccentricity = 60%
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are within 10%. This is because (1, 1) mode for 0% eccentricity tends to move to adjacent modes
such as (1, 2) or (2, 1) for the case of the 20% eccentricity. Also, (1, 3.5) mode of 445 Hz appeared,
which is in progress of mode conversion from (1, 3) to (1, 4) modes. This kind of mode conversion,
mode movement from lower to higher mode, is more evident as eccentricity becomes larger as
shown in Figs. 6 and 7 for the eccentricities of 40% and 60%, respectively. 

The variation of mode shapes with respect to eccentricity for axial mode m’ = 1 is shown for the
first 12 modes in Fig. 8, which shows that some modes move to another modes with the change of
eccentricity. For example one pair of (1, 4) mode appeared in the eccentricity of 40% or less, but

Fig. 8 Variation of mode shapes for m’ = 1 with respect to eccentricity
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there are two pairs of (1, 4) modes in the eccentricity of 60%; one is the original (1, 4) mode of
40% eccentricity and the other is the conversion mode from (1, 3) of 40% eccentricity. Also, two
pairs of (1, 2) modes appeared in the eccentricity of 20%; one is original (1, 2) mode and the other
is the mode from (1, 1) mode of the 0% eccentricity. This kind of mode movement with larger
eccentricity is the cause of the appearance of several circumferential mode number of order 0.5, and
also the reason for not appearing of several modes such as (1, 1) mode for eccentricities of 20% and
(2, 4) mode for eccentricities of 60%.

Because there is unsymmetric configuration for shells with eccentricity, there should be
unsymmetric modes for certain modes. This trend is much more severe with large eccentricity
except for circumferential and/or axial modes. Two separate values of mode are obtained especially
for circumferential mode number nú2 in eccentricity = 20%, nú3 in eccentricity = 40% and nú5
in eccentricity = 60%. Contrary to this, modes for the eccentricity = 0% have exactly the same
symmetric mode shapes for all modes as shown in FigU 9. 

FigU 10 shows the variation of frequency values with respect to the eccentricity for several modes

Fig. 9 Mode shapes for eccentricity = 0%
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which are not much affected by the eccentricity. If there is no mode conversion with increasing
eccentricity, the effect of eccentricity on the frequencies is almost negligible, which is especially
true for the high circumferential modes. Therefore the eccentricity is found to be more effective on
the separation of modes or mode conversion than on the change of the frequencies.

5. Conclusions

An analytical method to estimate the coupled frequencies of the cylindrical shells with fluid-filled
annulus is developed using the series expansion method based on the Fourier transformation. To
verify the validity of the analytical method developed, finite element method is used and the
frequency comparisons between them are found to be in good agreement, especially for the
eccentricity of 0%. With the increasing eccentricity some modes are separated or mode conversions
are found, which is not incorporated in the theoretical development. This needs to be studied in the
future to define more sophisticated modes such as the circumferential mode of order 0.5. But in
general the theory developed agrees well with the finite element method except for several transition
modes which are changing with eccentricity. The effect of the eccentricity on the frequencies is
found to be more severe on the appearance of transition modes or disappearance of certain modes
rather than on the frequency changes. Therefore it is recommended to investigate the modal
characteristics rather than frequency itself to know that how much eccentricity is there in the shells
with fluid-filled annulus.
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