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Abstract. This paper presents a method of seismic analysis for a cylindrical liquid storage structure
considering the effects of the interior fluid and exterior soil medium in the frequency domain. The
horizontal and rocking motions of the structure are included in this study. The fluid motion is expressed
in terms of analytical velocity potential functions, which can be obtained by solving the boundary value
problem including the deformed configuration of the structure as well as the sloshing behavior of the
fluid. The effect of the fluid is included in the equation of motion as the impulsive added mass and the
frequency-dependent convective added mass along the nodes on the wetted boundary of the structure. The
structure and the near-field soil medium are represented using the axisymmetric finite elements, while the
far-field soil is modeled using dynamic infinite elements. The present method can be applied to the
structure embedded in ground as well as on ground, since it models both the soil medium and the
structure directly. For the purpose of verification, earthquake response analyses are performed on several
cases of liquid tanks on a rigid ground and on a homogeneous elastic half-space. Comparison of the
present results with those by other methods shows good agreement. Finally, an application example of a
reinforced concrete tank on a horizontally layered soil with a rigid bedrock is presented to demonstrate
the importance of the soil-structure interaction effects in the seismic analysis for large liquid storage tanks. 

Key words: cylindrical liquid storage tank; fluid-structure-soil interaction; added mass; infinite element;
velocity potential; earthquake response analysis.

1. Introduction

The cylindrical shell of revolution is the most popular type of structure for a liquid storage tank.
The large-scale liquified natural gas(LNG) tank is one of those, of which diameter is in the order of
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70 m and height is about 60 m. For the safety of the structure, a very strong and massive
containment structure is usually needed, which usually makes the structural system vulnerable to
seismic excitation. Therefore, base-isolation systems have been often applied to the structures when
constructed on ground. Otherwise, they are embedded in ground to reduce the seismic influence.

The hydrodynamic interaction of the contained liquid with the structure can be considered as the
impulsive and convective pressure loads exerted on the wetted interface during ground excitations
like a dynamic earthquake loads. The impulsive component represents the mass of the liquid
moving together with the structure, while the convective one reflects the effects of the free surface
sloshing. Based on various theoretical developments, tests in laboratories, and observations on actual
behavior of the structure during earthquake events, practical seismic design procedures have been
established for the up-right thin cylindrical liquid storage tank which is either anchored or
unanchored on the rigid ground (Housner 1963, Balendra et al. 1982, Haroun 1983).

The effect of the soil flexibility on the fluid-structure interaction has been studied by many
researchers and engineers, since the seismic analysis assuming a rigid ground condition often gives
overly conservative results. Several works relevant to the effects of the supporting soil are those by
Veletsos and Tang (1990), Hori (1990), Natsiavas (1990), Seebar et al. (1990), and Haroun and
Abou-Izzeddine (1992). They employed the discrete finite element method or continuous potential
functions to model the fluid region, while the soil is represented by a substructured frequency-
dependent impedance matrix associated with the rigid-body motion of the foundation. Conclusions
from the studies were that the flexibility of the soil medium is substantially important for the
dynamic analysis of the structure, and the results may highly depend on the soil conditions as well
as the configuration of the structure. Accordingly, it has been required to develop a versatile and
accurate methodology, which can directly deal with the complex system with the same emphasis on
both soil-structure interaction and fluid-structure interaction, to achieve economical as well as safe
structural design.

This paper presents a fully coupled fluid-structure-soil interaction analysis technique for
cylindrical liquid-contained structures subjected to horizontal ground excitation. For this purpose, a
new closed-form velocity potential solution is derived for the motion of the liquid subjected to the
horizontal and rocking excitations with consideration of the structural flexibility and the free-surface
sloshing. The hydrodynamic forces on the structure are incorporated as a frequency dependent
added mass matrix along the wetted boundary. The axisymmetric structure and near-filed soil
regions are represented by the standard finite elements, while the unbounded multi-layered far-field
soil medium is modeled by the dynamic infinite elements developed by the present authors (Yun et al.
1995). The proposed technique is verified utilizing several cylindrical tanks on a rigid ground and a
homogeneous elastic half-space, for which solutions by other researcher are available. Finally, an
application example of a reinforced concrete tank on a horizontally layered soil medium with a rigid
bedrock is presented to demonstrate the beneficial effect of the soil-structure interaction on the
member forces of the liquid storage tank subject to earthquake loading. 

2. Equation of motion

Fig. 1 describes an axisymmetirc fluid-structure-soil interaction system investigated in this study,
which can be effectively defined in the cylindrical coordinate system (r, θ, z). The Fourier series
expansion method in the circumferential direction (θ ) is employed to express the geometry and
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motions of the system. The seismic input, on the other hand, is assumed as a plane-symmetric
vertically incident S-waves, which results in a single equation of motion for the Fourier component
of order one.

In this study, the fluid is assumed to be incompressible and inviscid, and its motion is regarded as
irrotational. Then, its interaction motion with the encompassing structure is modeled by a
generalized frequency-dependent added mass including the sloshing effect of the liquid. Finite
elements are used to represent the behaviors of the structure and near-field soil regions, while
dynamic infinite elements for the unbounded far-field soil. The equation of motion for the total
fluid-structure-soil system subjected to the horizontal seismic input is then constructed in the
frequency domain.

2.1 Modeling of contained fluid

2.1.1 Velocity potential function for fluid motion
The displacement field in the cylindrical structure and soils subjected to horizontal earthquake can

be written as

 (1a)

 (1b)

 (1c)

u r θ z t, , ,( ) U r z t, ,( ) θcos=

v r θ z t, , ,( ) V– r z t, ,( ) θsin=

w r θ z t, , ,( ) W r z t, ,( ) θcos=

Fig. 1 Fluid-structure-soil interaction problem and its modeling in this study
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where , , and  denote displacement functions in the (r, θ, z)
cylindrical coordinates.

Referring to Fig. 2, for the irrotational flow, the velocity potential function, , and the
sloshing height representing the elevation of the free surface over the mean surface level, ,
in the cylindrical fluid region (Ω f) can be expressed as

 (2a)

 (2b)

Then, the velocity of a fluid particle in the nth generalized coordinate, vn, can be obtained as

(3)

and the corresponding hydrodynamic pressure, , for the inviscid liquid can be computed
as

 (4)

where ρ is the mass density of the liquid.
The velocity potential function must satisfy the Laplace equation to fulfill the continuity condition

of the incompressible fluid as
 

in Ω f (5)

This equation is supplemented by the boundary conditions on the fluid-structure interface and the

u r θ z t, , ,( ) v r θ z t, , ,( ) w r θ z t, , ,( )

φ r θ z t, , ,( )
ζ r θ t, ,( )

φ r θ z t, , ,( ) ϕ r z t, ,( ) θcos=

ζ r θ t, ,( ) ξ r t,( ) θcos=

vn
∂φ
∂n
------=

pd r θ z t, , ,( )

pd r θ z t, , ,( ) ρ–
∂φ
∂t
------=

∂ 2ϕ
∂r2
--------- 1

r
---∂ϕ

∂r
------ 1

r
2

----ϕ–
∂ 2ϕ
∂z2
---------+ + 0=

Fig. 2 Definitions of sloshing responses in a plane with θ = 0
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free surface of the inviscid fluid for the horizontal earthquake as

on wetted shell (r = R)   (6)

on wetted base (z = 0)  (7)

on liquid free surface (z = H ) (8)

on liquid free surface (z = H ) (9)

where R and H are respectively the radius and the height of the fluid domain; Us(z, t) is the
horizontal displacement on the wetted vertical shell (at θ = 0); Wb(r, t) is the vertical displacement
on the wetted base of structure (at θ = 0); and g is the gravitational acceleration.

In order to derive a velocity potential function satisfying the governing equation and all the
boundary conditions, we start with a solution that meets the boundary condition on the wetted shell
given by Eq. (6) as 

 (10)

in which the second term is a particular solution associated with the boundary condition (6),
whereas ψ represents a homogeneous solution which satisfies the zero velocity condition on the
boundary. The function ψ, which satisfies the Laplace equation and the homogeneous boundary
condition at the wetted shell, can be easily obtained using the standard separation of variable
method as

 (11)

in which J1(·) denotes the Bessel function of the first kind of order one; λn = εn /R; εn’s are constants
satisfying ; and An(z, t) is unknown function. The first three of constants εn are 1.8411,
5.3314, and 8.5363.

Substituting Eq. (11) into Eq. (10), and applying the weighted residual method with weighting
functions of  on the governing Eq. (5) as

 (12)

a series of modal differential equations with respect to An(z, t) can be obtained as

(13)

where

(14)

∂ϕ
∂r
------ U

·
s z t,( )=

∂ϕ
∂z
------ W

·
b r t,( )=

ρϕ· ρgξ+ 0=

∂ϕ
∂z
------ ξ·=

ϕ r z t, ,( ) ψ r z t, ,( ) rU
·

s z t,( )+=

ψ r z t, ,( ) J1 λnr( )An z t,( )
n 1=

∞

∑=

J1′ εn( ) 0=

J1 λmr( ){ }m 1=
∞

J1 λnr( )J1 λmr( )
d

2
An

dz2
----------- λn

2An–
 
 
 

rdr J1 λmr( )d
2
U
·

s

dz2
-----------r2dr

0

R

∫–=
n 1=

∞

∑
0

R

∫

d2An

dz
2

----------- λn
2
An– βn

d2U
·

s

dz2
-----------  n 1 2 3 …, , ,=( )–=

βn
2R

εn
2 1–( )J1 εn( )

---------------------------------=
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In this study, the free surface elevation ξ(r, t) and the vertical displacement on the wetted base
Wb(r, t) are expanded using the Bessel functions, and horizontal displacement on the wetted shell
Us(z, t) is represented as the third order polynomials of z as 

 
  (15)

 
(16)

 (17)

where ; ;ηm(t), qm(t), and cm(t) are the
generalized coordinates; nm is the number of Bessel functions used; and the superscript T stands for
transpose of a matrix. Accordingly, the boundary conditions (7) and (8) can be rewritten as the
modal boundary conditions associated with the function An(z, t) in the weighted residual sense as 

at z = 0 (18a)

 at z= H (18b)

Then, the function An(z, t) which satisfies the governing Eq. (13) and the boundary conditions
(18a) and (18b) can be derived in terms of the generalized coordinates, ηn(t), qn(t), and cm(t), as 

 (19)

ξ r t,( ) J1 λmr( )ηm t( )
m 1=

nm

∑=

Wb r t,( ) Wb r t,( ) J1 λmr( )qm t( )
m 1=

nm

∑=≅

Us z t,( ) U s z t,( )≅ p z( )Tc t( )=

p z( ) 1 z z2 z3, , ,[ ]T
= c t( ) c0 t( ) c1 t( ) c2 t( ) c3 t( ), , ,[ ]T=

dAn

dz
--------- βn

dp z( )
dz

-------------
 
 
 

T

c· t( )+ q·n=

A
·

n βnp z( )Tc·· t( ) gηn+ + 0=

An z;t( ) βn

λnz( )cosh
λnH( )cosh

--------------------------c·1 t( )–=

βn

λnz( )cosh
λnH( )cosh

-------------------------- H bn

λnH( )sinh
λn

--------------------------– 
  λnz( )sinh

λn

-----------------------+
 
 
 

c·2 t( )–

βn

λnz( )cosh
λnH( )cosh

-------------------------- H 2 2

λn
2

-----+ 
  2

λn
2

-----–
 
 
 

c·3 t( )–

βn

λnz( )cosh
λnH( )cosh

-------------------------- H3 6H

λn
2

------- 6

λn
3

----- λnH( )sinh–+ 
  6

λn
3

----- λnz( )sinh
6

λn
2

-----z–+
 
 
 

c·4 t( )–

1
λn

----- λnH( )tanh λnz( )cosh λnz( )sinh–{ }q·n t( )–

g
λnz( )cosh
λnH( )cosh

-------------------------- ηn τ( )dτ
0

t∫–
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In this study, the generalized coordinates, qn(t) and cm(t), associated with the structural motion
are related to the finite element solutions, ds(t) and db(t), by means of the weighted residual
method as

    or c(t) = Rsds(t) (20a)

     or q(t) = Rbdb(t) (20b)

where δUs and δWb denote arbitrary weighting functions; ; and Rs

and Rb are the constant matrices. 
After a lengthy derivation from Eqs. (11), (19) and (20), the velocity potential function 

shown in Eq. (10) can be obtained as

(21)

where

(22a)

(22b)

(22c)

(22d)

(22e)

in which diag[am] is defined as a diagonal matrix with its mth diagonal component of am; and Enm(z)
and  are analytical functions given in Appendix A1. The first two terms in Eq. (21) represent
the impulsive components which account for the fluid motion interacting with the structural
motion, while the last term is the convective contribution by the sloshing response of the liquid.
The unknown function {η(t)} related to the sloshing response in Eq. (21) can be represented in
terms of accelerations of the structure on the wetted boundaries, which will be described in the
next section. 

2.1.2 Sloshing response
The sloshing response of the liquid can be expressed as an uncoupled equation of motion for the

generalized coordinate {η(t)} by substituting Eqs. (21) and (15) into the kinematic relation at the

δUs Us U s–( )dz 0=
0

H

∫

δWb Wb Wb–( )rdr 0=
0

R

∫

q t( ) q1 t( ) q2 t( ) q3 t( ) …, , ,[ ]T=

ϕ r z t, ,( )

ϕ r z t, ,( ) βnJ1 λnr( ) En z( ){ }TRsd
·
s t( ) Ẽ z( ){ }T

J r( )Rbd
·
b t( )+

n 1=

∞

∑=

g CH z( ){ }TJ r( ) η τ( ){ }dτ
0

t

∫–

En z( ){ } En0 z( ) En1 z( ) En2 z( ) En3 z( ), , ,[ ]T=

J r( ) diag J1 λmr( )[ ]=

Ẽ z( )[ ] Ẽ1 z( ) Ẽ2 z( ) Ẽ3 z( ) …, , ,[ ]T
=

CH z( ){ }
λ1z( )cosh
λ1H( )cosh

--------------------------
λ2z( )cosh
λ2H( )cosh

--------------------------
λ3z( )cosh
λ3H( )cosh

-------------------------- …, , ,
T

=

η t( ){ } η1 t( ) η2 t( ) η3 t( ) …, , ,[ ]T=

Ẽn z( )



622 Jae-Min Kim, Soo-Hyuk Chang and Chung-Bang Yun

free surface as in Eq. (9) as 

 (23)

where Mηη, Cηη , and Kηη are diagonal matrices; Qηs and Qηb are participation coefficient matrices;
and  and  are the acceleration vectors of the structure on the wetted shell and bottom.
The coefficient matrices are described in Appendix A2. In the sloshing equation, the viscosity of the
fluid is included in the damping matrix. Once the structural responses are calculated, the sloshing
responses can be easily obtained using a standard direct integration scheme such as the Newmark-β
method in the time domain.

It is to note that undamped sloshing frequency ωsn, which can be obtained from Eq. (23), is the
same as the one for a rigid cylindrical tank fixed on the rigid ground as (Haroun 1983)

 

(24)

In a design stage, sufficient freeboard shall be provided to prevent the overflow of the contained
liquid and the large impact force on the roof structure. To determine the required freeboard, the
sloshing response ξ(r, t) has to be corrected to obtain the effective sloshing height ξeff(r, t) defined
in Fig. 2 as

(25)

where αb(t) is average rotation of the base.

2.1.3 Generalized added mass associated with fluid motion
The equivalent nodal force vectors, fs(t) and fb(t), associated with the hydrodynamic pressure on

the wetted boundaries are obtained using the potential solution derived in Eq. (21) and the principle
of virtual work as 

 (26a)
 

(26b)

which results in

 (27a)

  (27b)

where  and  are the shape function vectors relating the approximated
displacements on the wetted boundaries,  and , to their finite element solutions, ds(t) and
db(t), as shown in Appendix A3; and  denotes the generalized added mass matrix related to the
impulsive component of fluid motion as in Appendix A3. Taking Fourier transform of Eq. (27) and

Mηη η·· t( ){ } Cηη η· t( ){ } Kηη η t( ){ }+ + Qηsd
··

s t( ) Qηbd
··

b t( )+=

d
··

s t( ) d
··

b t( )

ωsn g
εn

R
---- εn

H
R
---- 

 tanh=

ξeff r t,( ) ξ r t,( ) rαb t( )–=

f s t( ) ρ– πR NU s
z( ){ }ϕ· R z t, ,( )dz

0

H

∫=

fb t( ) ρ– π NWb
r( ){ }ϕ· r 0 t, ,( )rdr

0

R

∫=

f s t( ) M̂ssd
··

s t( )– M̂ sbd
··

b t( )– Qηs
T η t( ){ }–=

fb t( ) M̂ sb
T

d
··

s t( )– M̂bbd
··

b t( )– Qηb
T η t( ){ }–=

NU s
z( ){ } NWb

r( ){ }
U s Wb

M̂
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obtaining the frequency response of the sloshing motion from Eq. (23), the hydrodynamic force
vectors can be expressed in single augmented matrix form in the frequency domain as

(28)

where

(29)

in which ω is circular frequency;  is the vector of displacement normal
to the wetted boundaries; ; the first term  on the right hand side of Eq. (29) is the
mass associated with the impulsive force of the contained fluid; and the second term

 is the frequency-dependent added mass matrix related to the
convective sloshing motion.

2.2 Modeling of unbounded far-field soil

Referring Fig. 1, the dynamic stiffness matrix of the far-field  can be constructed by
assembling the element matrices of the infinite elements as (Yang and Yun 1992, Yun et al. 1995)

(30)

where h(e) is the hysteretic damping ratio of infinite element (e); and  and 
represent the element stiffness and mass matrices as 

 
(31)

 
(32)

in which D(e) and ρ (e) are the elasticity matrix and the mass density;  is the frequency-
dependent shape function matrix for the displacement field; and  denotes the strain
matrix associated with . The shape functions of the exponentially decaying types are
derived from the approximate wave functions propagating into the infinite direction. Three different
types of dynamic infinite elements are constructed. They are the horizontal, vertical, and corner
axisymmetric infinite elements. The horizontal and vertical infinite elements have 3 nodes on the
interface with the FE region, and the corner element has 1 node as shown in Appendix A4. The
shape functions consist of trigonometric functions in the circumferential direction (θ ), Lagrange
polynomials in the finite direction on the r-z plane, and multiple wave functions corresponding to
the outgoing primary, shear, and Rayleigh waves in the infinite directions in the r-z plane. Thus,
they satisfy the compatibility condition along the interface with the FE region and the Sommerfeld
radiation condition at infinity (Yun et al. 1995). Example shape functions for three types of the
infinite elements are shown in Appendix A4.

fw ω( ) Ŝww ω( )dw ω( )=

Ŝww ω( ) ω2
M̂ww Qηw

T Kηη iωCηη ω2
Mηη–+[ ]

1–
Qηw+( )–=

fw = f s
T  fb

T[ ]T
;dw = ds

T  db
T[ ]T

i = 1– M̂ww( )

Qηw
T Kηη iωCηη ω2Mηη–+[ ] 1–

Qηw( )

S̃ ω( )

S̃
e( ) ω( ) 1 i2h e( )+( )K̃ e( ) ω( ) ω2M̃

e( ) ω( )–=

K̃
e( ) ω( ) M̃

e( ) ω( )

K̃
e( ) ω( ) π B̃

e( )
r z ω� �( )TD e( )B̃

e( )
r z ω, ,( )rdrdz

Ω e( )
∫=

M̃
e( ) ω( ) π Ñ

e( )
r z ω� �( )Tρ e( )Ñ

e( )
r z ω, ,( )rdrdz

Ω e( )
∫=

Ñ
e( )

r z ω� �( )
B̃

e( )
r z ω� �( )

Ñ
e( )

r z ω� �( )
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2.3 Equation of motion for fluid-structure-soil system subjected to earthquake loading

The equation of motion for a fully coupled fluid-structure-soil system subjected to horizontal
ground motion can be constructed in frequency domain using the dynamic stiffness matrix of the
finite elements for the structure and the near-field soil S(ω), the impedance matrix of the far-field
soil  on the interface between the near and far-fields , the equivalent earthquake force

 applied on Γe, and the frequency-dependent added mass matrix of the contained
fluid  shown in Eq. (29) (Yun and Kim 1996) as

 (33)

where the subscript w denotes the degrees of freedom normal to the fluid region along the wetted
boundary between the structure and fluid; the subscript e represents those on the interface between
the finite elements and the infinite elements (Γe); n is those in near field except w and e;  is
the earthquake input as a control motion in the free field analysis; and  is the effective
earthquake-load coefficient vector. In this study, S(ω) for the structure and the near-field soil is
computed using the axisymmetric solid elements with 9-nodes, and  for the far-field soil is
calculated using the dynamic infinite elements and the static condensation technique.

The effective earthquake-load coefficient vector  can be obtained using  and the
free field analysis results for the far-field soil layers (Zhao and Valliappan 1992, Kim 1995) as

(34)

where  and  are the free field displacement and the traction vectors on Γe due to a
unit harmonic control motion with ω ; and A is a constant matrix transforming the traction on Γe to
the nodal force vector.

The responses of the structure and near-field soil region can be obtained by solving Eq. (33) in
frequency domain. In general, the frequency response function matrix, which is the inverse of the
first term on the left hand side of Eq. (33), is evaluated at a limited number of frequency points,
then the results are interpolated to other frequency points for computational efficiency (Clough and
Penzien 1993). Then the time history responses are evaluated by the inverse Fourier transform of the
responses in frequency domain. The sloshing response is computed using Eq. (23) in time domain
by the Newmark-β method.

3. Numerical examples

3.1 Verification examples

For verification of the present method, a couple of example analyses are performed. The first one
is an earthquake response analysis for tall and broad cylindrical tanks on rigid ground. The second
one is a free vibration analysis of a cylindrical tank on a compliant homogeneous half-space. The

S̃ee ω( ) Γe( )
ae

eqk ω( )uc
f( ) ω( )

Ŝ ω( )

Sww ω( ) Ŝww ω( )+ Swn ω( ) 0

Snw ω( ) Snn ω( ) Sne ω( )

0 Sen ω( ) See ω( ) S̃ee ω( )+

dw ω( )

dn ω( )

de ω( ) 
 
 
 
  0

0

ae
eqk ω( ) 

 
 
 
 

uc
f( ) ω( )=

uc
f( ) ω( )

ae
eqk ω( )

S̃ee ω( )

ae
eqk ω( ) S̃ee ω( )

ae
eqk ω( ) S̃ee ω( )de

f( ) ω( ) Ate
f( ) ω( )–=

de
f( ) ω( ) te

f( ) ω( )
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results are respectively compared with the solutions by Haroun (1983) and Veletsos and Tang
(1990). 

Fig. 3 Verification examples 
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3.1.1 Flexible steel tanks fixed on rigid ground
Earthquake response analyses are carried out for two typical types of liquid storage tanks (i.e.,

broad and tall cylindrical tanks) fixed on rigid ground. The geometrical configuration, the
mechanical properties of the tanks, and their discretized meshes for the tanks and soil medium are
depicted in Figs. 3a and 3b. The vertical wall is modeled by 22 axisymmetric solid elements with 9
nodes for tall tank and 13 elements for broad tank. The rigid ground is modeled as a hard rock
medium with the shear wave velocity (Vs) of 5000 m/s in the present analysis. The soil region is
modeled by axisymmetric solid elements with 9 nodes and axisymmetric infinte elements with 3
nodes. El Centro acceleration record (NS-component, peak ground acceleration (PGA) = 0.348 g,
1940) is utilized as the input ground motion. The accelerations recorded during Taft (N21E, PGA =
0.156 g, 1952) and Northridge (Newhall, EW-component, PGA = 0.583 g, 1994) earthquakes are

Fig. 4 Acceleration response spectra of input ground motions (0.5% damping)

Table 1 Maximum responses of broad and tall tanks for El Centro earthquake

Tall tank Broad tank

Housner 
(1963)

Haroun
(1983)

Present 
study*

Diff. **

(%)
Housner 
(1963)

Haroun
(1983)

Present 
study*

Diff. **

(%)

Natural frequency (Hz) N/A 5.29  5.43   2.6 N/A 6.17 6.37 3.2

Base shear (MN) 11.0 23.0  21.9 
(21.6)

  4.8
 (6.1) 18.1 39.7 37.2 

(24.1)
6.3 

(39.3)

Base moment (MN-m) 107 278  243 
(233)

  12.6
 (16.2) 88.5 200 183

(123)
8.5 

(38.5)

Notes: *Results using ten Bessel functions; and those in parentheses are using one Bessel function.
       **Difference between the present and the Haroun’s results.
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also considered to calculate the maximum sloshing height. Damping ratio is assumed to be 2.0% for
the steel structure and 0.5% for the sloshing motion. Acceleration response spectra (0.5% damping
ratio) for those earthquakes are shown in Fig. 4. 

The maximum earthquake responses are summarized in Table 1 along with those by Housner
(1963) and Haroun (1983). The Housner’s solutions were computed for rigid tanks, while the
Haroun’s solutions were based on a simplified model for the contained fluid and the flexible tank

Fig. 5 Hydrodynamic pressure profiles at the time instants for maximum base shear (El Centro NS-
component, 1940)

Table 2 Maximum sloshing heights for various earthquakes (unit : cm)

Input earthquake
Tall tank Broad tank

Haroun Present study* Haroun Present study*

El Centro 37.9 51.9 (38.2) 35.2 44.1 (35.6)
Taft 38.3 39.2 (38.4) 42.6 44.8 (41.9)
Northridge 68.7 83.2 (69.8) 43.3 63.5 (43.6)

Notes: *Results using twenty sloshing modes; and those in parentheses are using one
sloshing mode.
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and using the response spectrum method. The maximum base shear and moment on the flexible
tanks by the present method are found to be reasonably close to those by the Haroun’s mothod: the
maximum difference between two sets of results are about 12.6%. However, they are significantly
larger than those for the rigid tanks, owing to the impulsive fluid motion component associated with

 in Eq. (29) amplified by the flexibility of the shell. The hydrodynamic pressure profiles for
two tanks are shown in Fig. 5. The location of the maximum pressure moves upward in the tall tank
in comparison with the broad tank, which implies that the effects of the shell flexibility are more
substantial in the tall tank. These results are consistent with those by other researchers, e.g., Haroun
(1983). The effects of the number of Bessel functions used in the analysis are investigated for two
cases with one and ten components. The results in Table 1 indicate that one Bessel function may be
used to obtain reasonable member forces for tall tanks, where as more components, for instance 10,
shall be used for broad tanks.

Sloshing heights are calculated for the three earthquake inputs to investigate the effects of the
number of the sloshing modes(i.e., Bessel functions) included in the analysis. Two cases using one
and twenty sloshing modes are compared along with those by Haroun’s method. The maximum
sloshing heights are listed in Table 2. In the Haroun’s method, the sloshing height is computed
utilizing one sloshing mode and the response spectrum method. As in Table 2, the sloshing heights
by the present method with one mode are in good agreements with those by Haroun’s method.
However, the sloshing heights using twenty sloshing modes are considerably larger than those using
one mode. The maximum sloshing heights are plotted against the number of Bessel functions
included in Fig. 6. The maximum sloshing height generally remains constant, if the first six sloshing
modes are included in the analysis. However, for the case of broad tank subjected to Northridge
earthquake, the effect of higher (6th to 20th) modes is found to be still significant as in Fig. 6. It is
due to the high spectral acceleration of Northridge earthquake in the range of 1 to 2 sec. (Fig. 4),
which corresponds to the sloshing periods of those higher modes. The results suggest that a

M̂ww

Fig. 6 Maximum sloshing height depending on number of Bessel functions included in analysis
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sufficient number of the sloshing modes have to be used in the sloshing analysis taking into account
the size of the tank and the frequency contents of the input earthquake motion. Similar results were
reported for a broad rectangular liquid storage tank subjected to an earthquake with large long
period components such as Mexico City earthquake by Choun and Yun (1999). 

Time histories of the sloshing heights for El Centro earthquake are shown in Fig. 7. It can be
observed that the sloshing motions last much longer than the duration of the earthquake excitation,
and there is a large difference between the time instances for the maximum sloshing height and the
peak ground acceleration. These are due to the long sloshing periods and the small liquid damping. 

Fig. 7 Time histories of sloshing responses using 20 sloshing modes (El Centro NS-component, 1940)

Table 3 Fundamental natural frequency ratios of steel tanks for various H /R ratios and Vs

Vs (m/sec)
Filling ratios (H/R)

0.5 1.0 2.0 3.0

914 (3000 ft/sec) 0.947 (0.952) 0.939 (0.931) 0.930 (0.931) 0.940 (0.930)
457 (1500 ft/sec) 0.863 (0.865) 0.785 (0.788) 0.782 (0.782) 0.796 (0.791)
305 (1000 ft/sec) 0.812 (0.800) 0.624 (0.643) 0.641 (0.638) 0.662 (0.646)

Notes: 1. The natural frequency ratio is defined as the ratio to the natural frequency for a rigid round case.       
        2. Values in parentheses are from Veletsos and Tang (1990).
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3.1.2 Flexible steel tank on compliant homogeneous half-space
The effectiveness of the present method is investigated for fluid-structure-soil interaction analysis

using a cylindrical tank on a compliant homogeneous half-space shown in Fig. 3c. The first natural
frequencies are computed for various height/radius (H/R) and shear wave velocities of the soil, then
those values are normalized to the natural frequency for a hard rock condition (Vs= 5000 m/sec).
The frequency ratios are compared with those by Veletsos and Tang (1990) in Table 3. Two sets of
the results are in good agreements, which indicates the validity of the present formulation for the
fluid-structure-soil interaction analysis. The results in Table 3 show that the natural frequency
decreases significantly as the stiffness of the soil decreases, and such a trend becomes more

Fig. 8 RC liquid storage tank and its meshes of finite and infinite elements 
        (Vs of compliant soil : 3 cases with 500, 800, and 5000 m/sec.) 

Fig. 9 Simulated control acceleration used as outcrop motion at the top of bedrock (PGA = 0.14 g)
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apparent for the case of a high H/R ratio. These results indicate that accurate dynamic analysis
considering the fluid-structure-soil interaction is required to achieve safe and economical designs
especially for tall tanks on soft ground condition. 

3.2 Application example flexible RC tank on a layered half-space

In order to gain insight of the soil-structure interaction effect on the member forces of a liquid
storage tank, a stress analysis is carried out for a structure depicted in Fig. 8 under various soil

Fig. 10 Maximum member force profiles for a RC liquid storage tank (Nt at θ = 0o, Nz at θ = 0o, and Ntz at θ = 90o)
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conditions. The structure is supported by a horizontal layer with the underlying bedrock. Three
values of the shear wave velocity for the horizontal soil layer, i.e., 500 m/s, 800 m/s, and 5000 m/s,
are considered in this investigation. The other material properties for the structure and soil regions
are given in Fig. 8. Ten components of Bessel functions are included in this analysis to describe the
fluid motion. An acceleration time history with PGA of 0.14 g, which is compatible with a design
response spectrum for a rock site given in Fig. 9a, is simulated for the earthquake input as in Fig. 9b.
In this analysis, the control acceleration is assigned at the top of bedrock as a horizontal outcrop
motion. Thus, seismic motion can be amplified at the ground surface depending on the properties of
the horizontal soil layer. 

Member forces are calculated on the vertical shell for three different soil conditions including
both the fluid-structure interaction and soil-structure interaction by present method, and their
maximum values are plotted along the height of the structure in Fig. 10. For the purpose of
comparison, the maximum member forces are also computed using ANSYS program (1999) for the
same structure but on a rigid ground. A fully coupled fluid-structure-soil interaction analysis cannot
be carried out by ANSYS program. In ANSYS analysis, the input ground acceleration at the fixed
base is prepared for each soil condition by carrying out the free-field analysis using SHAKE91
program (Schnabel et al. 1991). Thus, the solution by ANSYS can be considered as the response
for the same input motion but excluding the soil-structure interaction effect. Two sets of the results
for a rigid soil condition by the present and ANSYS analysis (in Fig. 10b) are found in good
agreements, which confirms the accuracy of the present analysis. The results for the softer soil
conditions in Figs. 10c and 10d indicate that the member forces on the shell reduce considerably as
the soil stiffness decreases. This result re-confirms that accurate dynamic analysis of a large liquid
storage tank considering the soil-structure interaction may yield cost-effective cross-section for the
structure.

4. Conclusions

This paper presented a fully coupled fluid-structure-soil interaction analysis technique for
cylindrical liquid-contained structures subjected to a horizontal ground excitation. A new closed-
form velocity potential solution was derived for the motion of the liquid considering the effects of
the horizontal and rocking motions of the structure, the structural flexibility, and the liquid sloshing.
The structure and the near-field soil region were modeled by the axisymmetric finite elements, while
the far-field soil regions were modeled by the axisymmetric dynamic infinite elements. Finally the
equation of motion for the fully coupled fluid-structure-soil system is obtained in the frequency
domain considering the fluid-structure interaction represented by a frequency dependent added mass
matrix.

The present method was first verified for tall and broad tanks on rigid foundation. Then accuracy
of modeling the fluid-structure-soil interaction is confirmed by comparing the natural frequencies for
various cases of cylindrical tanks on a homogeneous half-space with the reference solutions. Those
comparisons show that the proposed method can be effectively used for the seismic analysis of the
cylindrical liquid storage structures with compliant ground condition. In addition, the results of a
seismic response analysis for a liquid storage tank on a horizontal layer with rigid bedrock indicate
that accurate dynamic analysis of a large liquid storage tank including the soil-structure interaction
effects can yield cost-effective cross-section for the structure. 
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Appendix: Analytical expressions of functions and matrices

(A1) Enm(z) and  in Eq. (22) :

(A2) Coefficient matrices in Eq. (23) :

 

 

where hn is critical damping ratio for the sloshing motion (value of 0.5% is used in this study); ωsn is given
in Eq. (24);  ; and coefficients Wnj is in the nth row and jth column of matrix
W are as follows
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(A3) Shape functions in Eq. (26) and coefficients of added mass matrices in Eq. (27):

The shape function vectors in Eq. (26) are

The generalized added mass matrices in Eq. (27) are

where

in which  is a symmetric matrix with coefficients of  in its ith row and jth column as
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and coefficients  in the jth row and nth column of matrix  are given by

(A4) Infinite elements for far field region :

The horizontal, vertical and corner axisymmetric infinite elements used for the far field region in this study
are briefly described (Yun et al. 1995). The number of nodes for horizontal and vertical infinite elements is 3
along the interface with the finite element, while it is 1 for the corner infinite element as in Figs. A1-A3. The
displacement fields for the infinite elements are obtained by using the approximate wave functions for the
primary, shear and Rayleigh waves as:

where N is the number of nodes for horizontal and vertical infinite elements, while it is the number of hori-
zontal wave functions in the corner infinite element; and M is the number of wave functions included in the
formulation of the infinite element. The shape functions  are expressed as:
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Ĥ1n
J1 εn( )

εn
2

-------------- 1
λnH( )cosh

-------------------------- 1– 
 =
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and bjm(ω) is the generalized coordinate associated with ; Lj(η) is the Lagrange
interpolation function associated with node j ;  and  are wave functions obtained
from the function spaces consisting of the approximate wave functions for the primary, shear and
Rayleigh waves as follows
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Fig. A2 Shape functions for vertical element
(Njm= Lj(η)gm(ζ ))

Fig. A1 Shape functions for horizontal element (Njm = Lj(η)fm(ξ )) 

Fig. A3 Shape function for a corner element 
(Njm= fj(ξ) gm(ζ ))
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in which the functions have unit value at ξ = 0 or ζ = 0 ; α and β are positive constants, which are related to
the geometric attenuation for the surface and body waves; r0 is the horizontal distance from the origin of the
global coordinates to the horizontal infinite element; ks(ω), kp(ω), and kR(ω) are the wave numbers of the
shear, primary, and Rayleigh waves; µsR and µpR can be obtained as

 

 

and λ l , Gl , and ρ l are the material properties of the l-th layer. Real parts of the typical shape functions for the
horizontal, vertical, and corner infinite elements are shown in Figs. A1, A2, and A3.
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