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Dynamic elastic local buckling of piles 
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Abstract. A dynamic elastic local buckling analysis is presented for a pile subjected to an axial impact
load. The pile is assumed to be geometrically perfect. The interactions between the pile and the
surrounding soil are taken into account. The interactions include the normal pressure and skin friction on
the surface of the pile due to the resistance of the soil. The analysis also includes the influence of the
propagation of stress waves through the length of the pile to the distance at which buckling is initiated
and the mass of the pile. A perturbation technique is used to determine the critical buckling length and
the associated critical time. As a special case, the explicit expression for the buckling length of a pile is
obtained without considering soil resistance and compared with the one obtained for a column by means
of an alternative method. Numerical results obtained show good agreement with the experimental results.
The effects of the normal pressure and the skin friction due to the surrounding soil, self-weight, stiffness
and geometric dimension of the cross section on the critical buckling length are discussed. The sudden
change of buckling modes is further considered to show the ‘snap-through’ phenomenon occurring as a
result of stress wave propagation. 

Key words: dynamic buckling; pulse buckling; piles; high velocity impact; stress wave; perturbation;
critical buckling length.

1. Introduction

Pile foundation is one of the most important kinds of foundations used in construction engineering
(Das and Sargand 1999, Heelis et al. 1999). Traditionally, the design of a pile was based on the
satisfaction of the strength criteria. However, due to the fact that slender piles made of high strength
materials, e.g., piles made of fiber-reinforced composites (Iskander and Hassan 1998, Han and Frost
1999), are now increasingly used in engineering practices, the necessity of investigating the
instability of these piles have become evident. Under impulsive axial compressive loads, slender
piles may encounter the so-called ‘dynamic instability’ or ‘dynamic buckling’, which was, as a
matter of fact, initially found in the early 1930's.

It is considerably more difficult to solve a dynamic buckling problem than to solve static one.
Literature reviews have shown that many studies have been carried out for dynamic buckling of
columns or beams under impact loads (Lindberg and Florence 1987, Simitses 1987 & 1990,
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Karagiozova and Jones 1992 & 1996). In general, dynamic buckling models for columns or beams
fall into the following three categories: (1) nonconservative systems subjected to follower forces i.e.,
flutter, where two natural frequencies coincide with each other resulting in the amplitude of
vibrations growing without bound (see, e.g., Lee and Kuo 1991, Lee 1996, Kim and Choo 1998,
Langthjem and Sugiyama 2000); (2) parametric resonance associated with the growing transverse
vibration induced by pulsating periodic axial or tangential load (Svensson 1996, Turhan 1998, Yeh
and Chen 1998); and (3) suddenly-loaded conservative systems that are characterized by the applied
dynamic load (Hao et al. 2000, Cui et al. 1999 & 2000). The investigation presented in this paper
falls into the third category and concerns the high velocity impact buckling or “pulse buckling”
(Liderberg and Florence 1987). Most of the previous studies on dynamic buckling of columns or
beams considered almost exclusively overall buckling response at the late stage of the impact (Ari-
Gur and Elishakoff 1997, Kenny et al. 2000, Lepik 2000). In these studies, the duration of the
applied load was assumed to be sufficiently long compared with the time for a stress wave to travel
the whole length of the column. As a result, the effect of the axial stress wave propagation was not
considered. To the authors’ best knowledge, the investigations on local buckling, which is induced
by axial stress waves at an early stage of the impact, are rather limited. 

Among the others, Lee and Ettestad (1983) studied dynamic buckling of a column under given
impact velocities. Two different stages were considered: (a) before the primary axial compressive
wave front reached the fixed end, and (b) after the primary axial wave has reached the end and
reflected back several times. Wei et al. (1988) and Tang and Zhu (1998) also studied either
experimentally or theoretically the local buckling phenomenon of columns. In their studies, the
columns were assumed to be geometrically perfect since it was believed that imperfections had
negligible effects on the general behavior of local buckling modes. For piles (columns surrounded
with soils), directional instability under follower loads was studied by Burguss (1975, 1976) using
the Rayleigh-Ritz method, and by Omar (1980) using a finite difference method. Recently, Shen and
Gao (1992) studied parametric resonance of piles. Literature reviews showed that little work had
been reported in the area of dynamic local buckling of piles.

It is known that for impact loading of intermediate velocity, which is measured in mini-second
order, the dynamic buckling of an impacted bar normally occurs well after the stress wave has
reached the end of the bar and may have reflected back many times. In such a situation, the effect
of stress propagation can be ignored. The duration of the applied impact load, however, is an
important parameter that affects the buckling behavior of the bar (Hao et al. 2000). In contrast to
this, instability often occurs at an early stage of the impact before stress waves reach the end of the
bar if it is subjected to an impact load of high velocity that is measured in a micro-second order. In
consequence, the influence of stress wave propagation must be considered while the effect of impact
load duration can be neglected.

In this paper, the dynamic elastic local buckling of a geometrically perfect pile is studied. The
interactions between the pile and its surrounding soil, i.e., the normal pressure of the soil and the skin
friction acting on the pile, are fully taken into account. The self-weight of the pile is also included. A
perturbation technique is used to determine the critical buckling length and the associated critical time. 

2. Dynamical elastic local buckling of a pile

Consider a geometrically perfect pile of length l0 pumped into the earth. The interactions between
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the pile and the surrounding soil are represented by the normal pressure and the skin friction acting
on the surface of the pile (Fig. 1). It is assumed that the soil has a linearly increasing stiffness of
sub-grade reaction and the friction is uniformly distributed over the length of pile. The linear
stiffness is denoted by kσ (= mx), where m is the coefficient of sub-grade reaction and x is the
longitudinal coordinate that originates from the ground surface. The shear stress due to the skin
friction is assumed to be constant and denoted by kτ (= τ) (see, for example. Han and Frost 1999,
Heelis et al. 1999). The pile is subjected to an impact load of high velocity. Hence, it is assumed
that local buckling occurs well before the stress wave reaches the end of the pile and thus the effect
of stress wave propagation is considered. Because of the nature of the impact, the load duration is
assumed to be longer than the critical buckling time at which the initial buckling occurs and the
length of the pile is long enough so that the reflection of stress wave can be ignored.

During the course of the installation or in service, a pile may be unavoidably subjected to an axial
impact load. When the impulsive magnitude is high enough, the aforementioned local buckling may
occur. In such a situation, wave propagation and local buckling can be considered as described below.

Consider a pile subject to the following step load 

 
   (1)

where T is the impact duration and P0 is the magnitude of the impact load. To consider the local
buckling occurring within the load duration and the stress wave reaches the end of the pile, it is
assumed that  and , where tcr is the critical time when the stress wave propagates
to the section at  and the first buckling mode of the pile is observed.  is
the elastic wave velocity. E and ρ0 are, respectively, the elastic modulus and the mass density of the
pile. At an arbitrary time instance t, the internal axial force of the pile is solved from the axial
equation of motion of the pile and can be expressed as follows (Stronge 2000):

N 0 t,( )
P0 0 t T≤ ≤

0  t T>( )



=

tcr T≤ tcr l0 c0⁄≤
x = ξ c0t=( ) c0 = E ρ0⁄( )

Fig. 1 A fully embedded pile subjected to impact applied load
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  (2)

It is worthwhile to mention that the axial inertia has been included in the solution of the equation
of motion in the axial direction, while the stress wave reflections from the end of the pile and the
transmission across the interface between the pile and its surrounding soil are ignored.

The equation of motion of the pile in the transverse direction can be written as 
 

(3)

where y is the transverse deflection of the pile; b is the pile width or diameter; u is the perimeter of
the pile; A is the area of cross-section and EI is the flexural stiffness.

Various boundary conditions may be imposed on the impacted end (x = 0). One of the conditions
that are frequently used to approximate the impacted end is a clamped end (Burguss 1975 & 1976,
Shen and Gao 1992). The boundary conditions for the wave front at x = ξ, which is called “motion
edge”, is also assumed to be clamped so that the wave front compatibility conditions can be
satisfied (Lee and Ettestad 1983). As a result, the boundary conditions of the pile are

 (4)

Letting r 2 = I/A, where r is the radius of gyration of the cross-section of the pile and introducing
the following dimensionless parameters 

(5)

Eq. (3) can be written in the following dimensionless form

(6)

The boundary conditions (4), therefore, become
 

(7)

Eq. (6) can be solved by the method of separation of variables, as described below:
 

(8)

where  is an amplifying factor and  is a buckling mode. They are functions of  and
 alone, respectively.
Substituting Eq. (8) into Eq. (6) yields

N x t,( )
P0 0 x ξ≤ ≤

0  x ξ>



=

EI
∂4y
∂x4
-------- P0 ρ0gAx uτx–+( )∂ 2y

∂x2-------- mxby ρ0A
∂2y
∂t2
--------+ ++ 0=

y 0 t,( ) ∂y
∂x
----- 0 t,( ) y ξ t,( ) ∂y

∂x
----- ξ t,( ) 0= = = =

P
P0

EA
-------= y

y
r
----= x

x
r
----= ξ

ξ
r
----,=, , ,

ε1

uτ ρ0gA–( )r 3

EI
---------------------------------- ε2

mbr5

EI
------------–= t

c0t
r

------=,,=

∂4 y
∂ x 4
--------- P ε1 x–( )∂ 2y

∂ x 2
--------- ε2xy

∂2 y
∂ t 2
---------+–+ 0=

y 0 t,( ) ∂ y
∂ x
------- 0 t,( ) y ξ t,( ) ∂ y

∂ x
------- ξ t,( ) 0= = = =

y x t,( ) X x( ) T t( )=

T t( ) X x( ) t
x
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 (9)

where the primes and dots denote, respectively, differentials with respect to  and . Both sides of
Eq. (9) must be equal to a non-positive constant, −β 2, so that the transverse motion of the pile is
divergent rather than oscillatory. Thus, the following two ordinary differential equations are
obtained.

  (10)

  (11)

Accordingly, the boundary conditions for Eq. (11) are 
 

 (12)

The general solution of Eq. (10) is

   (13)

Eq. (11) is a differential equation with variable coefficients and, therefore, it is difficult in general to
seek a closed form solution. In the following part of this section, the perturbation method is used to
obtain an asymptotic solution.

It can be seen from Eq. (5) that the values of ε1 and ε2 are much smaller than unit. Hence, to form
an asymptotic solution of Eq. (11), the buckling mode can be expressed in the form of following
perturbation expansion.

  (14)

that represents a solution of the q-th order, where q = 0, 1, 2, ..., ó . 
Substituting Eq. (14) into Eq. (11) and comparing terms of equal powers of both ε1 and ε2 yield a

set of perturbation equations. They are 

 (m, n = 0, 1, 2) (15)

where the mode component  is identical to zero when either m or n is negative. For each
combination of m and n, the differential equation is solved as described below.

When m = 0 and n = 0, Eq. (15) becomes 

 (16)

and the general solution can be easily obtained as 
 

(17)

X ″″ x( ) P X ″ x( ) ε1 x X ″ x( )– ε2 x X x( )–+

X x( )
------------------------------------------------------------------------------------------------------------------ T

··
t( )

T t( )
-------------–=

x t

T
··

t( ) β 2T t( )– 0=

X ″″ x( ) P X ″ x( ) ε1 x X ″ x( )– ε2 x X x( )– β 2X x( )+ + 0=

X 0( ) X ′ 0( ) X ξ( ) X ′ ξ( ) 0= = = =

T t( ) A1chβ t A2shβ t+=

X x ε1 ε2, ,( ) ε1
mε2

n X mn x( )
n 0=

q

∑
m 0=

q

∑=

X mn
″″ x( ) P Xmn

″ x( ) β2X mn x( )+ + x Xm 1n–
″ x( ) x Xmn 1– x( )+=

Xmn x( )

X 00
″″ x( ) P X 00

″ x( ) β2X 00 x( )+ + 0=

X 00 x( ) B1 k1 xsin B2 k1cos x B3 k2 xsin B4 k2cos x+ + +=
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where k1 and k2 are real constants and defined as

 
(18)

In Eq. (18),  must be satisfied so that any exponential mode is discarded. This is in
consistence with the concept of a conservative system of the type under consideration. If β = 0, the
solution is reduced to the special case for a static buckling problem. From Eq. (18), it can be seen
that β is an important parameter that determines the wavelength and mode shape of the pile.

When m = 1, n = 0, Eq. (15) becomes 

 (19)

Eq. (19) is an inhomogeneous differential equation that can be solved after substituting Eq. (17) into
Eq. (19). The general solution is 

 

 (20)

where

     

         
 

(21)

By following exactly the same procedure, for arbitrarily selected m and n,
 

   (22)

where

 

   

                       

k1

k2 

 P + P 2 4β2–

2
-------------------------------------=

β P 2⁄≤

X 10
″″ x( ) P X10

″ x( ) β2X 10 x( )+ + x X00
″ x( )=

X 10 x( ) B1 α101 k1 xsin β101 k1 xcos+[ ] B2 α101 k1 xcos β101 k1 xsin–[ ]+=

+ B3 α102 k2 xsin β102 k2 xcos+[ ] B4 α102 k2 xcos β102 k2 xsin–[ ]+

si P 2ki
2 i 1 2,=( )–=

α10i

ki
2

si
2

---- 1

4si
2

-------–
 
 
 

x i 1 2,=( )=

β10i

ki

4si

------x2 i 1 2,=( )=

X mn x( ) B1 αmn1 k1 xsin βmn1 k1 xcos+[ ] B2 αmn1 k1 xcos βmn1 k1 xsin–[ ]+=

+ B3 αmn2 k2 xsin βmn2 k2 xcos+[ ] B4 αmn2 k2 xcos βmn2 k2 xsin–[ ]+

α01i
1

si
2

----–
1

4ki
2si

------------+ 
  x i 1 2,=( )=

β01i
1

4kisi

-----------x2 i 1 2,=( )–=

α11i
1

16si
2

----------x4
5ki

2

si
4

--------–
1

2si
3

-------–
1

16ki
2
si

2
---------------–

 
 
 

x2 i 1 2,=( )+=

β11i

5ki

6si
3

-------–
1

24kisi
2

---------------+ 
  x3

20ki
3

si
5

-----------
7ki

si
4

------- 1

16ki
3si

2
---------------–+

 
 
 

x i 1 2,=( )+=
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       (23) 
  

       

       

     

     

α20i

ki
2

32si
2

----------x4–
5ki

4

2si
4

--------
ki

2

si
3

---- 3

32si
2

----------–+
 
 
 

x2 i 1 2,=( )+=

β20i

5ki
3

12si
3

----------
ki

16si
2

----------+
 
 
 

x3
10ki

5

si
5

-----------–
13ki

3

2si
4

-----------–
ki

4si
3

------- 3

32kisi
2

---------------–+
 
 
 

x i 1 2,=( )+=

α02i
1

32ki
2
si

2
---------------x4–

5

2si
4

------- 1

2ki
2si

3
------------–

5

32ki
4si

2
---------------+ 

  x2 i 1 2,=( )+=

β02i
5

12kisi
3

--------------- 5

48ki
3si

2
---------------– 

  x3 10ki

si
5

----------–
1

2kisi
4

------------–
1

4ki
3si

3
------------–

5

32ki
5si

2
---------------+ 

  x i 1 2,=( )+=

α21i

7ki
2

32si
4

---------- 11

384si
3

-------------+
 
 
 

x5
30ki

4

si
6

-----------
65ki

2

4si
5

----------- 19

32si
4

---------- 1

32ki
2
si

3
---------------+ + +

 
 
 

x3–=

+
720ki

6

si
8

--------------
730ki

4

si
7

--------------
160ki

2

si
6

-------------- 7

2si
5

------- 1

16ki
2
si

4
---------------–

3

64ki
4
si

3
---------------+ + + +

 
 
 

x i 1 2,=( )

β21i

ki

128si
3

-------------x6
25ki

3

8si
5

-----------
49ki

48si
4

---------- 5

384kisi
3

------------------–+
 
 
 

x4–=

+
180ki

5

si
7

--------------
275ki

3

2si
6

--------------
65ki

4si
5

---------- 3

32kisi
4

--------------- 3

64ki
3si

3
---------------–+ + +

 
 
 

x2 i 1 2,=( )

α12i
7

32si
4

----------–
5

384ki
2
si

3
------------------+ 

  x5
30ki

2

si
6

----------- 25

4si
5

------- 3

32ki
2
si

4
--------------- 3

32ki
4
si

3
---------------–+ +

 
 
 

x3+=

720ki
4

si
8

--------------
470ki

2

si
7

-------------- 47

si
6

------ 3

2ki
2
si

5
------------ 5

16ki
4
si

4
--------------- 9

64ki
6
si

3
---------------–+–+ +

 
 
 

x i 1 2,=( )–

β12i
1

128kisi
3

------------------x6–
25ki

8si
5

---------- 5

48kisi
4

--------------- 11

384ki
3si

3
------------------+ + 

  x4+=

180ki
3

si
7

--------------
145ki

2si
6

------------- 7

4kisi
5

------------ 17

32ki
3si

4
---------------–

9

64ki
5si

3
---------------+ + +

 
 
 

x2 i 1 2,=( )–

α22i
1

1024si
4

----------------x8
113ki

2

96si
6

-------------- 53

192si
5

------------- 17

4608ki
2
si

4
----------------------–+

 
 
 

x6–=

+ 
985ki

4

4si
8

--------------
615ki

2

4si
7

-------------- 449

32si
6

---------- 7

48ki
2
si

5
---------------–

61

3072ki
4
si

4
----------------------–+ +

 
 
 

x4

 
13260ki

6

si
10

--------------------
14130ki

4

si
9

--------------------
15147ki

2

4si
8

-------------------- 1447

8si
7

------------ 119

32ki
2si

6
---------------–

1

32ki
4si

5
---------------–

37

1024ki
6si

4
----------------------–+ + +

 
 
 

x2 i 1 2,=( )–
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     (i = 1, 2)

By using Eqs. (14) and (22), solutions up to an arbitrary order of approximation can be constructed.
Without loss of generality, the solutions of up to the 2nd order approximation are given below.

           (q = 0, 1, 2) (24)

where 

 
 

 

 (25)

and  is the q-th order solution. To find the final solution of the problem, the buckling mode
must satisfy the boundary conditions described in Eq. (12), i.e.,

 

(26)

β22i

3ki

64si
5

---------- 1

256kisi
4

------------------+ 
  x7–

161ki
3

8si
7

--------------
271ki

32si
5

------------- 67

320kisi
5

------------------ 13

7680ki
3si

4
----------------------+ + +

 
 
 

x5+=

2210ki
5

si
9

-----------------
3725ki

3

2si
8

-----------------
7847ki

24si
7

---------------- 83

24kisi
6

--------------- 23

96ki
3si

5
---------------–

37

1536ki
5si

4
----------------------+ + + +

 
 
 

x3–

+
53040ki

7

si
11

--------------------
69780ki

5

si
10

--------------------
26322ki

3

si
9

--------------------
10821ki

4si
8

------------------- 113

8kisi
7

------------ 33

32ki
3si

6
---------------–

1

16ki
5si

5
---------------–

37

1024ki
7si

4
----------------------+ + + + +

 
 
 

x

X( ) q( ) x( ) B1 f1
q( ) x( ) k1sin x g1

q( )+ x( ) k1cos x[ ] B2 f1
q( ) x( ) k1cos x g1

q( )– x( ) k1sin x[ ]+=

+ B3 f2
q( ) x( ) k2sin x g2

q( )+ x( ) k2cos x[ ] B4 f2
q( ) x( ) k2cos x g2

q( )– x( ) k2sin x[ ]+

f i
0( ) x( ) 1; i 1 2,=( )=

gi
0( ) x( ) 0; i 1 2,=( )=

f i
1( ) x( ) f i

0( ) x( ) ε1α10i ε2α01i ε1ε2α11i ; i 1 2,=( )+ + +=

gi
1( ) x( ) gi

0( ) x( ) ε1β10i ε2β01i ε1ε2β11i ; i 1 2,=( )+ + +=

f i
2( ) x( ) f i

1( ) x( ) ε1
2α20i ε2

2α02i ε1
2ε2α21i ε1ε2

2α12i ε1
2ε1

2α22i ; i 1 2,=( )+ + + + +=

gi
2( ) x( ) gi

1( ) x( ) ε1
2β20i ε2

2β02i ε1
2ε2β21i ε1ε2

2β12i ε1
2ε1

2β22i ; i 1 2,=( )+ + + + +=

X q x( )

X 0( ) B2 B4+ 0= =

X ′ 0( ) B1 F1
q( )( )′ 0( ) B2 G1

q( )( )′ 0( ) B3 F2
q( )( )′ 0( ) B4 G2

q( )( )′ 0( )+ + + 0= =

X ξ( ) B1F1
q( ) ξ( ) B2G1

q( ) ξ( ) B3F2
q( ) ξ( ) B4G2

q( ) ξ( ) 0=+ + +=

X ′ ξ( ) B1 F1
q( )( )′ ξ( ) B2 G1

q( )( )′ ξ( ) B3 F2
q( )( )′ ξ( ) B4 F2

q( )( )′ ξ( ) 0=+ + +=
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where
 

   

Here q is the order of approximation. Eq. (26) forms a set of homogeneous linear equation system
in terms of , the characteristic determinant of which is 

 

 (27)

Eq. (27) is the characteristic determinant in terms of two independent parameters, i.e., the
dimensionless buckling length, , and the separation constant, β2. Hence, the dynamic buckling of
a pile can be uniquely defined by the associated buckling wavelength and the instant location of the
stress front. The moving stress front continuously changes the effective length over which the pile
may buckle in a local mode. For a given impact load, the pile only buckles when the stress front
arrives at a critical section, from which the distance to the impact end is measured as the critical
buckling length. 

Mathematically, buckling means that there is bifurcation in the solution of perturbation equation.
Hence, the existence of a nontrivial solution of Eq. (28) requires

 ∆ = 0 (28a)

According to Jiang et al. (1992), the dynamic modes must also satisfy 
 

(28b)

so that the obtained buckling modes do not violate the restriction of linear analysis. Eqs. (27), (28)
and (18) provide the solution for the dynamic buckling of the impacted pile, from which the critical
buckling length  and the associated critical buckling time  can be
calculated.

3. Numerical examples

As part of the validation of the present method, the buckling of a pile is studied first without
considering the interactions between the pile and its surrounding soil. The solution can be quickly
found by substituting  into Eqs. (28) and (18), i.e.,

 

F1
q( ) x( ) f i

q( ) x( ) ki xsin gi
q( ) x( ) ki x i 1 2; q 0 1 2, ,=,=( )cos+=

G1
q( ) x( ) f i

q( ) x( ) ki xcos gi
q( )– x( ) ki x i 1 2; q 0 1 2, ,=,=( )sin=

Bi i 1 … 4, ,=( )

∆ det

0 1 0 1

F1
q( )( )′ 0( ) G1

q( )( )′ 0( ) F2
q( )( )′ 0( ) G2

q( )( )′ 0( )

F1
q( ) ξ( ) G1

q( ) ξ( ) F2
q( ) ξ( ) G2

q( ) ξ( )

F1
q( )( )′ ξ( ) G1

q( )( )′ ξ( ) F2
q( )( )′ ξ( ) G2

q( )( )′ ξ( )

=

ξ

∂∆
∂ ξ
------- 0=

lcr r ξ×= tcr l cr c0⁄=

X 0( ) x( )

k1k2 β
n1n2π2

ξ 2
---------------- P

n1n2

n1
2

n2
2+

----------------= = =
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where n1 and n2 are two positive integers that are either even or odd. This solution is identical to
the one obtained by Wei et al. (1988). The dynamic buckling length and critical buckling time of
the pile are compared in Table 1 with the experimental results due to Tang and Zhu (1998). In the
calculation, the force time duration is assumed to be larger than the calculated critical buckling
time. The pile has a rectangular cross-section of 10 mm × 7.3 mm. The material properties of the
pile are E = 200 GPa and c0= 5.0 × 103 m/s. 

After the successful comparisons, the dynamic buckling of piles having different cross sections or
materials is further considered. The results are shown in Figs. 2-5 and Table 2, where  and

 are, respectively, the dimensionless impact load and critical buckling length.
First, the convergence study of the approximation solution introduced in the preceding section is

illustrated in Fig. 2, where the buckling load of a steel pile with square section is shown against the
critical buckling length. In the calculations, the following geometrical and material properties are
used.

 E = 200 GPa, ρ0 = 7800 kg/m3, τ = 20 KN/m2, m= 7500 KN/m4, A = 0.04 m2. 

The results show that the convergence rate is fast and a second order approximation is normally
sufficient to obtain a satisfactory solution. 

The parametrical study shown in Table 2 is carried out for the same pile for five cases where
different combinations of the parameters, i.e., mass, normal soil pressure and skin friction, are
considered. The five cases are listed in Table 3. 

The critical buckling lengths of the five cases for six different impact loads are obtained and

P0 EA⁄
l cr r⁄

Fig. 2 Convergence analysis of the approximation
solutions

Fig. 3 Effect of elastic modulus on the critical
buckling length of a pile

Table 1 Buckling length and buckling time for uniform section bars

P0 (KN )

19.17 21.45 27.99 33.23 35.24

lcr (mm) Tang (1998)
Present

604.80
578.20

539.48
551.88

457.29
481.30

427.79
440.67

413.04
428.05

tcr (µs) Tang (1998)
Present

120.96
115.64

107.90
110.38

91.46
96.26

85.56
88.13

82.61
85.61
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presented in Table 2. It can be observed that the results for the first two cases are very close but
substantially lower than the results of the other three cases. From this observation, it can be
concluded that the normal pressure on the pile has a predominant effect on the critical buckling
length of the pile, while the effects of other factors are negligible. 

Fig. 3 shows the dimensionless impact load against the critical buckling length for a steel pile, a
Carbon Fiber Reinforced Polymer (CFRP) pile and a Glass Fiber Reinforced Polymer (GFRP) pile,
respectively. The piles all have a square cross section of A = 0.04 m2. The normal pressure and the
shear resistance of the soil are defined, respectively, by m= 7500 KN/m4 and τ = 20 KN/m2. The
materials of the piles have the following properties: 

Steel : E = 200 GPa, ρ0 = 7800 kg/m3; 
CFRP : E = 140 GPa, ρ0 = 1600 kg/m3; 
GFRP : E =  50 GPa, ρ0 = 1800 kg/m3. 

Table 2 Critical buckling length and the associated buckling loads

P0/EA(×10−3) 1.25 1.75 2.25 2.75 3.25 4.25

lcr /r

Case1
Case2
Case3
Case4
Case5

281.25
279.55
337.65
342.60
338.46

237.68
237.27
290.40
293.20
292.76

210.08
210.05
255.80
257.00
256.60

190.13
189.90
233.20
234.20
234.13

174.48
174.20
215.55
216.30
216.18

152.58
152.40
189.60
190.00
189.94

Table 3 Cases considered in the parametric study

Mass Normal soil pressure Skin friction

Case 1
Case 2
Case 3
Case 4
Case 5

No
Yes
Yes
No
Yes

No
No
Yes
Yes
Yes

No
Yes
No
Yes
Yes

Fig. 4 Effect of geometric dimension on the critical
buckling length of a pile

Fig. 5 Effect of soil reactions on the critical buckling
length of a pile
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For all three cases, the critical buckling length increases as the applied impact load decreases. The
steel pile has the longest critical buckling length while the GFRP pile has the shortest one. This is
obviously because the steel pile has the highest elastic modulus and hence the highest stiffness. The
results show that the stiffness of a material has a significant effect on the critical buckling length. 

Fig. 4 shows the effect of the geometrical dimensions of a pile’s cross section on the critical
buckling length for steel piles having various rectangular cross sections. The piles have the same
cross section area but different values of side ratios, i.e., b/h = 1:1, 2:1 and 4:1, where h is the width
of pile’s cross section. It can be seen from Fig. 4 that a decrease of the side ratio increases the
critical buckling length. Hence, it can be concluded that subjected to the same impact load, piles
with square sections have the longest critical buckling lengths.

Fig. 5 shows the effect of the coefficient of sub-grade reaction (m= 7500 KN/m4, 15000 KN/m4

and 22500 KN/m4) on the critical buckling length for a steel pile with a square cross section. As
expected, these results show that the critical buckling length is deceased by decreasing the
coefficient of sub-grade reaction of the surrounding soil.

In dynamic buckling analysis, another important phenomenon that needs to be further investigated
in the future is as the elastic stress wave transmits along a pile surrounded by soil of uniform
stiffness, a sudden change of mode shape may occur. (Hayashi and Sano 1972) if the restrains at
both the impact end and the stress front are assumed to be rigid. This phenomenon was called
‘snap-through’ in Wei et al. (1988) and is caused by the propagation of the stress wave and the
increase of the distance between the impact end and the stress front. Table 4 shows the ‘snap-
through’ of the first four buckling modes for the steel pile with square cross section and subjected
to P0 = 1.0 × 104 KN. From Table 4, it can be seen that the value of β for the third buckling mode
drops abruptly, which indicates that a sharp decrease of buckling wavelength, and hence, a ‘snap
through’ has occurred between the second and the third modes.

4. Conclusions

A new approach for the dynamic elastic local buckling of piles subjected to high velocity impact
loads has been presented. Numerical illustrations of the method have been carried out. In the
analysis the interactions between the piles and the surrounding soil, including the influence of the
normal resistance of the soil and the skin friction along the piles, were considered. The self-weight
of piles and the stress wave propagation were also taken into account. The method is based on the
use of the perturbation technique that results in the solutions of a series of ordinary differential
equations with constant coefficients.

The numerical results obtained are the critical buckling lengths and critical buckling times for the
piles subjected to various loads and soil conditions. The results showed that dynamical elastic local

Table 4 Snap-through of the buckling modes under P0 = 1.0×104 KN

Modes I II III IV

lcr (m) 19.541 26.466 29.075 33.636

tcr (ms) 3.859 5.227 5.742 6.643

β (× 10−4) 4.039 5.031 2.878 5.501
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buckling occurred before the stress wave reached the ends of the piles. The parametric investigation
also showed that the effects of skin friction and pile’s weight on the instability were small and could
be ignored, while the elastic modulus, geometrical dimension and the coefficient of sub-grade
reaction had significant effects.

It was observed that as the stress front, where a movable rigid restrain was imposed, traveled
towards the end of the pile, a snap through occurred. This was also observed by (Hayashi and Sano
1972) where a bar with movable pinned end was considered. To have a better understanding of this
phenomenon, further research is needed. This includes a study of the effect of the surrounding soil
on the occurrence of the snap through. 
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