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integration for isotropic and laminated 
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Abstract. Formulation of an 8 nodes assumed strain shell element is presented for the analysis of
shells. The stiffness matrix based on the Mindlin-Reissner theory is analytically integrated through the
thickness. The element is free of membrane and shear locking behavior by using the assumed strain
method such that the element performs very well in modeling of thin shell structures. The material is
assumed to be isotropic and laminated composite. The element has six degrees of freedom per node and
can model the stiffened plates and shells. A great number of numerical testing carried out for the
validation of present 8 node shell element are in good agreement with references. 
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1. Introduction 

Many shell element formulations have been based on so-called ‘degenerate’ models introduced by
Ahamed et al. (1970) Whilst such elements are capable of dealing with thick plates and shell
problems, their performance deteriorates rapidly as the thickness becomes smaller, which is due to
the phenomenon called the locking. As commonly accepted, two kinds of locking phenomena may
occur in curved shear flexible bending element, namely shear locking and membrane locking. While
the shear locking may possibly occur in both flat and curved shear flexible bending element, the
membrane locking occurs only in curved thin shell. The efforts by many investigators have been
directed at overcoming the locking problem in Mindlin-Reissner type elements, thus rendering them
effective and reliable for thin plate and shell applications as well. Bathe and Dvorkin (1986)
proposed an eight-node shell element, named as MITC8, that avoids membrane and shear locking.
The strain tensor was expressed in terms of the covariant components and covariant base vectors.
The performance of this element was quite satisfactory and suggested the promising results in very
complex shell structures. Huang and Hinton (1986) developed a 9 node assumed strain shell element
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(QUAD9**). They used an enhanced interpolation of the transverse shear strains in the natural
coordinate system to overcome the shear locking problems. An enhanced interpolation of the
membrane strains was used in the local Cartesian coordinate system to avoid membrane locking
behavior. Lakshminaryana and Kailashi (1989) presented an eight node shell element (QUAD8**)
which is free of locking. In order to resolve the locking problem, they used appropriately chosen
interpolation functions based Hinton and Huang’s concept. Choi and Yoo (1990) present a
geometrically nonlinear 8 nodes shell element. They used an enhanced interpolation of transverse
shear strain in the natural coordinates, reduced integration in membrane strains and selective
addition of the nonconforming displacement modes. Kebari and Cassell (1992) have developed 9
node shell element based on a co-rotational method employing stabilization techniques. The shell
element used the reduced integration to avoid locking and shows good performance with references.
Ma and Kanok-Nukulchai (1989) developed a 9 node assumed strain shell element based on the
desirable displacement concepts and Lee and Kanok-Nukulchai (1998) extended Ma’s concept to the
laminated composite shells. The solution showed good agreement with references. Kim et al. (1998)
and Kim and Vojiadjis (1999) presented 8 node nonlinear composite shell element. In order to
eliminate locking behavior in the above shell element, the energy control formulation is used based
on the covariant base vectors which are determined at Gauss points. The shell element based on co-
rotational method is taken into account finite rotations as well.

A great number of 9 node shell element formulation are presented up to date and showed good
performance whereas only few 8 node shell element formulations are presented and performance are
not good as 9 node shell elements. The objective of this paper is to present a new formulation of
explicitly integrated 8 node shell element, which is further improved shell element presented by
Kim et al. (1998). In order to eliminate both the shear locking and also membrane locking, the
assumed strain method developed by Ma and Kanok-Nukulchai (1989) for the 9 node shell element
is applied in the natural coordinate. The present shell element with full integration has the correct
rank without zero energy modes and passes necessary testing for the reliability. The shell element
can model both isotropic and anisotropic composite material. By using six degrees of freedom per
node, the present element can model the stiffened plate and shell structures. The shell element
showed very good performance compared with references using the different assumed strain
methods in 8 nodes shell element by Bathe and Dvorkin (1986) and Lakshminaryana and Kailashi
(1989). A few selected examples are presented for the validation of the present shell element from
the various problems analyzed and compared with references. 

2. Shell element formulation

2.1 Geometry of shell element

The eight node shell element shown in Fig. 1 is described by the relation between local (r, s, t)
and natural curvilinear co-ordinate (ξ, η, ζ ) established by base vectors. The midsurface is
described by two non-dimensional coordinates ξ, η and the axis ζ is normal to the shell midsurface.
The origin of the curvilinear coordinate system is set to the center of each element, however in
general this coordinate system is not orthogonal. Hence the local orthogonal coordinate system (r, s,
t) at the center of the element is constructed. The (r, s) and (ξ, η) surface are coplanar. The base
vector (Vr, Vs, Vt) which are tangential to the local co-ordinates are defined as follows:
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where  and  are the unit covariant base vectors tangential to ξ and η.

(2)
The position vector of point P(r, s, t) located at distance t from the midsurfaceis given by 

(3)

i.e., 

(4)

where Hi(i = 1,Î, 8) is the shape function and  is the position vector of node i on the mid-
surface. The linear coordinate t lies in the range , and the thickness h is directly
interpolated from the nodes.
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Fig. 1 Mid-surface geometry and local coordinate of 8 node shell element 
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It is important to note that Vt is normal to the midsurface of the element and it is independent of
top and bottom nodal coordinates. The approximation introduced by ignoring the variation of
Jacobian through the thickness would not violate rigid body rotation requirement if Vt is used
instead of  in the definition of the geometry of the elements. 

2.2 Displacement fields

The six degrees of freedom per node are interpolated over the midsurface in accordance with 

(6)

The traditional formulation of shells consists of converting global displacement values to the local
coordinate system and then interpolated at the Gauss points. Present formulation, initiated by Kebari
and Cassel (1992) first interpolates global displacement values at Gauss points and then transfer
them to local coordinate. This method reduces the computational time.

The local motion of any point p(r, s, t) is approximately defined by the Mindlin-Reissner theory
based on the first order approximation.

 (7)

The local variables can be interpolated as the global six degrees of freedom per node over the
mid-surface in accordance with 

(8)

where the direction cosine of the new local axes (r, s, t) with respect to the global axes (x, y, z) are
defined by [T] matrix. 

(9)

Combining equations from (6) to (9), the global translation by the transformation from local to
global can be written using the definition of position vector. 
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where  and  are the global displacement and rotation vector theta which
is a function of nodal values as defined in Eq. (6) on the mid-surface respectively. The
transformation matrix Θ has the form.

(11)

where lt, mt, nt are components of the unit vector Vt. 

2.3 Strain-displacement relationship

In order to express the strains in terms of nodal displacements, the local strain components should
be transformed into the global co-ordinates. By using the interpolation functions, the strain and
displacement relationships are obtained as follows:

The linear strain-displacement relations in local Cartesian orthogonal coordinate systems are given
by the usual equations. 

  

(12)

The local displacement can be expressed in terms of local direction cosine, form Eq. (9) as

(13)

where  and .
The local strain component is transformed in terms of global transitions. 
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To compute the derivative of global displacements with respect to curvilinear system, the surface
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(15)

Hence, using the inverse of the surface Jacobian matrix, the following relation is obtained.

(16)

where

(17)

After the transformation of Eq. (14) and the introduction of the interpolation functions, the strain
can be calculated as, 

           
 

                 (18)
   

Similarly, each strain terms based on the theory of first order shear deformation, the following
strain-displacement relationship is obtained,

              (19)

where 

(20)

The above Eq. (19) can be rearranged as given in the following compact form, separating the
membrane, bending and transverse shear strain terms respectively, 
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          (21)

 
where  and  are the strain-displacement matrix due to membrane, bending and
transverse shear, respectively.

2.4 Transverse shear locking

Various methods have been proposed by a number of researchers to overcome the shear locking of
thin plates and shells as presented in introduction. Among various method presented, the assumed
strain method has been successfully used for the finite element formulations based on Mindlin-
Reissner theory in order to overcome shear locking problem. To overcome the shear locking
problems in thin shell many researchers used both reduced integration and selective integration.
However such methods have rank deficiency and zero energy modes. In order to solve this problem,
the assumed strain method using the full integration is adopted in the present study to eliminate not
only locking problems but also zero energy modes. Bathe and Dvorkin (1986) interpolated the
transverse shear strains in terms of covariant components to remove the shear locking in 8-node
shell element by using 5 sampling points. Lakshminaryana and Kailashi (1989) interpolated the
transverse shear strains in the natural coordinates and also used 5 sampling points. However, in the
current element, the transverse shear strain fields are interpolated using 6 sampling points in the
natural coordinates. 

The transverse shear strain components are converted to the natural coordinate system by the
following relation. 

(22)

where εαβ is the strain tensor in the natural coordinate system and εij is the strain tensor in the local
coordinate system. Then transverse shear strains in the two coordinate systems can be expressed as
follows (see appendix 1):
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obtained by transforming back to local coordinate using Eq. (25). 
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 (24)

(25)

where i and j in Eq. (24) indicate the sampling points.
On the other hand, in order to control the transverse shear energy for thin plate and shell using

reduced integration, the shear locking factor denoted by Ψ has been defined using the energy
balance formulation as

(26)

where ea and eb are edge length and width of the element and φ is a stiffness control constant which
is determined numerically Kim and Vojiadjis (1999). For an element of arbitrary shape,  and 
can be replaced by,

 
(27)

where the covariant base vectors (Vr, Vs) given in Eq. (1) are determined at the Gauss points. For
thick plate and shell elements with a shear locking factor greater than unity, this factor is reset as

γ̃ξς Pi ξ( )Qj η( )γξς
i j

j 1=

3

∑
i 1=

2

∑= γ̃ης Pi η( )Qj ξ( )γης
i j

j 1=

3

∑
i 1=

2

∑=

ε̃r t

ε̃st 
 
 

∂ξ
∂r
------ ∂η

∂r
------

∂ξ
∂s
------ ∂η

∂s
------

γ̃ξς

γ̃ης 
 
  Γ11 Γ12

Γ21 Γ22

γ̃ξς

γ̃ης 
 
 

B̃q
i

H̃q
i U i

θ i
 
 
 

= = =

Ψ φh2

1 ν–
------------ 1

ea
2

---- 1

eb
2

----+ 
 =

ea
2 eb

2

ea
2 Vr Vr⋅=

eb
2 Vs Vs⋅=

Fig. 2 Sampling points



An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells395

one, since such elements do not require the use of any shear locking factors. 

2.5 Membrane locking 

The problem of membrane locking has been reported in many literatures (Belytschko et al. 1989
and Huang and Hinton, 1986), in addition to the shear locking in modeling of the curved shell
problems. The membrane locking in curved shell elements occur due to the instability of simulating
adequate membrane strains. When serendipity element is used to model curved shells, the elements
exhibit a tendency to produce spurious membrane effects under pure bending. This phenomenon is
known as membrane locking and the effects can be improved by reduced integration. However, the
reduced integration of an 8 node shell element does not give an accurate solution in highly curved
shells in which the membrane effects are dominant. Lakshminaryana and Kailashi (1989) assumed
the membrane strains in the local coordinates to remove the membrane locking and used 6 sampling
points for eξη. Bathe and Dvorkin (1986) assumed the inlayer strains in terms of covariant base
vectors with 8 sampling points for the membrane strains. In the current element, the membrane
strain fields are interpolated in the natural coordinates and compared with the results of the eight-
node shell element by Bathe and Dvorkin, and Lakshminaryana and Kailashi in the numerical
examples. 

The membrane strains in the local coordinate are first converted to the natural coordinate based on
Eq. (22). (see Appendix 2) 

 (28)
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points, and  is calculated at four sampling points shown in Fig. 2. The assumed natural strains

 have the same interpolation scheme as  and  respectively shown in Eq. (24). The
interpolation of  is different due to having 4 points instead of 6 points and is given by, 

(29)

The desired membrane strain is transformed from natural coordinate to local coordinate by inverse
transformation of the Eq. (28) and expressed as the following relations.

(30)

eζζ

eηη

eξη 
 
 
 
 

∂r
∂ξ
------ ∂r

∂ξ
------ ∂s

∂ξ
------ ∂s

∂ξ
------ 2

∂r
∂ξ
------ ∂s

∂ξ
------

∂r
∂η
------ ∂r

∂η
------ ∂s

∂η
------ ∂s

∂η
------ 2

∂s
∂η
------ ∂r

∂η
------

∂r
∂ξ
------ ∂r

∂η
------ ∂s

∂ξ
------ ∂s

∂η
------ ∂r

∂ξ
------ ∂s

∂η
------ ∂s

∂ξ
------ ∂r

∂η
------+ 

 

err

ess

ers 
 
 
 
  J11

2
J12

2 2J11J12

J21
2 J22

2 2J21J22

J11J21 J12J22 J11J22 J21J12+

err

ess

ers 
 
 
 
 

= =
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The assumed natural membrane strain can be expressed as follows:

(31)

2.6 Constitutive relation

The resultant membrane forces, moments and transverse shear forces are obtained by integration
of stresses through the thickness. The directions of the strain resultants are shown in Fig. 3.

When the entire section is elastic, then the isotropic rigidity matrix reduces to the following form.
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(33)

The orthotropic stress strain relationship of anisotropic laminated composite for the k-th layer
(Laminae Coordinate shown in Fig. 4) is given by appendix 3.

The resultant membrane forces (N), moments (M) and transverse shear forces (Q) acting on a
laminated composite are obtained by integrating the stresses through the laminate thickness. The
compact incremental constitutive relationship of the laminated composite are given as follows: 

(34)

where
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where NL is the total number of layers and the derivation of  is shown in Appendix 3. In the
case of laminated composite materials, there is a need to define adequately the effective transverse
shear stiffness for a wide range of material properties and laminate geometry. Several methods have
been suggested and stated that the displacement mode must also be considered in order to determine
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effective shear modulus for laminated composite structures. Reddy (1987) developed the so-called
layerwise theories, which use piecewise polynomial distribution (zig-zag function) of the membrane
displacements in the thickness direction and provide a very good approximation of the transverse
shear stresses. Rolfes and Rohwer (1997) developed a method based on the first-order shear
deformation theory for calculating improved transverse shear stresses in laminated composite plates.
The basic idea is to calculate the transverse shear stresses directly from the transverse shear forces
by neglecting the influence of the membrane forces and assuming two cylindrical bending modes. 

This is an area where further work is clearly needed, especially if the numerical models are used
in the analysis of thick structures. The current study is mainly dealing with the linear response
analysis. The Reissner’s value of 5/6 is used for the transverse shear correction factor in the finite
element formulations.

2.7 Element stiffness matrices 

In practice Hook’s law is only applicable to linear strain and hence the coefficients of constitutive
tensor are constant. The following strain energy ( ) is obtained using the linear strain assumption,

(36)

where  is elastic constant,  is strain displacement matrix and .
The element stiffness matrix is written as follows:
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Kanok-Nukulchai (1979) used an additional constraint to link the torsional rotation (ϕt) to the
average in-plane rotation of the mid-surface. Adopting the continuum mechanics definition, the
constraint equation can be written as

(39)

In practice, because the above Eq. (39) will make the element stiffness too stiff, using the penalty
function approach the amount of strain energy that corresponds with the drilling strain can be
adjusted to the appropriate level. The first drilling stiffness matrix (KD1) associated with Ed is given
by

(40)

where G is the shear modulus,  is a penalty function constant and the strain-displacement matrix
relation is as follows:

(41)

In addition, a very soft rotational spring, aligned with local normal at each gauss point, may be
used. This leads to the second stiffness matrix (KD2) for the drilling degree of freedoms.

(42)

where ϖ2 is spring stiffness. Then, the two stiffness matrices of drilling degree of freedom can be
added to the linear stiffness matrices. The adding of the two stiffness to restrain the torsional mode
produces a convergence solution in the curved shell which the membrane effect is significant.

3. Numerical example

The general purpose package (FINAS) was developed in Imperial college, London for the
nonlinear analysis of thin-walled structures on a UNIX environment. At present, the development of
an extended version of FINAS, named as XFINAS, is on going at AIT. The new version will
include non-linear dynamic analysis and will run on the Window 2000 Operating System in a
personal computer. 

The patch test, distortion test and other various numerical tests of the present shell element named
as SHELL8* are carried out and validated using XFINAS . All the results of the shell element
showed very good agreement with references. Several examples are given to demonstrate the
efficiency and accuracy of the present shell element. Most of the results presented here are
normalized with the analytical solution, i.e., the ratio of the values obtained from SHELL8* to the
theoretical values. The analysis data are reduced to a letter grade by the following rule proposed by
MacNeal and Harder (1985), as follows:

Ed ϕt
1
2
--- ∂v

∂r
----- ∂u

∂s
------– 

 – 0= =

KD1 ϖ1Gh Bd
TBddS

s

 ∫=

ϖ1

Bd
1
2
--- giVr f iVs–( )  H iVt

i 1=

8

∑=

KD2 ϖ2 VtVt
TdS

s

 ∫=
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3.1 Morley hemispherical shell with 18o hole problem

MacNeal and Harder (1985) proposed the hemispherical shell problem for the validation of shell
elements, which is shown in Fig. 5. The results are shown in Table 2U The value of the displacement
at the loading point given by MacNeal and Harder (1985) is 0.094. As noted for this problem, the
membrane locking is more severe than the shear locking. This problem is a challenging test to the
ability of a shell element to overcome membrane locking over most of the shell. Because of the
symmetry, only one quadrant of the problem is modeled. In contrast to poor performance of the
NASTRAN QUAD8 using full integration, the solution using reduced integration has better
performance, but shows convergence over the unit value. The comparison of the normalized
displacement of the SHELL8* solution with the solution given by in the references shows that the

Grade Rule

A
B
C
D
F

2 %û error
10 %û errorû 2%
20 %û errorû 10 %
50 %û errorû 20 %
error>50 %

Fig. 5 Spherical shell, radius = 10.0 : thickness = 0.04, E = 6.825×107, ν = 0.22; mesh =N×N, loading : concentrated
forces

Table 2 Hemispherical shell with 18 degree hole problem

QUAD8:Full
[MacNeal]

QUAD8:Reduced 
[MacNeal]

QUAD8**
[Lakshminaryana

& Kailashi] 

QUAD9**
[Huang & Hinton]

SHELL8*
[XFINAS]

0.006 (4×4) 0.194 (4×4) 0.034 (2×2) 0.0863 (2×2) 0.45 (4×4) 
0.069 (8×8) 0.895 (8×8) 0.383 (8×8) 0.538  (4×4) 0.86 (6×6)
0.210 (12×12) 1.005 (12×12) 0.765 (12×12) 0.948  (8×8) 0.97 (8×8)
0.373 (16×16) 1.008 (16×16) 0.940 (16×16) 0.99 (10×10)
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SHELL8* formulation performs better than the others.

3.2 Scordelis-Lo roof problem

The Scordelis-Lo roof under uniformly distributed load is shown in Fig. 7. This problem is useful
in evaluating the ability of an element to deal with complex states of membrane strain. The exact
solution is 0.3024 as quoted from MacNeal and Harder (1985). Because of symmetry, only one
quarter of the problem is modeled. The normalized vertical deflection at point A is given in Table 3.
Similar to the results of the hemispherical shell, the results of NASTRAN QUAD8 (in reference by
MacNeal, 1994) using the reduced integration is better than that using full integration, but it shows

Fig. 7 Scordelis-Lo roof = 25.0; length = 50.0; thickness = 0.25; E = 43.2×108, ν = 0.0; loading; 90.0/unit area

Table 3 Deflection at center of free edge of Scordelies-Lo’s roof 

QUAD8:Full
[MacNeal]

QUAD8:Reduced 
[MacNeal]

QUAD 8**
[Lakshminaryana 

& Kailashi] 

MITC8
[Bathe & Dvorkin]

SHELL8*
[XFINAS]

0.486 (4×4) 0.984 (4×4) 0.8739 (2×2) 1.15    (2×2) 0.747 (2×2)
0.841 (8×8) 0.997 (8×8) 0.9762 (4×4) 1.005  (4×4) 0.99   (4×4)
0.956 (12×12) 0.996 (10×10) 0.9787 (8×8) 1.0003 (8×8) 1.0    (8×8)

Fig. 6 Mesh convergence of Morley hemispherical shell
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an oscillating convergence. The result in Table 3 shows very good performance of the proposed
element in contrast to references. 

 
3.3 Pinched cylinder with end diaphragms problem

The pinched cylinder with end diaphragms is shown in Fig. 8. This is one of the most severe tests
of an element’s ability to model both inextensional bending and complex membrane states.
Belytschko et al. (1989) pointed out the difficulty in passing this test and quoted that an element
that passes the diaphragm support test problem will perform well when the boundary condition is
simplified to a free boundary. The exact solution is 0.18248×104. The displacement normalized to
the exact solution in Table 4 showed that the present shell element does not suffer from both shear
and membrane locking and converged faster.

3.4 Plate bending problem with clamped boundary condition

The clamped rectangular plates subjected to a uniform distributed loading are carried out for
aspect ratio of 1.0. The plates are modeled by employing quarter symmetry. The finite element mesh
of 4×4 elements is used for all the cases. In order to identify the limitation of shear locking due to
the thickness, linear analysis with various cases of thickness is carried out. The central deflection

Fig. 8 Pinched cylinder with rigid end diaphragm (R= 300., L = 600., E = 3.0×106, ν = 0.3, h = 3.0, P = 1.0) 

Table 4 Pinched cylinder with diaphragm 

MITC8
[Bathe & Dvorkin]

9-node shell 
[Belytschko et al.]

S9R5
[ABAQUS]

SHELL8*
[XFINAS]

0.952 (5×5) 0.737 (4×4) 0.657 (4×4)
0.990 (8×8) 0.961(8×4) 0.862(8×4)
0.999 (10×10) 0.999(16×4) 1.004 (9×9) 0.997 (8×8)
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theory from thin plate theory with clamped edges by Timoshenko and Woinowosky-Krieger (1959) is

where q is a uniform loading intensity, a is length and D is rigidity.
Table 5 shows the performance of the proposed element is good in the case of very thin plates

with an aspect ratio 1.0. Since the thickness is reduced as very thin, the solutions using the full
integration become deviated in comparison with the analytical solutions. However, the solution
using the reduced integration based on the energy control formulation by Kim (1998) and showed
very good performance in very thin plates. The above Table suggested guide lines for the case of

δ 0.00126qa4

D
---------------------------- 0.72576E 3–= =

Table 5 The normalized plate bending solution with clamped edges

Thickness ratio SHELL8* (Reduced) SHELL8* (Full)

h/a= 0.01
h/a= 0.009
h/a= 0.008
h/a= 0.007
h/a= 0.006
h/a= 0.005
h/a= 0.004
h/a= 0.003
h/a= 0.002
h/a= 0.001

1.002
1.002
1.002
1.002
1.002
1.002
1.002
1.002
1.002
1.002

0.992
0.989
0.985
0.979
0.970
0.956
0.930
0.888
0.770
0.50

Fig. 9 Tip displacement of a cantilever beam: length = 6.0, width = 0.5; h = 0.1, E = 1.0×107, ν = 0.3

Fig. 10 Twist beam length = 12.0, width = 1.1; depth = 0.32; twist = 90o, E = 29.0×106; ν = 0.22; mesh = 12×2 
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plate bending problems. Again the proposed element for plate bending problems showed good
performance for clamped edges.

3.5 Cantilever beam problem

MacNeal and Harder (1985) suggested three separate cantilever beam tests that evaluate sensitivity
to various deformation patterns and distortions of the element geometry, i.e., a) a straight beam, b) a
curved beam and c) a twisted beam. Descriptions of the straight and twisted beam problems are
provided in Fig. 9 and Fig. 10. Benchmark solutions are also given in Table 6. 

3.5.1 Straight beam problem
A cantilever beam with a 6×1 mesh is tested to investigate the proposed element by employing

four different loadings, i.e., a) extension loading, b) in-plane loading, c) out-of-plane loading and d)
twisting, at the free end.

Table 7 summarizes the solutions of tests in comparison with the references. This element
performs well for extension and out of plane shear loading, and in-plane shear and twisting loading
are close to exact solution.

3.5.2 Twisted beam problem

Table 6 Benchmark solutions for beam problems [MacNeal and Harder]

Tip load direction
Displacement in direction of load

Straight beam Twisted beam (t = 0.32)

Extension
In-plane shear
Out-of-plane shear
Twist

3.0×10−5

0.10810
0.43210

   3.208×10−4

-
0.005424
0.001754

-

Table 8 Result of twisted Cantilever beam

Problems QUAD8
[MacNeal]

QUAD8**
[Lakshminaryana & Kailashi]

SHELL8*
[XFINAS]

In-plane shear 0.998 0.993 0.989
Out of plane shear 0.998 0.985 0.996

Table 7 Result of straight Cantilever beam

Problems QUAD8:Reduced
[MacNeal]

QUAD8**
[Lakshminaryana & Kailashi]

SHELL8*
[XFINAS]

Extension 0.999 0.998 0.997
In-plane shear 0.987 0.985 0.964
Out of plane shear 0.991 0.996 0.980
Twist 0.95 0.944 0.940
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The twisted beam in Fig. 10 was subjected to two loading conditions, i.e., a) in-plane loading and
b) out-of-plane loading, at free end to test the effect of element warping. Table 8 shows very good
performance of the proposed element both loading cases. 

3.6 Cook’s tapered and swept panel problem

The tapered and swept panel with one edge clamped and the other edge loaded by a distributed
shear force was analyzed to further test the in-plane behaviour of the proposed element.

This problem was used by Cook and many other researchers to test the sensitivities of finite
elements due to geometric distortions. The reference solution for the vertical displacement at point c
is taken to be 23.90 (Yunus et al. 1989). While results of all the elements considered converge to
the reference solution, very good solutions of the proposed element are shown in Table 9.

3.7 A simply supported laminated spherical shells under a uniform pressure.
 
The linear analysis of double curved laminated composite shells under a uniform loading is

carried out using 4×4 meshes. The shells have simply supported boundary conditions. The lay-up
considered are nine layers cross-ply (0o/90o/0o/90o/0o/90o/0o/90o/0o) shells. One is with the total
thickness h = 0.01 m and the other is with h = 0.001 m. The radius of the curved panel is R= 10 m.
The geometric and material data of graphite/epoxy composite used are:

                   EL = 2.67×1011 N/mm2, ET = 5.1713×109 N/mm2

GLT= 3.1028×109 N/mm2, G13= G23= 2.5856×109 N/mm2, νLT = 0.25

Fig. 11 Cook’s tapered and swept panel problem, E = 1.0 ; ν = 1/3; h = 1.0 

Table 9 Result of Cook’s beam

4-node shell by
Simo et al. 

9 node shell
[Ma] 

SHELL8*
[XFINAS]

0.883 (4×4) 0.930 (2×2) 0.961 (4×4)
0.963 (16×16) 0.985 (4×4) 0.990 (6×6)
0.991 (64×64) 0.998 (8×8) 1.0    (8×8)
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The load intensity f0= 1.0×103 N/m2 for the thick panel and f0 = 1.0 N/m2 is for the thinner shell
panel. One quarter of the laminated shell panel is modeled. And the center deflection of the shell
panel using 4×4 meshes is compared with the non-dimensional form . The
present results show very good agreement with analytical solutions in the thin shells.

4. Conclusions

In order to improve the previous work by Kim et al. (1998) and Kim & Vojiadjis (1999), a new
eight-node assumed strain shell element is developed for linear analysis of beam, plate and shell
structures. The present assumed strain method completely removed both membrane and shear
locking behavior even when full integration is used in the formulation. In contrast to MITC8 of
ADINA and QUAD8 of NASTRAN, this element is accurate and computationally efficient due to
the explicit integration through the thickness. In addition, this explicit formulation can be extended
for nonlinear analysis and significantly reduce the computational time. The introduction of an
explicit transformation scheme in the constitutive equation makes it possible to deal with both
isotropic and orthotropic materials. The present formulation is well compatible with the drilling
degree of freedom, which can be used the modeling of the stiffened shell structures. From several
numerical examples, the present shell element shows better performance in compared with other
shell elements. The present assumed strain methods could be easily implemented into finite element
code and used for the practical purpose. The future work will address the extension this work to the
nonlinear static and dynamic analysis of shell structures and improved transverse shear deformation

W WcELh3 f0a4⁄=( )

Table 10 The non-dimensional center displacement of spherical shells for cross-ply laminate

h/a 4 node shell
[Wang & To]

4 node shell 
[Somashekar et al.]

SHELL8* 
[XFINAS]

Analytical sol.
[Noor & Mathers]

0.01  (f0 = 1.0×103) 

0.001 (f0= 1.0)
 2.717×10−5

   5.89×10−5
2.727×10−5

5.985×10−5
2.723×10−5

5.864×10−5
2.713×10−5

5.916×10−5

Fig. 12 The double curved spherical shell segment, R= 10 m, a = 1.0 m, h = 001 m, 0.001 m 
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study of composite laminate structures. 
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Appendix 1 

The local coordinate is expressed as  and .

  (43)

From Eq. (22), the transverse shear strain  can be expanded as follows: 

                  

                        

                  (44)

Appendix 2 

                   

                         

                          (45)

With a similar method 
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Appendix 3

     (47)

 (48)

where the stiffness coefficients of Cij are defined as follows:

(49)

Since, composite structures are typically built up with the fibre directions of each layer orientated at differ-
ent angles, the following transformed stress and strain relations apply for a lamina orientated at an angle ϑ
with respect to a general coordinate system r-s.

(50)
where

(51)

and m and n in Eq. (51) are

m = cosϑ
n = sinϑ (52)

where ϑ is a fibre angle.
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Notation

_ 
: bar over : value measured at midsurface

x, y, z : global coordinate system
r, s, t : local coordinate system
ξ, η, ς : natural coordinate system
i : superscript referring to node number i
m, b, q : subscript referring to membrane, bending and transverse shear respectively
P : position vector
Hi : shape function at node i
T : direction cosine of the new local axes with respect to the global axes 

: global translation of the midsurface
: global rotation of the midsurface

 : local translation of the midsurface
: local rotation of the midsurface
: global displacement
: local displacement

Vr, Vs, Vt : base vector tangential to the local co-ordinates
em, eb, eq : linear part of the membrane, bending and transverse shear strain vector

: transverse shear strains in the natural coordinates
N, M, Q : resultant membrane forces (Nr, Ns, Nrs), moments (Mr, Ms, Mrs), and transverse shear forces

(Qr, Qs)
A, B, D, : membrane, membrane-bending, bending and transverse stiffness matrix respectively
Cij : material stiffness tensor
Ke : element stiffness matrix
dS : surface area element
EL, ET : Young's modulus along longitudinal (L) and transverse (T) axes of a single lamina.
GLT : in-plane shear modulus of a single lamina
G13, G23 : transverse shear modulus in the plane 1-3 and 2-3
ν, νLT : Poisson’s ratio

U U V W, ,( )=
θθ θx θy θz, ,( )=
u u v w, ,( )=
ϕ ϕr ϕs ϕt, ,( )=
U U θ,( )=
u u ϕ,( )=
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