
Structural Engineering and Mechanics, Vol. 13, No. 3 (2002) 261-276 261

Mixed finite element model for laminated 
composite beams

Y.M. Desai† and G.S. Ramtekkar‡

Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

Abstract. A novel, 6-node, two-dimensional mixed finite element (FE) model has been developed to
analyze laminated composite beams by using the minimum potential energy principle. The model has
been formulated by considering four degrees of freedom (two displacement components u, w and two
transverse stress components σz, τxz) per node. The transverse stress components have been invoked as
nodal degrees of freedom by using the fundamental elasticity equations. Thus, the present mixed finite
element model not only ensures the continuity of transverse stress and displacement fields through the
thickness of the laminated beams but also maintains the fundamental elasticity relationship between the
components of stress, strain and displacement fields throughout the elastic continuum. This is an
important feature of the present formulation, which has not been observed in various mixed formulations
available in the literature. Results obtained from the model have been shown to be in excellent agreement
with the elasticity solutions for thin as well as thick laminated composite beams. A few results for a
cross-ply beam under fixed support conditions are also presented.
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1. Introduction

The ever-increasing use of composite materials in advanced technology areas, where precision and
reliability play a paramount role, demands a clear understanding of their behaviour and performance
under severe operating conditions. An understanding of failure due to delamination is of considerable
importance. It has been concluded from many investigations that the high interlaminar shear stress
on the free edge of angle-ply laminates can cause edge delamination (Pipes and Pagano 1970), as
can the interlaminar normal stress in cross-ply laminates (Rybicki 1971). Thus, delamination has
become a problem of significant concern in any analysis and design of advanced fibre-reinforced
composite structures. A theory that can predict all of these stresses accurately is necessary for a
clear understanding of the failure mechanism involved in the delamination of laminated composites.

The behaviour of composite laminates can be characterized by a complex three dimensional state
of stress, evidencing high interlaminar stresses caused by the inherent anisotropy and mismatches of
material properties of such structural members (Jones 1975). Elastic solutions for layered plates
(Srinivas and Rao 1970, Pagano 1970, Pagano and Hatfield 1972) indicate that interlaminar
continuity of transverse normal and shear stresses as well as displacement fields through the
thickness of the plates are essential requirements for their analysis. Thus, a layer-wise analysis is
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often required for laminated composite structures. Various displacement based layer-wise theories
and finite elements (FEs) have been proposed by Reddy (1987), Soldatos (1992), Wu and Kuo
(1993), Wu and Hsu (1993) and others. These theories and corresponding finite element models
have been reported to provide satisfactory results for both global (e.g., deflections and flexural
stresses) and local values (e.g., transverse stresses) of thin and thick laminates. However, in all these
models only the continuity of displacement fields through the thickness was satisfied. The continuity
of transverse stress components at the interface could not be enforced.

A layer-wise mixed finite element model with displacement and transverse stress components as
primary variables can easily satisfy the requirements of transverse stress continuity in addition to the
continuity of displacement fields through the thickness of the laminated composite structure.
Transverse stress components can be evaluated directly through such a mixed FE model. Thus,
integration of the equilibrium equations can be avoided. This is helpful as they involve differentiation
of in-plane stresses and displacement fields, thereby introducing further approximations in the
calculation of transverse stresses. Wu and Lin (1993), for example, presented a two-dimensional
mixed finite element scheme based on a local high-order displacement model for the analysis of
sandwich structure, where displacement continuity conditions at the interface between layers were
regarded as the constraints and the interlaminar stresses were introduced as the Lagrange multiplier.
Shi and Chen (1992) developed a three-dimensional mixed FE model based on a global-local
laminate variational model. The model proposed a mixed use of a hybrid element within a high
precision stress solution region in the thickness direction of the laminate and a conventional
displacement finite element in the remaining. Carrera (1996, 1998, 1999), has done extensive work
on the development of a mixed finite element model. Firstly, a mixed plate element was developed
(Carrera 1996) as an extension to a Co Reissner-Mindlin plate element by using Reissner’s mixed
variational principle, in which the zig-zag variation of in-plane displacement fields through the
thickness was ensured by including additional terms in the standard Reissner-Mindlin displacement
model, whereas the transverse displacement field was kept unchanged. Stress degrees of freedom
were introduced by assuming transverse shear stress fields. As a further development, Carrera
(1998, 1999) also introduced the transverse normal stress field into the FE model. Because of the
fact that in any mixed finite element model developed by using Reissner’s variational principle, the
stress fields are assumed independently of the displacement fields, the fundamental elastic relations
cannot be satisfied exactly.

A 6-node plane stress mixed finite element model has been developed in the present formulation,
by using the minimum potential energy principle. The transverse stress quantities (σz and τxz) are
invoked from the assumed displacement fields by using the fundamental equations of elasticity.
Thus, the model presented here differs from the previous FE models in the following ways:
(1) Fundamental elastic relations between stress and displacement fields at all the points of an elas-

tic continuum have been maintained in the present FE model. 
(2) The model satisfies exactly the requirements of through-thickness continuity of transverse stress

components and continuous displacement fields. Thus, it can appropriately model a composite
laminated structural member of any number of lay-ups of different materials (i.e., N-layered FE
model).

(3) The formulation is simple and has a greater physical appeal as the model is based on the mini-
mum energy principle.

(4) Because the transverse stress components are the nodal degrees of freedom in the present FE
model, their computation does not require the integration of equilibrium equations, which normally
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reduces the accuracy of these stress quantities.

2. Theoretical formulation

An anisotropic composite laminated beam consisting of N-layers of orthotropic laminae shown in
Figs. 1(a, b) has been considered for finite element analysis. The beam has been discretized into a
number of plane stress elements. Each element lies completely within a lamina; no element crosses
the interface between any two successive laminae.

2.1 Kinematics

A six-node plane stress mixed finite element model shown in Fig. 1c has been developed by

Fig. 1 (a-c) Geometry of laminated beam and mixed finite element
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considering the displacement fields u(x, z) and w(x, z) having quadratic variation along longitudinal
axis x and cubic variation along transverse axis z. The displacement fields can be expressed as

 (1)

 (2)

where (3)

Further, the generalized co-ordinates ami and bmi (m = 0, 1, 2, 3; i = 1, 2, 3) are functions of element
coordinate axis ‘z’. The element’s coordinate axes x, z are parallel to the laminate coordinates X, Z.

It may be noted that the variation of displacement fields has been assumed to be cubic along the
thickness of element although there are only two nodes along ‘z’  axis of an element (Fig. 1c). Such
a variation is required for invoking transverse stress components  and  as the nodal degrees-
of-freedom in the present formulation. Further, it also ensures parabolic variation of transverse
stresses through the thickness of an element.

2.2 Constitutive equations

Each lamina in the laminate has been considered to be in the state of plane stress in X-Z plane so
that the constitutive relation for a typical ith lamina with reference to the coordinate system can be
shown to be

 (4a)

Here (4b)

(4c)

 

 (4d)

The coefficients Dmn are the reduced elastic constants. 

2.3 Finite element formulation

The transverse stresses can be obtained from the constitutive equations, Eq. (4a) and the strain
displacement relations as

 (5) 

 (6)
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Eqs. (5) and (6) respectively, can be rearranged in the following form

 (7)

 (8)

Substituting Eqs. (1), (2), (7) and (8) at each node of the element, the following expressions for the
displacement fields u(x, z) and w(x, z) can be obtained 

 (9)

 (10)

where ‘n’ is the node number (1, 2,…, 6) of the element, shown in Fig. 1c. un and wn are the nodal

displacement degrees-of-freedom and  and  contain nodal transverse stress degrees-of-

freedom. That is how nodal transverse stress terms (i.e., stress degrees-of-freedom) are brought into
the expression of displacement fields. Further,

i = 1, 2, 3 for the nodes with ξ = −1, ξ = 0 and ξ = 1, respectively.
η = z/Lz; q = 1, 2; p = 3, 4; for the nodes with η = −1 and η = 1, respectively.

 (11)
 f1 = ;  f2 = ; (11)

 f3 = ;  f4 = ; 

Eqs. (9) and (10) can be rewritten in the standard finite element form as 

 (12a)

where (12b)

 (12c)

Further,
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n, i, q and p are same as expressed in Eq. (11). Furthermore,

 (15)

The total potential energy Π of the laminated beam can be obtained from

 (16)

where {pb} is the body force vector per unit volume, and {pt} is traction load vector acting on an
edge of the laminated beam.

The strain vector {∈} and the stress vector {σ} can be expressed as 

{ ∈} = [B]{ q} (17)

and (18)

Here (19)

with 

(20)

 

n, i, q and p are same as expressed in Eq. (11). Further,

(21) 

Minimization of the total potential energy functional, Eq. (16), yields the element property matrix
[K]e and the element influence vector {f } e as

 (22)

 (23)

The global equation can be obtained in the following form, after assembly

[K]{ Q}={ F} (24)

where [K], {Q} and {F} are, respectively, the global property matrix, the global degrees of freedom
vector and the global influence vector.
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3. Numerical results and discussion

A computer program incorporating the present two-dimensional mixed theory has been developed
in FORTRAN-90 for the analysis of symmetric/unsymmetric composite and sandwich laminated
beams. Numerical computations have been performed for various examples. Results have been
compared with the available closed form elastic and finite element solutions wherever these are
available in the literature.

Numerical investigations have been undertaken for a homogeneous orthotropic beam and two
symmetric cross-ply laminated beams, simply supported at the ends and a fixed supported
symmetric cross-ply laminated beam. All the beams are subjected to sinusoidal transverse load on
their top surface. The boundary conditions and the material properties are tabulated in Tables 1 and
2, respectively. Only half of the beam has been considered in the analysis, exploiting symmetry. The
intensity of sinusoidal loading can be expressed as

 (25)

where q0 represents the peak intensity of distributed load.
The elastic solution for composite laminates under cylindrical bending by Pagano (1969), and

various other analytical and finite element solutions available in the literature have been used for
proper comparison of the results obtained through the present analysis. The present formulation was
found to yield converging results for simply supported beams, by considering 6 to 8 elements along
X-direction of the beam, along with the discretization of the thickness (i.e., along Z-direction) in

q̂ X( )=q0sin
πX
a

-------

Table 1 Boundary conditions

Boundary conditions for cross-ply laminated beams (simple support condition)

 Edge B.C. on displacement field B.C. on stress field

 i) At X = 0 w = 0 −
 ii) At X = a/2 u = 0 τxz = 0
 iii) At Z = t/2 − σz = (X), τxz = 0

 iv) At Z= -t/2 − σz = τxz = 0

Boundary conditions for cross-ply laminated beams (fixed support condition)

 Edge B.C. on displacement field B.C. on stress field

 i) At X = 0 u = w = 0  −
 ii) At X = a/2  u = 0 τxz = 0
 ii) At Z = t/2 − σz = (X), τxz = 0
 iii) At Z= -t/2 − σz = τxz = 0

Table 2 Material properties of Graphite/Epoxy composite (Pagano 1969)

 E1 = 172.4 GPa (25×106 psi) E2 = 6.89 GPa (106 psi)
 G12 = G13 = 3.45 GPa (0.5×106 psi) G23 = 1.378 GPa (0.2×106 psi)

ν12 = ν13 = ν23 = 0.25

q̂

q̂
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such a way that the ratio Lx/Lz in an element was between 10 to 15. On the other hand, 6 to 8
elements along X-direction of the beam, along with the Lx/Lz ratio in an element to be between 40
to 50 was found suitable for convergence of the results while dealing with the fixed support
condition.

The following normalization factors have been used in all the numerical examples considered here
for a comparison of the results.

 

 (26)

Illustrative numerical examples considered in the present work have been discussed next.
Example 1. A homogeneous orthotropic beam with fibers oriented along the X-direction, simply

supported at the ends and subjected to sinusoidal loading on the top edge has been considered in
numerical investigations. The variation of normalized transverse displacement ( ) with different
aspect ratios, s, has been presented in Fig. 2a, whereas the variation of normalized in-plane normal
stress ( ) and transverse shear stress ( ) through the thickness for aspect ratio, s = 4 have been
presented in Figs. 2b and 2c, respectively. Results from elasticity analysis (Pagano 1969) and higher
order theory (Manjunatha and Kant 1993a) have also been presented in all the figures. Results
obtained through the present formulation show excellent matching with the elasticity solutions
presented by (Pagano 1969), thereby validating the methodology adopted for the formulation of the
present mixed finite element model.

Example 2. A two-layered cross-ply (0o/90o) laminated beam, simply supported at the ends and
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

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


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Fig. 2 (a) Variation of normalized transverse displacement ( ) with aspect ratio s (s = a/t) at (a/2,0) for a
simply supported homogeneous orthotropic beam under sinusoidal loading.

w
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subjected to sinusoidal loading (Eq. 25) on the top edge has been considered in this example. Both
layers have identical thickness. Table 3 presents a comparison of normalized maximum transverse
displacement, in-plane stress and transverse shear stress for the simply supported beam with s= 4,
10. Elastic solution by (Pagano 1969), and analytical/FE results obtained by Engblom and Ochoa
(1985), Wen-Jinn and Sun (1987), Lu and Liu (1992), Manjunatha and Kant (1993b), and Simpi and
Ghugal (1999) have been employed for comparison. The results from the present analysis have been
found to match extreamly well with the elastic solutions as compared to any other solutions
presented by various researchers. Variation of the normalized transverse displacement ( ) against
the aspect ratio ‘s’ has been presented in Fig. 3a. The variation of normalized in-plane normal stress
( ), transverse normal and shear stresses (  and ) and in-plane displacement ( ) through the

w

σx σz τxz u

Fig. 2 (b, c). Through-thickness variation of normalized (b) in-plane normal stress ( ) and (c) transverse shear
stress ( ) for a simply supported homogeneous orthotropic beam with s=4 under sinusoidal loading

σx

τxz

Table 3 Comparison of maximum transverse displacement, in-plane stress and transverse shear stress for
simply supported laminated beam under sinusoial loading (lamination scheme: 0o/90o)

Aspect
Ratio
‘s’

Stress/
Displace-

ment

Present
Analysis

Elasticity 
Solution
[Pagano 
1969]

Engblom 
and Ochoa 

1985

Wen-Jinn 
and Sun 

1987

Lu and
Liu

1992

 Manjunatha & Kant 
1993b

Direct Integration

Shimpi and 
Ghugal
1999

HOSTB7 HOSTB8

4

 (a/2,t/2) 3.8247 3.8359 2.9821 − 3.5714 3.7500 3.7680 3.9650

 (a/2,-t/2) −29.9383 −29.9745 −27.7932 − −30.0000 −26.9700 −26.9200 −30.2980

 (max.) 2.7500 2.7300 − − − 2.8230 2.8220 −
  (a/2,0) 4.7636 4.7675 − 4.5950 4.7773 4.2839 4.2903 4.7431

10

 (a/2,t/2) 19.7709 − − − 20.0000 19.6700 19.7300 19.8999

 (a/2,-t/2) −175.9950 − − − 175.0000 −173.1000 −173.0000 −176.8700

 (max.) 7.5670 − − − − 7.2850 7.2840 −
  (a/2,0) 2.9540 2.9568 − 2.9520 3.0000 2.8947 2.8965 2.9743

Note: − represents result not available

σx

σx

τxz

w

σx

σx

τxz

w
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Fig. 3 Variation of normalized (a) transverse displacement ( ) with aspect ratio s (s=a/t) at (a/2,0); (b) in-
plane normal stress ( ); (c) transverse normal stress ( ); (d) transverse shear stress ( ); and (e) in-
plane displacement ( ); through the thickness of a simply supported cross-ply (0o/90o) laminated beam
with s= 4, under sinusoidal loading

w
σx σz τxz
u
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thickness of the beam with s = 4, on the other hand, have been shown in Figs. 3b through 3e.
Almost all the results have been found to match very well with the elastic solutions given by
Pagano (1969). The variation of transverse normal stress ( ) in Fig. 3c clearly shows that the
equivalent single layer based displacement formulation by Manjunatha and Kant (1993a) under-
predicts the stress, whereas the present model yields results matching the elastic solution. Thus, it
can be concluded that the present formulation is well able to handle such beams.

Example 3. A static analysis of a three-layered cross-ply (0o/90o/0o) laminated, simply supported
beam, with equal thickness of each layer, has been considered in this example. The beam is
subjected to sinusoidal loading (Eq. 25) applied at the top edge. The normalized maximum
transverse displacement ( ), in-plane normal stress ( ) and transverse shear stress ( ) for the

σz

w σx τxz

Table 4 Comparison of maximum transverse displacement, in-plane stress and transverse shear stress for
simply supported laminated beam under sinusoial loading (lamination scheme: 0o/90o/0o)

Aspect 
Ratio 
‘s’

Stress/
Displace-

ment

Present
Analysis

Elasticity 
Solution
[Pagano 
1969]

Lo et al. 
1978

Spilker
1982

Engblom 
and 

Ochoa 
1985

Toledano & 
Murakami 

1987

Manjunatha & Kant 
1993b

(Direct Integration)

HOSTB3 HOSTB4

4

 (a/2,t/2) 18.7523 18.6102 − − 10.0090 − 13.8900 13.9400

 (a/2,-t/2) -18.0497 -18.0023 − − -10.1081 − -13.8900 -13.9600

 (max.) 1.6000 1.5974 1.5555 1.5636 1.7734 − 1.6630 1.6620

  (a/2,0) 2.8400 2.8600 − 2.8410 − 2.8810 1.9705 1.9602

10

 (a/2,t/2) 73.4453 73.6000 − − 63.7344 − 67.4000 67.4100

 (a/2,-t/2) -73.4042 -73.2000 − − -63.4025 − -67.4000 -67.4200

 (max.) 4.2510 4.2346 − 4.5292 4.4590 − 4.3950 4.3950

  (a/2,0) 0.9336 0.9568 − 0.9312 - − 0.7491 0.7479

Note: ‘−’ represents result not available

σx

σx

τxz

w

σx

σx

τxz

w

Fig. 4 (a) Variation of normalized transverse displacement ( ) with aspect ratio s (s = a/t) at (a/2,0) for a
simply supported cross-ply (0o/90o/0o) laminated beam under sinusoidal loading

w
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simply supported laminated beam (with s = 4, 10) have been presented in Table 4, where the results
obtained through the present analysis have been compared with elastic solutions by Pagano (1969)
and various analytical/FE solutions given by Lo et al. (1978), Spilker (1982), Engblom and Ochoa
(1985), Toledano and Murakami (1987), and Manjunatha and Kant (1993b). The present results

Fig. 4 Variation of normalized (b) in-plane normal stress ( ); (c) transverse shear stress ( ); (d) transverse
normal stress ( ); and (e) in-plane displacement ( ); through the thickness of a simply supported
cross-ply (0o/90o/0o) laminated beam (s = 4) under sinusoidal loading

σx τxz
σz u
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show the closest match with the elastic solutions, which underlines the superiority of the present
model over the previous models. The variation of normalized transverse displacement ( ) with
different aspect ratios has been shown in Fig. 4a while the variation of normalized in-plane normal
stress ( ) and transverse normal and shear stresses (  and ) through the thickness of the beam
with s = 4, have been presented in Figs. 4b through 4d. Moreover, the variation of the in-plane
displacement field ( ) through the thickness of laminated beams with aspect ratios 4, 6 and 10,

w

σx σz τxz

u

Fig. 4 (f, g) Variation of normalized (f) in-plane displacement ( ) with s= 6; and (g) in-plane displacement
( ) with s= 10; through the thickness of a simply supported cross-ply (0o/90o/0o) laminated beam
under sinusoidal loading

u
u

Fig. 5 (a) Variation of normalized (a) transverse shear stress ( ) through the thickness of cross-ply (0o/90o/
0o) laminated beams subjected to sinusoidal loading and supported on fixed supports at the ends

τxz
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respectively, have been presented in Figs. 4e, 4f and 4g. It is shown that the results from the present
theory are in very good agreement with the elastic solution (Pagano 1969). It is also noted that the
hybrid stress model of Wen-Jinn and Sun (1987) has yielded good results (Fig. 4b), but the
displacement-based models (Lo et al. 1978, Engblom and Ochoa 1985, Manjunatha and Kant
1993a) have not been able to predict the in-plane and the transverse stresses (Figs. 4b, 4c, and 4d)
as well as the variation of in-plane displacement field . This highlights the superiority of mixed/
hybrid models over displacement-based models for the analysis of laminated structures. 

Example 4. A fixed-supported cross-ply (0o/90o/0o) laminated beam with equal thickness of each
layer has been considered to provide new benchmark solutions and also to show the ability of the
present formulation to handle the problems with high stress gradients. It has been observed that 6 to
8 elements along X-direction of the beam, along with the Lx/Lz ratio in an element to be between 40
to 50 was found suitable for convergence of the results. Variations of transverse shear and normal
stresses (  and ), and in-plane normal stress ( ) through the thickness of the beams (with s =
4 and 10) have been presented in Figs. 5(a-c). A very high stress gradient at the layer interface can
be observed under the fixed-support condition for the transverse shear stress ( ) (Fig. 5a). 

4. Conclusions

A novel methodology for the formulation of a mixed finite element model has been proposed in
this paper. It ensures the fundamental elasticity relationship between stress, strain and displacement
fields within the elastic continuum. To the authors’ knowledge, it is the first of its kind of mixed
finite element model, which has been developed by using minimum potential energy principle.
Because a layer-wise mixed finite element formulation has been developed with the transverse stress
components as the primary variables, both the primary requirements of the continuity of transverse

u

τxz σz σx

τxz

Fig. 5 (b, c) Variation of normalized (b) transverse normal stress ( ); and (c) in-plane normal stress ( );
through the thickness of cross-ply (0o/90o/0o) laminated beams subjected to sinusoidal loading and
supported on fixed supports at the ends

σz σx
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stress and layer-wise continuity of displacement fields, have been satisfied. Excellent agreement of
the results with the elasticity solutions suggests that the formulation is well able to deal with
laminated composite beam problems under different support and loading conditions. One such
example of a cross-ply beam under fixed support condition depicts the ability of the formulation to
deal with high stress gradients in the variation of transverse stresses.
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Notation

1, 2, 3 : Local co-ordinate system of lamina (material principal directions)
X, Z : Global co-ordinate system of beam
x, z : Local co-ordinate system of plane stress element
ξ, η : x/Lx and z/Lz respectively
α : Inclination of fibers of a lamina with the positive direction of laminate X-axis, measured in

anticlockwise direction
a, b, t : Length, width and depth (thickness) of beam, respectively 
N : Number of layers with different material properties, which constitute a beam
2Lx, 2Lz : Length and depth of an element, respectively
E1, E2, E3 : Young’s modulii of lamina in the material principal directions
G12, G13, G23 : Shear modulii of lamina in the three orthogonal planes
Dij : Coefficients of constitutive matrix with reference to beam’s and element’s reference axes (i.e., X,

Z and x, z)
u, w : Displacement components along element’s reference direction x and z respectively at a point (x,

z)
σx, σz, τxz : Components of stress at a point with reference to element’s reference axes

: Components of strain at a point with reference to element’s reference axes
Πe, Π : Total potential energy of an element and beam respectively
[K]e, [K] : Element property matrix and global property matrix respectively
{ f } e, [F] : Element influence vector and global influence vector respectively 
{q}, { Q} : Element’s and global nodal degrees-of-freedom vector respectively 

: Distributed transverse load and intensity of transverse loading
s : Aspect ratio (i.e., a/t)

: Non-dimensionlized thickness of beam/ plate (i.e., Z/t)
: Non-dimensionlized displacement fields
: Non-dimensionlized stress components

 ∈x,   ∈z, γxz

q̂, q0

Z
u, w
σx, σz, τxz




