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Abstract. Composites exhibit larger dispersion in their material properties compared to conventional
materials due to larger number of parameters associated with their manufacturing processes. A C° finite
element method has been used for arriving at an eigenvalue problem using higher order shear deformation
theory for initial buckling of laminated composite plates. The material properties have been modeled as
basic random variables. A mean-centered first order perturbation technique has been used to find the
probabilistic characteristics of the buckling loads with different edge conditions. Results have been
compared with Monte Carlo simulation, and those available in literature.
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1. Introduction

Laminated composite panels/plates are being widely used in a great variety of engineering
applications in aeronautical, mechanical, chemical and other industries over the past two decades.
The main reasons for this trend are the outstanding mechanical properties of composites, such as
high strength to weight ratio, excellent corrosion resistance and very good fatigue characteristics. Its
ability to allow the structural properties to be tailored according to requirements adds to versatility
of composites for sensitive applications.

Classical (Kirchhoff) plate theory has been widely used to model plate behaviour, but is adequate
only for thin laminates. Since the ratio of the in plane elastic modulus to the transverse modulus is
large for composites plates. Kirchhoff theory, which neglects transverse shear deformation, is
usually inadequate for the analysis of thick or moderately thick composite plates. Many plate
theories have been proposed to include the effect of shear deformation, of which the laminated
version of the first order shear deformation theory (FSDT) developed by Reissner (1945) and
Mindlin (1951) is the simplest. This theory assumes a linear distribution of the in -plane normal and
shear stresses over the thickness, which results in nonzero transverse shear stresses. Higher-order
shear deformation theories (HSDT) can overcome the limitations of the FSDT by introducing
additional degrees of freedom (DOF). The HSDT proposed by Reddy (1984) not only accounts for
transverse shear effects but also produces a parabolic variation of the transverse shear stress through
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the thickness of the plate.

Considerable research has been done to characterize the buckling response of structures made of
composites. Much of the work on buckling response is based on deterministic analysis (e.g., Ghosh
and Dey 1994, Moita et al. 1996). Relatively very little work has been reported on the buckling
response of structures made of composites with random system parameters. Laminated composite
plates have random system parameters, such as material properties as a large number of factors are
associated with their manufacturing and fabrication processes. So for accurate modeling of system
behaviour, it is logical to model the system parameters as random.

Ibrahim (1987) and Manohar and Ibrahim (1999) reviewed number of topics on structural
dynamics with parameter uncertainties. Nakagiri et al. (1990) have studied simply supported (SS)
graphite/epoxy plates with stochastic finite element method (SFEM) taking fiber orientation, layer
thickness and number of layers as random variables, and found that the overall stiffness of fiber
reinforced plastic (FRP) laminated plates is found out to be largely dependent on the fiber
orientation. Leissa and Martin (1990) have analyzed the free vibration and buckling of rectangular
composite plates and have established that variation in fiber spacing or redistribution of fibers tend
to increase buckling load by 38 percent and the fundamental frequency by 21 percent. Englested
and Reddy (1994) studied metal matrix composites based on probabilistic micro mechanics
nonlinear analysis. They have used Monte Carlo simulation (MCS) with different probabilistic
distributions to incorporate the uncertainty in basic material properties. Vinckenroy and Wilde
(1995) in the first part of their work have established a procedure to obtain the best fit for each
material property. Further, they have studied the behaviour of the perforated plate and determined
the probability distribution of the response. The input variables have been simulated using MCS and
SFEM. Salim et al. (1998) used the first order perturbation technique (FOPT) with Rayleigh-Ritz
formulation to analyze the bending, buckling and vibration of composite plates using classical
laminate theory. The RR method can be used only for regular boundary problems. This limitation
can be overcome by using FEM.

Yadav and Verma (1997) have studied the buckling response of thin cylindrical shells with
random material properties using classical laminate theory and have employed the FOPT for
obtaining the second order statistics of the buckling loads. Lin and Kam (2000) have studied the
probabilistic failure analysis of transversely loaded laminated composite plates using the first order
second moment method. They have modeled the system parameters as random variables (RVs)
since, for composite laminates made with prepreg tapes; they have observed very small spatial
variability of system parameters.

Singh et al. (2001) have analyzed the buckling analysis of laminated cross-ply cylindrical panels
with random material properties for all edges simply supported using classical laminate theory,
FSDT and HSDT. They have employed first order perturbation technique to obtain the second order
statistics. The exact method for mean analysis has been considered. The proposed exact method can
only be used for cross-ply panels with all edges simply supported.

The contribution of this paper is the application of a C° finite element in conjunction with first
order perturbation technique to outline a procedure for the buckling analysis of laminated composite
plates with random material properties. The third order shear deformation theory proposed by
Reddy (1984) is used. The material properties are treated as basic random variables (Lin and Kam
2000) in the stochastic finite element analysis for determining the second order statistics of buckling
loads in laminated composite plates with various boundary conditions.
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2. Formulation
2.1 Displacement field

The rectangular laminated composite plate analyzed is shown in Fig. 1. In the present work the
higher order shear deformation theory (Reddy 1984) has been employed to study buckling response
of composite laminated plates of thickness 4 and subjected to inplane loads. The displacements
along x, y and z directions for arbitrary composite laminated plates are (Reddy 1984)

it ()0 AL

v =v+ﬁ(z)%+ﬁ(z>%”; T (1)

where (u, v, w) are displacements along the (x, ), z) coordinates, (u, v, w) are the corresponding
displacements of a point on the middle surface, and @, and ¢, are the rotations at z=0 of normal
to the mid-surface with respect to the x and y axes, respectively. The f(z) and f,(z) are
represented as,

fi(z)=Cz=C,2 and fo(z) = —C,z". 2)
Where C,, C, and Cy are constants. The values of these constants are,
C=1G=C=—. (3)
3h

From Eq. (1), it is seen that the expressions for in plane displacement % and v involve the
derivatives of out of plane displacement w . As a result of this, second order derivatives would be
present in the strain vector, thus necessitating the employment of a C' continuity for finite element
analysis. The complexity and difficulty involved with making a choice of C' continuity are well
known. This is circumvented by expressing the displacement field in the following form (Shankara
and Iyengar 1996):

o

Y
X

Fig. 1 Geometry of plate element
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u=u+tfi(2)@+ /()0
v=v+fi(2)@ /()0 w=w; (4)
where,
w g O
6, = o and 6, = - Q)

It can be seen that the number of degrees of freedom (DOF) per node, by treating 6, and 6, as
separate DOFs, increases from 5 to 7 for the HSDT model. However, the strain vector will be
having only first order derivatives, and hence a C° continuous element would be sufficient for the
finite element analysis.

2.2 Strain-displacement relations

The strain-displacement relations are obtained by using small deformation theory. The strain
vectors corresponding to the displacement field given by Eq. (1) are

£.= 6 +z(K +2°K); £, =& +2(K + 2 K);
£.= & 12Ky E.= &Ky £, & +z(Kg+2°Kg), (6)
where
0o_ Ou b _ o, _ 20, _ . 96,
81 d 5 Cl dx 5 _CZ 0x C4 0x s
v 008 o
82 0)/ s Cl dy s Cl ¢x a 5
29, 00 0
Cza_yy_ C47yz; & =C, (B)"'a_w; =3G,0-3C,6,;
_ . 0_Ou 0Ov % 07(PXEL
=3Ga-3G6; &= ﬁy+(9x -G Ox oy
0% 900 . 96, 06
Cofize * 3,0 C4liay T 3,0 @)

2.3 Strain energy

Using the stress-strain relations, the elastic strain energy of a laminated composite plate can be

expressed in terms of strain alone as

= 3, (&Y D) g}a;

where

— 000 0 0 0 2 2 0 0 1 14T
{€} =1[¢& & & K| K, Kq K; K2K§5455K4K5]3

(8)

©)
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(411 [B] [E] 0 0
[B] [D1][F1] 0 ©
[DI=|[E] [F1] [H] O O |5 (10)
0 0 0 [42] [D2]
L0 0 0 [D2][F2]]
with
N
(A1, By, D1y, By Fly HYy = 5 [ 00(1, 2,2, 2, 2%, 2°) dz fori, j=1,2,6;  (11)
k=1
(42, D2, F2,;) = z [ o oW1, 2, 2" dz fori,j=4,5. (12)

k=1

where Q(,k) are the transformed reduced stiffness coefficients of the kth lamina
2.4 External work done

The work done by the in plane forces in producing out of plane displacement ‘w’ in domain of

small displacements is,

=3l {Nx%?”ﬁw B0 2N, B e

- éL (13)

where, N,, N, and N,, are in plane forces.

Ow O
Ny Ny 0 0d4;
N, N w.,0

2.5 Finite element model

With advent of computers, finite element method (FEM), has been found to be a very versatile
tool for solving complex, real life problem. In the present study, nine noded isoperimetric
Lagrangian elements have been employed. The governing equations are developed using variational
approach.

2.5.1 Prebuckling analysis
The displacement field model given by Eq. (1) may be represented as,

{u} = [N]{A}; (14)

where,

{uy ={uvw
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1 00 0 f,(z) 0 fi(2)
[NI=]0 1 0f4@(E 0 fiz) 0|
001 0 0 0 0
{ANY=[uvw$,06 qal (15)

As mentioned earlier, an isoparametric element is employed for finite element modeling. For this
type of element, the displacement vector and the element geometry are represented by the same
interpolation functions.

NN
(A} =3 84N} (16)
i=1
NN
= ¢:x;
X iZI X
NN
y= Z ¢y (17)

where @, is the interpolation function (Hinton and Owen 1984) for the i node, { A}, is the vector
of unknown displacements for the i node, NN is the number of nodes per element and x; and y; are
Cartesian coordinates of the i™ node.

The strain vectors given in Egs. (7) and (9) may be written as

{&} =[LI{A}; (18)

where, [L] is a differential operator (Shankara and Iyengar 1996).
The functional is computed for each element and then summed over all the elements in the
domain to get the total functional for the domain. Following this, Eq. (8) can be written as

NE
U= U™
2

=3 3fo(E DI A (19)

where, NE is the number of elements.
From Egs. (16), (18) and (19), we get

U= {A LKA} (20)
Here [K]“ is the element bending stiffness matrix

[K1” = 3 [ ., [BB)'[D][BB]dA. 1)
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Here [BB] is strain displacement matrix for the /" node (Shankara and Iyengar 1996).
The element stiffness can be obtained from Eq. (21) by transforming expression in x, y coordinate
system to natural coordinate system &, 1 and adopting numerical integration (Gaussian quadrature).

2.5.2 Buckling analysis
Using finite element notation, Eq. (13) may be rewritten as

NE ©
W= w
eZI
NE
I[N, N w0
=) 2L,<> © g T Odd; (22)
el DWyEl N, N, |, O
we have,
Ow .0
O " 0= [LJ{A}; (23)
vyO
where,
00 % 0000
[L]= p " (24)
00 g} 0000
Hence Eq. (23) may be rewritten as
<0
0 "0=[L,] z ¢ N}
Y O i=1
= [BBJ{A}" (25)
Here { A} ) is the elemental displacement vector and
[BB,] = [[BB,][BB,,]...... [BByyyl] (26)
with
[BBgi] = [Lg] ¢i' (27)

Adopting similar steps as given in sub section 2.5.1 for prebuckling analysis, Eq. (22) may be
written as

W' = {A} T(e)A*[Kg](e){ A} () (28)
Here,
N,=A'NL; N,=ANys Ny = AN

and A" denotes the buckling load parameter which is a function of the deterministic applied loads
as shown above and the [K,]“ is the elemental geometric stiffness matrix given by,
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AT

xy y

@ _1 N{ Ni
[Kg] - 5 4@ [BBg]T{ N?}[BBg]dA- (29)

Adopting numerical integration, the element geometric stiffness can be obtained.
2.6 Governing equations

The governing equations for buckling analysis can be derived by using the principle of Total
Potential Energy (TPE). This gives

NU+7V)=0. (30)

where potential energy V'=—-W.
Substituting Egs. (20) and (28) in Eq. (30), ones obtain as:

g} IKI{ g ~{q'} A [KJ{q"}) = 0; 31)

where,

NE
{q"} = z {A}) - Global displacement vector
e=1

NE
[K] = z [K] ) — Global bending stiffness matrix

e=1

NE
(K] = z [Kg](e) — Global geometric stiffness matrix
e=1

Eq. (31) can be represented as
[[K]1-AK]1{q"} = 0. (32)
The stiffness matrix [K] is decomposed as
[K1=[V1'10T;s (33)

With [V] being a nonsingular matrix.
Eq. (32) can be written as a standard eigenvalue problem form (Kleiber and Hien 1992)

[41{q} = M q}; (34)
with
A=1/A";
[4] = V][R IIVT
{q} =["{q}. (35)
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Eq. (34) is the governing equation for buckling analysis of laminated composite plates. Finally, the
problem reduces to solving a standard eigenvalue problem. In deterministic environment, solution of
this equation yields the critical inplane load. However, in random environment, further analysis is
required to obtain the solution.

Since the matrix [4] is random in nature involving uncertain material properties, the eigen values
A and eigen vectors {g} also become random. Eq. (32) can be solved with the help of perturbation
analysis or Monte Carlo simulation to obtain the second order statistics of the buckling load for
laminated composite plates with different boundary conditions.

3. Solutions- perturbation technique

We consider now a class of problems where the random variation is very small as compared to
the mean of the material properties. Properties of most engineering structures, including composites
belong to this class. Further, it is quite logical to assume that the dispersion in derived quantities
like [A4], A and {g} are also small as compared to their mean values.

A random variable (Nigam 1983) may be broken up as the sum of its mean and zero mean
random part as

[4] = [A]+[4]; A=2A+A"; {q} ={a}+{q'}; (36)

where over bar denotes the mean value and superscript ‘#’ denotes the zero mean random part.
Substitution of Eq. (36) in Eq. (34), yields

([A1+[4D g+ g}) = A+ADU g +Ha}) (37
The perturbed eigenvectors are normalized by using the form (Franklin 1968)
{4} = 3 (C{a} with (Cj=0). (38)
k=1

where the Cj, for j# k are the small coefficient.
If the components of the matrix [4"] are very small, as discussed earlier, Eq. (37) becomes

Zeroth order: [41{ g} = A {q}; (39)
First order: [A1{ g} +[4A U g} =2 {g}+A{q}}. (40)

To compute the unknowns A; and {¢;} we will use the principle of biorthogonality (Franklin
1968). Let {g,}.{g.},...,{g,} be the eigen vectors corresponding to the distinct eigen values
ALy Azyeeey A, of an nxn matrix [4]. Assume A;#A;. Let {vi},{Va},..., {V,} be the eigen
vectors corresponding to the eigen values A{ , A,', ..., A, of [ZT] then

({61}3{ Ul})ioa ({éz}a{ V]}):O (fOI‘l?‘-']), (17]:152’ Tt n) (41)

To solve Eq. (40), we will use the eigenvectors { vV}, { V2},..., { V.} of [4 T] . By normalization
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at Eq. (38), the perturbation {g;} is a combination of {g,} for j# k. Therefore, ({¢;}.,{V;}) = 0.
Now Eq. (40), yields (Franklin 1968)

X = ((ADLa} Lo/ Aa} A7) (=1L ccan) “2)

For the present case, as discussed earlier, [4], A and {¢} are random because of the material
properties. Let by, b,, ..., b, denote the random material properties. Following Eq. (36), b; can be
expressed as

b.=b;+Db. (43)

The stochastic finite element method based on the perturbation technique has been found to be
accurate and efficient (e.g., Kareem and Sun 1990, Kleiber and Hien 1992, Vanmarcke and Grigoriu
1983). According to this method, the random variables [4], A and {q} are expressed by Taylor’s
series expansion. The expression, with center at the mean value of b; and keeping only up to first
order terms, is

A=Y Abi {gy =Y {gab [41=3 [4]b]; (44)
i=1 i=1 i=1

where, i denotes partial differentiation with respect to b;.
Using Egs. (42) and (44), we have

A= {4 a}, {vH)da) () (j=1,..n); (45)
The covariance of the eigen value can now be expressed as
Cov(AA) = 3 Y Auidpk Cov(biby); (46)

i=1 k=1

where Cov(b,,b,) is the covariance between b; and b;.

4. Numerical results and discussion

The method outlined has been used to obtain the second order statistics of the buckling load of
laminated composite plates with random material properties. All of the laminae are assumed to be
of the same thickness and made up of the same material. Though the approach is valid for different
lamina thickness and material properties, the assumption reduces the size of the problem and results
in many fold reductions in the calculation efforts. The results have been compared with Monte
Carlo simulation and those available in the literature. A nine noded Langaragian isoparametric
element, which result in 63 DOFs for the HSDT model, was used for discretizing the laminate. The
nine noded Langaragian elements were found to be quite stable and full and reduced integration
rules did not have any significant effect on the results for thick plates. Hence, all the results
reported in this work have been obtained by employing the full (3 % 3) integration rule. Based on
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convergence, a (4 x4) mesh has been used throughout for the study. The following non-dimensional
buckling load has been used in this study

Nc,, = Ncrbz/(Ezth)

The results for laminated composite square plates with three stacking sequences, [30°/-30%30%
-30°), [45°-45%45%-45"] and [60%-60/60°/-60°] with CCCC, CFCF and SSSS boundary
conditions where, for example, CFCF implies at x =0, clamped; x=a, clamped; y =0, free; y =25,
free, are presented for the ratio of the SD to mean of material properties varying from 0 percent to
20 percent (Liu et al. 1986) for b/h=75 and 10 subjected to inplane compressive load along y
direction. The lamina material properties Ejy, Ey, Gz, Vi, Gz and Gy; are modeled as random
variables (Lin and Kam 2000). Here Ej; and E, are longitudinal and transverse elastic modulii,
respectively. Gy, is in plane shear modulus, Gi; and Gy are out of plane shear modulii and vy, is
the Poisson ratio. These RVs are selected as

bi=E, by=Ey, by =Gy, by= G3, bs= Gy3, and b= V5.

The following dimensionless mean orthotropic material properties have been used in the present
investigation (e.g., Noor 1975, Putcha and Reddy 1986, Reddy and Khdeir 1989): E;;=40E»,
G12=0.6E», G»=0.5E» and V;,=0.25. It is assumed that G3=G» and V;3=V,, for the above
material (Putcha and Reddy 1986).

The boundary conditions for clamped, simply supported and free edges used for the present
investigation are given as:

All edges clamped (CCCC):

u=v=w=@=9=6,=6,=0,atx=0,aand y=0, b;
All edges simply supported (SSSS)
v=w=0,=@=0,atx=0,a;u=w=6,=¢=0,at y=0, b;
Alternate edges clamped and free (CFCF):
u=v=w=@=0=6,=6,=0,atx=0,a, uzvZwz @z @9#6,#26,70,y=0, b.

4.1 Validation study

4.1.1 Mean buckling load

The accuracy of the proposed finite element model is validated by comparing the results with
those available in the literature. The nondimensionalized mean buckling loads for a [0°/90°], [0%/90%
0°%90°] and [0°90°/0°/90°/0°/90°] all edges simply supported antisymmetric cross-ply square plate
subjected to axial compressive load has been obtained with length to thickness ratio a/h=10 by
using higher order shear deformation theory. The results are presented in Table 1 and compared
with those obtained with other methods (e.g., Noor 1975, Putcha and Reddy 1986, Reddy and
Khdeir 1989). The results have also been obtained using first order shear deformation theory
(FSDT), which are also listed in Table 1. It is seen that the present finite element method yields
excellent results. The HSDT gives higher value of buckling load for two layers anti-symmetric
laminate while, it gives lower values for other two laminates considered as compared to FSDT.
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Table 1 Comparison of nondimensionalised mean buckling loads, N,, of a simply supported
anti symmetric square laminates (N, = N, =0, a/h =10)

Nondimensionalised mean buckling load

Source [0%90°] [0%/90%0°/90°] [0%/90°/0°/90%/0%90°]
Noor [23]* 10.817 21.280 23.669
HSDT [24]° 11.569 22.582 24.462
HSDT [24]¢ 11.563 22.579 24.460
HSDT [25]¢ 11.563 22.579 24.460
HSDT® 11.569 22.618 24.506
FSDT© 11.352 22916 24612

?Results obtained by applying a finite difference scheme to the equation of the 3-D elastic-
ity theory. "Results obtained using the FEM solution. °Results using Navier solution.
dResults obtained using exact method. © Results obtained with C° finite element presented
in this paper.
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Fig. 2 Validation of results from Monte Carlo simulation with the present approach, [0°/90°] square laminate,
with b/h = 5. Key: — : HSDT, -..... : FSDT

4.1.2 Standard deviation of buckling load

Fig. 2 shows the validation of the results by the present approach using HSDT and FSDT with
Monte Carlo simulation for [0%90°] laminated composite square plates with all edges simply
supported, b/h =15, having taken only one material property £;; random. For MCS approach, the
samples are generated using NAG subroutine to fit the desired mean and standard deviation (SD) of
the material property. These samples are used in Eq. (34), which is solved repeatedly adopting
conventional eigen value solution procedure to generate a sample of the buckling load. This sample
is processed to obtain the mean and SD. Both HSDT and FSDT results are in overall good
agreement. It can be concluded from the comparison that the first order perturbation technique is
quite accurate for the range of SD to mean taken in the study. It can be further concluded that
compared to FSDT the HSDT results are more close to respective MCS results, which is considered
to be exact method in uncertainty analysis. However, These differences are very small.
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Table 2 Nondimensionalized mean buckling loads, N, of laminated composite plates with different support
conditions (N, =N,, =0, bla=1)

Nondimensionalised mean buckling load

Support [60°/-60%/60%/-60] [30%-30%30%-30] [45%/-45%/45%/-45"]
conditions
blh=5 blh =10 blh=5 bk =10 blh=>5 blih=10
CcCCe 13.2984 40.7803 9.9566 25.4798 12,0520 35.4335
CFCF 8.3345 17.1185 5.8923 12.0925 7.5939 16.4740
SSSS 12,9733 33.0347 9.2449 22.5867 11.6835 30.9250

4.2 Mean buckling load

Table 2 presents nondimensionalized mean buckling loads with #/A=5 and 10 for stacking
sequences of [30%-30%/30%-30], [45%-45°/45%-45"] and [60°/-60°/60°/—60°] graphite-epoxy square
plates with CCCC, CFCF and SSSS boundary conditions using HSDT subjected to transverse
compressive load. For both b/A ratios, it is observed that the nondimensionalized-buckling load
increases as the lamination angle increases. The mean buckling load is more in case of the plate
with all edges clamped for a fixed b/A ratio and lamination angle, while the plate CFCF boundary
condition buckle at less load as compared to the rest of the boundary conditions investigated. There
is significant change in non-dimensionalised buckling load as the b/A ratio changes for all
combinations of edge conditions considered.

4.3 Standard deviation of buckling load

The SD/mean of the buckling load have a linear variation with the change in the material
properties. The rate of scatter depends on the thickness ratio, edge condition and the material
property being considered. The behavior also shows sensitivity to the lay up angle.

4.3.1 Simultaneous variation in material properties

From application point of view, it is appropriate to consider the case where all the properties vary
simultaneously. Figs. 3(a) and (b) present the normalized SD of the nondimensionalized buckling
load with SD of all the material properties varying simultaneously each assuming the same value
for the ratio of its SD to mean for [60%—6060%-60°] square laminate with &/A=5 and 10,
respectively. Figs. 3(c) and (d) represent corresponding behaviour for [30%-30°30%-30°] and Figs.
3(e) and (f) for [45°/-45%45°/-45°] square laminates.

For lamination angle 60°, it is observed that the plate with CCCC boundary condition is more
sensitive while, CFCF plate is less sensitive for /A =35. For b/h =10, it is interesting to note that
SSSS plate is more sensitive and CFCF plate is less sensitive. It is also observed that the effect of
input RVs on scatter in nondimensionalized buckling load is most dominant for CCCC plate with &/
h =15, while its effect is least dominant on CFCF plate with same thickness ratio.

For lamination angle 30°, the CCCC plate is more sensitive for b/h =5, while, it is less sensitive
for CFCF plate. It is seen that for b/h = 10, the SSSS plate is more sensitive and CCCC plate is less
sensitive as compared to other boundary conditions.

For lamination angle 45°, the CCCC and SSSS plates show sensitivity of the same order of
magnitude but more as compared to CFCF plate for b/h =5, while, all three types of plates show
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Fig. 3 Variation of SD/mean of the nondimensionalized buckling loads with SD of basic material properties,
square laminate with all basic material properties changing simultaneously: (a) b/ = 5; [60%/-60%/60°/
—60°]; (b) b/h =10 and [60°/-60°/60°%-60°]; (c) b/h =5 and [30°%-30%30°-30"]; (d) b/h =10 and [30%
-30%30°%-30°); (e) b/h =5 and [45°/-45°/45"/-45"] (f) b/h =10 and [45%-45°/45°/-45"].

almost same order of sensitivity for b/h = 10.

4.3.2 Individual variation of material properties

Key: — : CCCC, ----.-- : CFCEF, -----

: SSSS

[60°/-60°60°/-60°] Ant-symmetric square laminate:
Figs. 4(a)—(f) and 5(a)—(f) present the variation of SD/mean of the nondimensionalized buckling
loads for a [60%-60°%60%-60°] laminate with changes in only one material property at a time,
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keeping others as deterministic for /2 =5 and 10, respectively.

For b/h =35, the effect of individual variation of Ey;, Ey, G, and vy, on scatter in the buckling
load is strongest for plate with CFCF while it is lowest for CCCC. The effect of Gy is largest for
CCCC plate and lowest for CFCF plate. The influence of G,; is largest for CFCF but of same order
of magnitude for SSSS plate while, CCCC plate is least affected. In general, the scattering in
buckling load is most affected with changes in Gy; and least affected with vy, for all support
conditions considered. In overall behavior, the CCCC plate exhibits the maximum scatter with G3
changing as compared to any other support conditions.
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Fig. 5 Variation of SD/mean of the nondimensionalized buckling loads with SD of basic material properties,
[60°/-60°/60°/—60°] square laminate, with b/h = 10: (a) Only E); varying; (b) only E,, varying; (c) only
G, varying; (d) only Gy; varying; (e) only G; varying; (f) only v;, varying. Key: As in Fig. 3

For b/h =10, SSSS plates are most affected with individual changes in £y; and vy,, while CCCC
plate is least affected. The effect of Ej, is strongest for CFCF and lowest for CCCC plate. The
extreme effects of Gy, and G5 are largest for CFCF and CCCC respectively and lowest for SSSS
and CFCF respectively. The CCCC and CFCF plates are more sensitive to changes in G,; compared
to SSSS plate. In over all sense, the SSSS and CFCF plates are most affected with E,;, CCCC plate
is most affected with changes in Gy; and all types of plates are least affected with changes in vi,.
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Fig. 6 Variation of SD/mean of the nondimensionalized buckling loads with SD of basic material properties,
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G, varying; (d) only Gi; varying; (e) only G; varying; (f) only v;, varying. Key: As in Fig. 3

[30%-30%30°%-30°] Anti-symmetric square laminate:

Figs. 6(a)—(f) and 7(a)—(f) show the variation of nondimensionalized buckling loads of [30%-30%/
30°%-30°] laminate with only one material property random at a time for b/4 =5 and 10, respectively.

For b/h =5, the effect of G13 and Gy; on dispersion of buckling load is more for plate with SSSS
and CCCC, respectively, while dispersion is less for CFCF plate. The influence of F,, and v, for
SSSS plate is strongest and lowest for CCCC and CFCEF, respectively. The impact of £, and Gy, on
dispersion of buckling load is strongest for CFCF plate, while lowest for SSSS and CCCC plates,
respectively. The dispersion in CFCF plate buckling is most affected with changes in £, while
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Fig. 7 Variation of SD/mean of the nondimensionalized buckling loads with SD of basic material properties,
[30°/-30°/30%-30°] square laminate, with b/4 = 10: (a) Only E); varying; (b) only E,, varying; (c) only
G, varying; (d) only Gy; varying; (e) only Gy; varying; (f) only v;, varying. Key: As in Fig. 3

CCCC and SSSS plates are most affected with G»;. The plates with different boundary conditions
are least affected with changes in vi,.

For b/h =10, with individual variation of Ej;, Ey, Gy, and vy, the CFCF plate is more sensitive,
while CCCC plate is less sensitive. The CCCC plate is more sensitive to changes in Gy and Gy,
while, CFCF plate has lowest sensitivity for these. In general, plates are most affected with changes
in G3 and least affected with v,.
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[45°/-45%45°/-45°] Anti-symmetric square laminate:
Figs. 8(a)—(f) and 9(a)—(f) present the sensitivity of nondimensionalized buckling loads of [45%
-45°/45%-45°] laminate with random changes in only one material property at a time for b/h =5
and 10, respectively.
For b/h =5, the changes in E1,, E»), G, and V), have largest impact on CFCF plate buckling load
scattering and least impact on CCCC plate. The effect of Gi3 and Gy is strongest for all edges
clamped plates, while lowest for CFCF plates. In general, the plate with different boundary
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Fig. 9 Variation of SD/mean of the nondimensionalized buckling loads with SD of basic material properties,
[45%-45°45°/-45"] square laminate, with b/h = 10: (a) Only E}, varying; (b) only E», varying; (c) only
Gy, varying; (d) only Gy; varying; (e) only G,; varying; (f) only vy, varying. Key: As in Fig. 3

conditions are most affected with changes in Gy3 and it is least affected with vy,.

For b/h =10, with changes in Ey;, E» and G, the CFCF plate has largest sensitivity while lowest
sensitivity is shown by CCCC plate for changes in E;; and Ey and SSSS plate for G,. The effect
of Gy3, Gz and vy, is strongest for CCCC plates, while it is lowest for CFCF plates. In general the
CFCF and SSSS plates are most affected with E£;;. The CCCC plate is most affected with SD of
Gi3. The least dispersion in buckling load is seen with change in SD of v;, for all plate types
considered.
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5. Conclusions

A probabilistic study of the buckling behavior of laminated composite plates with different
boundary conditions has been carried out using finite element method in conjunction with first order
perturbation technique. Though the method uses the assumption of small deviations about the mean
values of the random parameters, it has been found to be valid for nonsmall deviations. This may
be due to linear relationship between the response and the basic input variables. The following main
conclusions can be drawn from the results obtained:

(1) The dispersion in nondimensionalized buckling load decreases as b/h ratio changes from 5 to 10
against simultaneous changes in material properties for CCCC plate, while it slightly increases
for SSSS plate.

(2) For a fixed b/h ratio, the scatter in nondimensionalized buckling load increases as lamination
angle increases.

(3) The CCCC plate with lamination angle 60° and b/i =5 is most affected, while the CCCC plate
with lamination angle 30° and A/A=10 is least affected with SD of one material property
changing at a time.

(4) For fixed lamination angle, the effect of individual variation of Ej;, Ey and G, on scatter in
buckling load increases as b/h ratio increase, while the effect of Gj3 and Gp; decreases. The
behavior due to changes in V), does not show a pattern.

(5) The sensitivity of buckling load dispersion to variations in individual material properties is dif-
ferent for different edge support conditions. For lamination angle 60°, the CCCC plate with &/
h=15 is most sensitive to Gy3, the SSSS plate with 6/A=5 and 10 is equally most sensitive to
G; and E)y, respectively and the CFCF plate with /4= 10 is most sensitive to £1;.

(6) Among all, the sensitivity of CCCC plate with b/ =5 and lamination angle 60° is highest.

(7) The effect of v, is least dominant on scatter in nondimensionalised buckling load.
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