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Seismic test of modal control with direct output
feedback for building structures
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Department of Construction Engineering, National Kaohsiung First University of Science and Technology,
1 University Road, Yenchao, Kaohsiung 824, Taiwan

Abstract. In this paper, modal control with direct output feedback is formulated in a systematic manner
for easy implementation. Its application to the seismic protection of structural systems is verified by a
shaking table test, which involves a full-scale building model and an active bracing system as the control
device. Two modal control cases, namely, one full-state feedback and one direct output feedback control
were tested and compared. The experimental result shows that in mitigating the seismic response of
building structures, modal control with direct output feedback can be as effective and efficient as that with
full-state feedback control. For practical concerns, the control performance of the proposed method in the
presence of sensor noise and stiffness modeling error was also investigated. The numerical result shows
that although the control force may be increased, the maximum floor displacements of the controlled
structure are very insensitive to sensor noise and modeling error. 

Key words: active structural control; modal control; direct output feedback; seismic protection; active
bracing system; shaking table test.

1. Introduction

It has been shown that the technique of active structural control can be an effective means for
improving the serviceability and safety of civil engineering structures subjected to dynamic loading,
such as wind or earthquake loads (Soong 1990, Nishitani 1998, Kurata et al. 1999, Lu et al. 1999).
When compared with other engineering systems, a civil engineering structure usually has the
following features: the mass and stiffness of the system are much larger; the time of life cycle is
longer; the degrees of freedom for completely describing the system are larger. Therefore, a suitable
active structural control system for a civil engineering structure must be able to deal with the above
practical problems. 

Generally speaking, an active structural control system is composed of mechanical actuators,
response measurement sensors and a controller with a preloaded control algorithm that will decide
how the actuator should react to external excitations. Among many control algorithms, modal
control represents one control class, in which the motion of a structure is reshaped by merely
controlling some selected vibration modes. In modern control theory, modal control is also called
eigenvalue or pole assignment control. Modal control is especially desirable for the vibration control
of civil engineering structures. The reason is that although a civil engineering structure, which is
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usually a large structural system, may involve hundred or even thousand degrees of freedom, its
vibration is usually dominated by the first few modes. Therefore, the motion of the structure can be
effectively suppressed by merely controlling these few modes. 

To date, numerous procedures and algorithms concerning modal control or pole assignment have
been proposed in the literature. The works by Wonham (1967) and Simon and Mitter (1968) were
among the first to analytically extend pole allocation problem from the classical single-input to a
multiple-input control. In these early works, the number of inputs decided the complexity and
details of each method. Later, the problem of eigenvalue assignment was reformulated and
presented in different forms by Moore (1976), Porter and D’Azzo (1978) and Chang and Soong
(1980). Although these precursory authors have paved a rigorous background for the modal control
theory, their works primarily dealt with control using full state feedback. 

A control method using full state feedback may not be practical for a structural system involving
a large number of DOFs, since the control implementation may requires a large amount of sensors
or a state observer of a huge dimension. In contrast, an output feedback control method, which
requires the feedback of only some selected state variables of the controlled system, is more
desirable. The papers by Davison (1970), Davison and Wang (1975), Kimura (1975), Srinathkumar
(1978) represent some of the early works on modal control using direct output feedback (or
incomplete state feedback). In these works, the procedures of computing the feedback gain were
given and the limitations on eigenvalue assignability of the closed-loop system were also
investigated extensively. More recently, Kautsky (1985) and Baruh (1987) proposed methods
involving iterative minimization and recursive perturbation algorithms to accomplish pole placement
using direct output feedback. Varga (1981) and Maghami and Juang (1989) proposed control
methods utilized Schur matrix decomposition and coordinate transformation to alter one eigenvalue
at a time recursively to the desired value. Balas (1979) and Lu et al. (1993) presented modal control
methods that compute the feedback gain in a truncated modal space. Using a control method called
independent modal space control (IMSC), Öz and Meirovitch (1980) and Chang and Yu (1998)
showed that for a multiple DOF system, the modal property for each mode can be altered
independently of the other modes. 

The purpose of this study is to develop and experimentally verify a method of modal control with
direct output feedback that is easily designed and implemented for active vibration control of
seismic structures. The advantages of the control method proposed in the present paper includes
that: First, the computation of the feedback gain is given in a systematic and concise matrix form,
so that there is neither matrix decomposition nor recursive operation required. Second, the
procedure for computing the best achievable eigenvectors that minimize the difference between the
desired and achievable ones is also proposed, so that the designer has more freedom to select the
desired mode shapes. The paper is organized as followings. The theoretical background of modal
control as a tool of reshaping structural response is first reviewed and followed by the derivation of
a matrix formula for computing the feedback gain. The constraints on the selection of eigenvalues
and eigenvectors corresponding to the controllable modes are derived. To relax the constraints, the
method for computing the best achievable eigenvectors is proposed. The set-up and result of a
shaking table test that verified the proposed control method are described in detail. Finally, for
practical concerns the influence of sensor noise and modeling error on the control performance of
the proposed method is investigated numerically. 
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2. Relation between modal and eigen properties of structures

When a seismic structure is modeled by a lumped-mass n-DOF system, its equation of motion can
be expressed by

(1)

where Ms, Cs and Ks represent the mass, damping and stiffness matrices, respectively; the vector ξ
denotes the relative nodal displacements of the structure with respect to the ground;  represents
the ground acceleration; l denotes the loading distribution vector. Generally speaking, a linear
dynamic system described by Eq. (1) can be exclusively characterized by the n sets of modal
parameters, namely, modal frequencies, damping ratios and mode shapes. In this paper, these
parameters are, respectively, denoted by ω i, ζ i and ni (i = 1, 2, … n), with the subscript i indicating
that the entities are associated with the i-th vibration mode. These parameters can be evaluated by
solving the eigenvalue problem of the homogeneous part of Eq. (1). 

In the structural control theory, the equation of dynamics in Eq. (1) is usually converted into a
first-order state space equation, i.e.,

(2)

where x(t) denotes the time-dependent state vector; A represents the time-invariant square matrix; f
represents the seismic force distribution vector. These matrices can be shown explicitly as 

 and (3)

 (4)

where a symbol  indicates the dimension of a real-numbered matrix with p rows and q
columns. 

By inspecting Eq. (4) it is clear that the system matrix A preserves all the structural matrices Ms,
Cs and Ks of the original system; therefore, the eigen-properties of A should be related to the modal
parameters of the system in Eq. (1). Since the matrices Ms, Cs and Ks are all real, the matrix A is
also real. For a real-numbered matrix, its eigenvalues and eigenvectors must be either real or appear
as complex conjugate pairs. Let λ2i-1 and λ2i be the i-th pair of the eigenvalues of A, and z2i-1 and z2i

be the i-th pair of the eigenvectors. The relation between modal and eigen-parameters can be
expressed by 

for i = 1 to n.
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for i = 1 to n.

  for i = 1 to n. (6)

M sξ
··

t( )+Csξ
·

t( )+Ksξ t( )=−M slx··g t( )

x··g

x· t( ) = Ax t( )+f  x··g t( )

x t( ) = 
ξ· t( )
ξ t( ) 

 
 

R2n 1×∈ f  = 
l–

0 
 
 

R2n 1×∈

A = 
 M– s

1– Cs M– s
1– Ks 

I 0
R2n 2n×∈

Rp q×

λ2i -1 = −ζiωi  + jω i 1 ζi
2 –

λ2i  = −ζiωi  − jωi 1 ζ i
2 –

z2i -1 = 
λ2i -1n i

ni 
 
 

,    z2i  = 
λ2ini

n i 
 
 



636 Lyan-Ywan Lu

Where  and ζ i, ω i and n i are the modal parameters defined previously. Eq. (5) and Eq. (6)
give a one-to-one mapping between the modal parameters and the eigen-parameters for a given
structure. In other words, if the modal parameters ω i, ζ i and ni of a structure are specified, one can
readily calculate their corresponding eigenvalues and eigenvectors by Eqs. (5) and (6). It is for this
reason that modal control is also called eigenvalue assignment. On the other hand, given a pair of
eigenvalues of A, one may compute the corresponding modal frequency and damping ratio by
solving Eq. (5), i.e., 

(7)

From Eq. (7) it can be concluded that as long as the eigenvalues λ2i-1 and λ2i are complex
conjugate, ω i and ζ i are always two real numbers. Moreover, if ω i is taken to be positive, the sign
of ζ i is always opposite to the sign of the real part of λ 2i-1 and λ 2i. In other words, ζ i (for i = 1, 2,
… n) should be positive for a stable control system, since the real parts of all eigenvalues of a
stable system should be negative. 

3. Modal control with direct output feedback

3.1 Control closed-loop equation

When the seismic system denoted by Eq. (2) is equipped with active structural control devices, its
equation of dynamics should be modified as

 (8)

where the added term (Bu) represents the effect of control forces, with B and u denoting the
actuator placement matrix and the control force vector, respectively. Now, considering a control law
of direct output feedback, where the control force vector u is determined by directly multiplying the
sensor outputs by the feedback gain. The control closed-loop equation for this type of control laws
may be written as 

(9)

where F and C denote the feedback gain and the sensor placement matrix, respectively, while Ac

represents the closed-loop system matrix. Let q and r be the numbers of sensors and actuators
installed in the structure, respectively; therefore, the dimensions of the relevant matrices can be
shown as , ,  and . It should be noted that a closed-
loop equation with the form given by Eq. (9) assumes the feedback signals being the structural
velocities and /or displacements only. For the time being, the control with acceleration feedback
(Dyke et al. 1996a and 1996b) is thus not considered here. 

In view of Eq. (9), the meaning of modal control is to properly design the feedback gain matrix F
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so that the added term (B F C) will alter the eigen-structure of the open-loop system matrix A to
that of the matrix Ac in a desired or prescribed manner. In the next sub-section, a matrix equation
for computing the feedback gain F is derived. The equation gives a systematic way of generating
the gain matrix, once the target eigenvalues are given. The gain matrix allows the number of the
controllable eigenvalues and eigenvectors be equal to the number of sensor measurements, q. 

3.2 Design of feedback gain 

Let λ i and ui denote the i-th eigenvalue and eigenvector of the closed-loop matrix Ac. From Eq.
(9), we have

(10)

Next, let the matrices A and B be partitioned as

 and (11)

where  and . Substituting A and B from Eq. (11) into Eq. (10) yields two
separate matrix equations

(12)

(13)

where  and  represent the upper and lower partitions of ui . 
Now, let the number of eigenvalues and eigenvectors assigned by the control designer be q, and

also let the target values of these eigenvalues and eigenvectors be denoted by  and , where i
= 1, 2, ..., q (a superscript (c) indicates that the entity is associated with the control target modes).
Substituting these assigned values and vectors into Eq. (12) one by one, one can collect the q
equations to form an enlarged matrix equation, i.e., 

(14)

where

[ ] (15)

and

(16)

Also, in Eq. (14) Zc is the upper partition of Uc, i.e.,

Acui  = A BFC+( )ui  = λiui

A = 
 A1

A2

B = 
 B1

B2

A1 Rr 2n×∈ B1 Rr r×∈

 A1 B1FC+( )ui  = λizi

 A2 B2FC+( )ui  = λ iwi

zi Rr 1×∈ wi R 2n r–( ) 1×∈

λ i
c( ) ui

c( )

 A1 B1FC+( )Uc = Zcdiag λi( )c

Uc = u1
c( ), u2

c( ), …, uq
c( )

diag λi( )c = 

λ1
c( ) 0 … 0

0 λ2
c( )   

   0

0 … 0 λq
c( )

Î

Î

Î



638 Lyan-Ywan Lu

(17)

where the dimensions of the sub-matrices are  and . Finally, from Eq. (14)
one can immediately solve for the gain matrix F and obtains 

(18)

By substituting F from Eq. (18) back to Eq. (10), one can prove that the closed-loop system matrix
Ac will possess the desired eigenpairs ( ) for i = 1, 2, ..., q. In Eq. (18), the gain F has a
solution only if the square matrices B1 and (CUc) are both non-singular. In the cases that the
matrices B1 or (CUc) happens to be singular, one may reorder the rows of the matrix B or redesign
the eigenvectors Uc in order to avoid the matrix singularity. 

In Eq. (18), it seems that the requirements on the system controllability and observability do not
explicitly appear in the computation of the gain. However, it has been shown by Davison (1970)
that for the direct output feedback control system described by Eq. (9), the system must be
controllable and observable, then the gain matrix F is able to assign q eigenvalues (let q > r) of Ac

arbitrarily close to q prescribed values. Furthermore, it should be noted that although the gain
computed by Eq. (18) is able to assign q/2 structural modes to the prescribed modal parameters,
mathematically it does not guarantee which modes will be changed. However, as it will be shown in
the later sections that as long as the modal frequencies of the control target modes remain
unchanged, the damping ratios and the mode shape elements of these target modes can be altered
precisely to the prescribed values.

3.3 Derivation of achievable eigenvectors

In the previous discussion, it was shown how the q arbitrary eigenvalues and eigenvectors of the
closed-loop matrix Ac can be altered to the desired values by the proposed formula. Recall that the
constraint number q is the number of sensors installed in the structure. However, in this paper, it is
further shown that not all of the elements in the corresponding q eigenvectors can be arbitrarily
assigned but only r elements in each eigenvector can be freely selected. The derivation is presented
below. 

By substituting the pre-selected q target eigenpairs  and  (where i = 1, 2, ..., q) into Eq.
(13) one by one and combining these q equations together, one may obtain a single enlarged matrix
equation similar to Eq. (14), i.e.,

(19)

where Uc and Wc are defined in Eqs. (15) and (17). Now, substituting F from Eq. (18) into Eq. (19)
leads to

(20)

Next, let us further partition the matrices A1 and A2 of Eq. (11) as
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(21)

where ,  and . Using Eqs. (21), one can rewrite Eq. (20) as

(22)

where

 (23)

Note that the three constant matrices S1, S2, and S3 merely depend on the sub-matrices of the
system matrix A and the actuator location matrix B. 

Although Eq. (22) gives the relation between Wc and Zc, i.e., the lower and the upper portions of
Uc, one can not use the equation directly to express Wc in terms of Zc. To solve this problem, one
may decompose Eq. (22) into q equations, so that each equation is related to one assigned eigen-
pair only, i.e.,

 (for i = 1, 2, ..., q) (24)

where zi and wi are the i-th columns of Zc and Wc, respectively, and I1 is an identity matrix of the
dimension (2n−r) × (2n−r). Provided that (λ i

(c) I1−S3) is not a singular matrix, one can solve Eq. (24)
for  in terms of . Finally, using this solution in  yields 

(25)

where

(26)

and I2 is an identity matrix of the dimension (r × r). The vector  expressed by Eq. (25) is
referred to as the achievable eigenvector (Andry et al. 1983). Two observations can be made from
the last two equations: (1)  must lay in the subspace spanned by the columns in L i, so the
number of free parameters can be assigned in  is equal to the number of elements in , which
is r. (2) The coefficient matrix L i depends on the target eigenvalue , the uncontrolled system
matrix A and the actuator location matrix B, but not the gain matrix F. 

3.4 Best achievable eigenvectors

As shown above, an achievable eigenvector can not be arbitrarily selected and it must obey the
condition given by Eq. (25). This implies that once the free elements in vector  were selected,
the rest of the elements in  are also decided immediately. In other words, the control designer
may have the freedom to choose the values of the elements in  but he also completely loses the
freedom to design the rest of the elements in . From the designer’s point of view, this may not
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be the desired situation. An alternative approach to decide the achievable eigenvectors is proposed
below. This approach, which minimizes the difference between the desired and achievable vectors,
allows the designer to alter more elements in each designed eigenvector. 

First, let  and  be the i-th desired and achievable eigenvectors, respectively. Here, the
desired vector  is the one that the designer will prescribe all the elements for as he thinks best
for the structural system. Let us define an index J that is the square norm of the difference between
the two vectors  and 

(27)

Among all of possible vectors of , the one that minimizes the index J is defined as the best
vector. After it is substituted into Eq. (25), this best vector will produce the best achievable
eigenvector . To obtain the best vector , one may take the following two derivatives and set
them equal to zero

(28)

where  and  are the real and the imaginary parts of . Furthermore, using the expression
of  and  in Eqs. (27) and (28) leads to the following simultaneous
equations

 = (29)

Since  and  are given by the designer, the only unknowns in Eq. (29) are  and .
Solving Eq. (29) and substituting the solutions of  and  into Eq. (25), one shall obtain the
best achievable eigenvector . 

4. Experimental verification by shaking table test

In order to verify the feasibility of the aforementioned modal control scheme, a shaking table test
was conducted in the Earthquake Simulation Laboratory of the National Center for Research on
Earthquake Engineering (NCREE), Taipei, Taiwan. A full-scale three-story building model was
erected on the shaking table for the test. An active bracing system assembled in the laboratory was
used as the active structural control device. The test facility, instrumentation, ground motion, etc. are
described in this section. 

4.1 Test facility and building model

The shaking table facility located in the laboratory of NCREE has a table size of 5× 5 m and is
able to simulate a three-directional ground motion. The maximum allowable payload for the table is
50 metric tons. The test model, which is a three-story steel frame, is assembled from grade A36 H-
shape steel beams. Fig. 1 shows the dimensions of the steel model mounted on the shaking table.
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Note that in the figure the first floor denotes the floor above the ground floor. All the columns of
the steel frame are made of H200× 200× 8 × 12 (mm) steel, while the girders are of H200× 150
× 6 × 9 (mm) steel. The model has a uniform story height of 3 m, so the elevation of the roof is 9
m. The top-view plane dimension of the frame is 3 by 4.5 m (width and depth). Several concrete
blocks are fixed on each floor to simulate the floor mass. The total mass of the structure model is
about 30 metric tons. In order to obtain the actual modal parameters of the building model, a modal
identification test was conducted prior to the formal test. In that test, a wide-band white-noise
excitation was imposed on the model by the shaking table; afterward, a modal analysis using the
test data was carried out. The modal parameters identified from the test are shown in the second
column of Table 1. These modal values were required for the design of the feedback gain F.
Furthermore, based on the identified modal parameters, Table 2 lists the synthesized structural
matrices that were employed in the computation of the analytical control results. 

4.2 Active bracing system and its proof test

A laboratory-made active bracing system was built for this study, in order to provide the control
forces for the test model. The system included a pair of active braces that were placed in parallel on
the two sides of the first story panel (i.e., between the ground and first floors, see Fig. 1) and
installed as diagonal members. Each active brace was built by connecting an electric-hydraulic
actuator to a steel tube (see Fig. 2). The specifications of the components of the active braces are
listed in Table 3. The active braces were rigidly connected to the frame. Each brace was properly
aligned so that the centerline of each brace passed through the centers of the beam-column

Fig. 1 Full-scale three-story steel building model with active bracing system
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connections of the frame. 
In addition to the active braces, the complete active bracing system also included an analog

controller, a digital-to-analog converter, a personal computer and a mobile hydraulic power supplier
(see Fig. 3). The computer, which performed as the central processing unit of control, did the
following on-line tasks: receiving the sensor measurements y, computing the required control forces
u (u = F y) and sending the commands to the actuators.

In order to assure test safety and also reduce experimental uncertainty, a proof test was performed
on the active bracing system alone before the system was installed on the building model. The
purpose of the test was to investigate the consistency between the control command and the actual

Table 1 Modal properties of steel frame with various control conditions

Modal parameters
Control case

Uncontrolled (bare frame) Case DV123 Case DV1

Modal frequency(1)

        (Hz)

1.07)8

3.48)8

5.98)8

1.07)8

3.48)8

5.98)8

1.07)8

3.52)8

5.66)8

Damping ratios(1) 
        (%)

1.41)8

0.44)8

0.31)8

15.00)8

15.00)8

15.00)8

15.00)8

30.43)8

9.51)8

1st mode shape(2) (3)
2.76
2.19
1.00

(0.00°)
(0.00°)
(0.00°)

2.56
2.05
1.00

(15.59°)
(11.58°)
(0.00°)

2.56
2.05
1.00

(15.59°)
(11.58°)
(0.00°)

2nd mode shape(2) (3)
0.80
0.53
1.00

(180.00°)
(0.00°)
(0.00°)

0.74
0.53
1.00

(178.03°)
(26.21°)
(0.00°)

0.57
0.54
1.00

(172.32°)
(43.22°)
(0.00°)

3rd mode shape(2) (3)
0.53
1.11
1.00

(0.00°)
(180.00°)

(0.00°)

0.39
0.82
1.00

(60.19°)
(−30.73°)

(0.00°)

0.69
1.34
1.00

(52.90°)
(−34.57°)

(0.00°)

Remark Parameters identified from 
a modal test

Full state feedback con-
trol, 6 sensors used

Direct output feedback 
control, 2 sensors used

(1) Data listed from the 1st to the 3rd modes.
(2) The degrees of freedom are labeled from the 3rd to the 1st floors.
(3) Complex vector expressed by its magnitude and phase angle (in parenthesis).

Table 2 Structural matrices used for numerical analysis

Mass

Damping kN/(m/s)

Stiffness kN/m

M  = 
 10.914 0 0 

 0 11.213 0 
 0 0 11.213 

 ton

C = 
 2.124 1.131– 0.093 

 1.131– 2.364 0.209–  
 0.093 0.209– 2.325 

 

K = 
 3673.845 4555.417– 1172.960 

 4556.112– 8753.602 5451.810–  
 1172.190 5452.178– 9186.159 
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control force provided by the active brace. The actual control force was measured by the load cell
embedded in the actuator. In the test, the two ends of a single active brace were rigidly fixed
between a reaction wall and a reaction frame. By doing so, the dynamic effect of the structure was
excluded from the test. 

To show the result of proof test, let u(t) be the control command and u’( t) be the measured
control force at any given time (see Fig. 3) and also let their ratio in the frequency domain be

. The Fourier function H(ω), which is a complex function, is equivalent to the
output-to-input transfer function of the active bracing system. Let |H(ω) | and φ (ω) represent,
respectively, the amplitude and phase angle of the transfer function. Physically, |H(ω) | and φ (ω)

H ω( ) = U′ ω( )/U ω( )

Fig. 2 Installation of active bracing system in the first floor panel

Table 3 Specifications of active bracing system

Component Property Specification

Steel tube

Diameter 13.98cm
Thickness 0.4 cm

Length 260 cm
Young’s Modulus 2.04 × 106 kgf/cm2

Stiffness 133934kgf/cm

Actuator

Force capacity 2.55 ton
Max. stroke ± 7.5 cm

Rod diameter 4.45cm
Piston area 135 cm2

Hydraulic Max. Flow rate 10 gpm0
system Working pressure 3000psi



644 Lyan-Ywan Lu

are directly related to the magnification factor and the time-lag of the active bracing system. For an
ideal control system, where the output force follows exactly the input command, the values of the
amplitude and phase should be |H(ω) | = 1 and φ(ω) = 0 within the operating frequency range.
Figs. 4(a) and (b) depict the experimental values of |H(ω) | and φ (ω) for the active bracing system.

Fig. 3 Schematic diagram of active bracing system

Fig. 4 Output/input transfer function of active bracing system
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It is shown by the figures that the amplitude is very close to unity and the phase lag is only about 6
degrees even at a high frequency of 20 Hz, which represents a mere 0.0008333 second of control
time delay. 

4.3 Input ground motion and instrumentation 

In the experiment, only the horizontal components of El Centro (1940) and Kobe (1995)
earthquake records with PGA scaled down to 0.1g were used as the input ground motion. A
displacement transducer (manufactured by Temposonics Co., type II) and a velocity sensor (by
Tokyo Sokushin Co., model VSE-15) were mounted on each floor and also on the shaking table, so
that the relative response of the test model to the ground can be measured. The signals of some
transducers and sensors mentioned above were also used for feedback control when they were
needed. The steel model was assumed to be a two-dimensional shear building, so only its horizontal
motion along the long axis was recorded.

5. Test results and discussions

5.1 Control cases tested

Two control cases with different sensor feedback were conducted in the shaking table test. In the
first case (labeled DV123 in the following figures), six sensor signals representing the full-state of
the model were fed back to the controller. The full-state signals include the relative displacements
and velocities of all three floors (the term “relative” means the response is measured relative to the
ground). In the second case (labeled DV1), only the partial state information, namely, the relative
displacement and velocity of the first floor were fed back to the controller, so only two sensors
were needed. The second case represents the direct output feedback control. 

From the previous discussion, it is known that for the proposed modal control, the number of the
controllable eigenvalues is equal to the number of sensors available and two eigenvalues physically
represent one vibration mode. Therefore, in the first case (where q = 6) all three vibration modes
were controllable, while in the second case (where q = 2), only one vibration mode could be
controlled. The first mode was chosen as the control target mode in the second case, since it
dominates the vibration of the model.

The control goal for both cases was chosen such that the damping ratios of the control target
modes were increased to 15% while at the same time their corresponding modal frequencies and
desired mode shapes remained unchanged. The desired eigenvalues and eigenvectors complied with
the above control goal were first computed by using Eqs. (5) and (6). Then, the best achievable
eigenvectors, which are closest to the desired ones, were computed by Eqs. (25) and (29). Finally
the desired eigenvalues and the best achievable eigenvectors were substituted into Eq. (18) for the
computation of the feedback gain F. 

5.2 Frequency domain data

The last two columns of Table 1 show the equivalent modal values resulted from the two control
cases. These values are independent of input ground motions. Also shown in the table are the modal
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values of the uncontrolled structure (before the active bracing system was installed). As can be seen
in the table, the steel model itself had very small inherent damping ratios. Furthermore, Table 1 also
shows that: (1) In control case DV123 (full-state feedback), the damping ratios of all three modes
have reached the target values 15%, and also all the frequencies remained unchanged. (2) In control
case DV1 (direct output feedback) only the first mode (control target mode) has achieved the
control goal, i.e., 15% damping with the modal frequency unchanged. (3) In case DV1, the modal
frequencies of the uncontrolled modes do not shift significantly, while their damping ratios are
increased considerably. This implies that the control spillover does occur. However, the spillover
does not destabilize the system but rather enhances the structural damping. 

In Table 1, the three mode shapes in case DV123 and the first mode shape in case DV1 were
determined by the procedure of “Best Achievable Eigenvector” described in the preceding section.
The mode shapes resulting from the two control cases are complex vectors, whose elements are
represented by the magnitudes and phase angles (in parentheses) in Table 1. These complex mode
shapes were extracted from the lower-half portion of their corresponding eigenvectors (see Eq. 6)
and were normalized with respect to the value of the first floor. Note that in the determination of
the best achievable eigenvectors, the number of controllable elements in each eigenvector was taken
as one, since from a two-dimensional view there was only one actuator placed in the first story of
the model (so, r = 1).

5.3 Time domain data

The roof displacements of the building model subjected to the 1940 El Centro earthquake with
PGA scaled down to 0.1 g are depicted in Figs. 5(a) and 5(b). The response of the uncontrolled
model is also plotted (the dotted line) in both figures for comparison. From these figures, it is
observed that both control cases are equally effective for suppressing the seismic motion of the
structure, although control case DV1 used only the first floor response as the feedback signal. The
roof response of the model excited by the Kobe earthquake was also tested and the results are
depicted in Figs. 6(a) and 6(b). In these two figures, the responses for the two control cases are also
very similar; therefore, the observation made in the El Centro earthquake is also true for the Kobe
earthquake. 

Fig. 5 Roof displacement of the steel frame subjected to El Centro earthquake
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As for the concerns of control effort, Figs. 7(a) and 7(b) show the demand of control forces when
the model is subjected to the El Centro earthquake. In the legend of the figures, the terms “East
Actuator” and “West Actuator” are used to distinguish the two active braces installed on the two
sides of the first floor. From these two figures, it is shown that both control cases require roughly
equal control effort. Furthermore, in order to compare the control results at different floor levels,
Fig. 8 plots the maximum floor displacement at each floor level for both control cases, when the
model is excited by the El Centro earthquake. It can be seen that the reduction on the floor
displacement is quite uniform along the story height for both control cases. 

Tables 4 and 5 summarize the maximum values of the roof displacement, the displacement
reduction rates and the control forces for different earthquakes. The reduction rate is obtained by
dividing the difference of the maximum uncontrolled and controlled displacements by the
uncontrolled values. Numerical simulation results, that used the structural matrices listed in Table 2,
are also included in the tables to check the reliability of the test data. The deviation between the
analytical and experimental results in Tables 4 and 5 may be contributed by the error of system
identification. From Tables 4 and 5, it can be observed that: (1) In spite of the different nature of
the El Centro and Kobe earthquakes, the direct output control (cases DV1) has a roughly equal

Fig. 6 Roof displacement of the steel frame subjected to Kobe earthquake

Fig. 7 Control force supplied by actuators for the steel frame subjected to El Centro earthquake
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reduction rate to that of full-state feedback control (case DV123) for both earthquakes. (2) Although
control case DV1 requires slightly larger control forces for both earthquakes, it gives larger
vibration reduction rates than those of case DV123. (3) The reduction rates of the El Centro
earthquake for both control cases exceed 60% and are much better than those of the Kobe
earthquake, in which only about 30% reduction rates were achieved. This implies that the
performance of the control still depends on the nature of the ground excitation. The deterioration of
the control performance may be caused by the coincidence of the main structural frequency with the
pre-dominant frequency of the earthquake.

Fig. 8 Comparison of the maximum floor displacements for the steel frame subjected to El Centro Earthquake

Table 4 Comparison of maximum roof displacement and control force of the structure subjected 
to El Centro earthquake

Control case
Analytical value Experimental values

Max. control 
force (kN)

Max. disp.
(mm)

Max. control 
force (kN)

Max. disp. 
(mm)

Disp. reduction 
rate (%)

Uncontrolled − − − 80.21 −
DV123 9.62 21.52 10.99 29.02 63.82

DV1 9.12 22.75 12.61 25.85 67.77

Table 5 Comparison of maximum roof displacement and control force of the structure subjected to 
Kobe earthquake

Control case
Analytical value Experimental values

Max. control 
force (kN)

Max. disp.
(mm)

Max. control 
force (kN)

Max. disp. 
(mm)

Disp. reduction 
rate (%)

Uncontrolled − − − 65.71 −
DV123 13.70 39.12 12.20 47.27 28.06

DV1 13.18 40.13 13.65 44.54 32.22
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6. Influence of sensor noise and modeling error

In practice, an implemented active structural control system may suffer from sensor noise and
modeling error; therefore, the control algorithm must be robust to these errors that may not be
considered in the control design phase. In the test described previously, these two practical concerns
did not cause problem or deterioration to the control system. However, in order to investigate how
the proposed control method performs in the presence of sensor noise or modeling error, in this
section, the influence of sensor noise or modeling error on the controlled structural response is
studied numerically. Various levels of error and noise were simulated and introduced to the control
case DV1. In the simulation, the structural mass, stiffness and damping matrices shown in Table 2
were employed and the El Centro earthquake record with its original PGA (0.34 g) was used as the
ground excitation.

6.1 Influence of sensor noise

In the presence of signal noise, the output vector y(t) that contains sensor measurements can be
rewritten as 

(30)

where  and  denote the contaminated output vector and the noise vector, respectively.
Sensor noise is usually caused by electrical noise that is normally in a form of broad-band signal
and can be simulated by Gaussian white noise, i.e., white noise with Gaussian stochastic process
(Bendat and Piersol 1991). A sample function of Gaussian white noise may be simulated by the
following equation (Clough and Penzien 1993)

cos (31)

where yn,i(t) denotes the noise of the i-th sensor measurement (i.e., the i-th element of yn(t)); ∆ω is
the sampling frequency; N is the number of the sampling frequencies; Snn,i is the power spectral
density of the noise associated with the i-th measurement; αk is a random variable uniformly
distributed between 0 and 2π. Note that Snn,i is a constant for a white noise signal. Also, in order to
quantify the level of the noise, let us define a noise ratio γ 

(32)

where  is the average power spectral density of the i-th measurement of the structural response
over a given frequency range. Recall that in the control case DV1, one velocity and one
displacement sensors were installed at the first floor of the three-story model. In order to generate
noise records associated with these two sensor measurements, the following numerical values for
the parameters appearing in Eqs. (31) and (32) were used in the simulation: ∆ω = 0.02 Hz;
N = 1500 (equivalent to a frequency bandwidth ωn of 30 Hz); αk was randomly generated by a
computer subroutine; = 8.93× 10−3 ((m/s)2/Hz); = 1.86× 10−4 (m2/Hz), (where  and

 denote the average spectral densities of the velocity and displacement measurements,
respectively). Note that in determining the values of  and , the spectral density functions

ŷ t( ) = y t( ) + yn t( ) = Cx t( ) + yn t( )

ŷ t( ) yn t( )

yn,i t( ) = 2 ∆ω Snn,i
k=1

N

∑ k ∆ω t⋅ ⋅ αk+( )

γ = 
Snn,i

Syy,i

---------

Syy,i

Syy,v Syy,d Syy,v

Syy,d

Syy,v Syy,d
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Fig. 9 A sample function of measurement noise for velocity sensor installed at the first floor (with noise ratio
γ = 0.01)

Fig. 10 Effect of sensor noise on the maximum floor displacements and control force

were calculated based on the first 50-second time-history data of the first-floor response (when the
structure was controlled by the case DV1); afterward, the averages of the spectral density functions
within 0-10 Hz were taken in the computation of  and  (the spectral density functions
approach zero for frequencies above 10 Hz). Fig. 9 shows the simulated noise record for the
velocity measurement with a noise ratio γ of 0.01. 

Considering the control case DV1 and assuming the displacement and velocity sensors have the
same noise ratio, Fig. 10 shows the effect of the noise ratio γ on the maximum relative floor
displacements and the maximum control force. Note that a sensor signal with γ greater than 0.01
can be considered as a heavily contaminated signal, because when the noise ratio γ, which is a
spectral ratio, is equal to 0.01, the root mean square (RMS) ratio of the noise to signal is of the
order of 10%. Figs. 11(a) and 11(b) show the time histories of the control forces without and with
the presence of the sensor noise (with γ = 0.01), respectively. For γ = 0.01 and 0.1, the numerical
values of the maximum structural responses are also summarized in Table 6. From Fig. 10, Fig. 11
and Table 6, it is observed that: (1) Due to the presence of the sensor noise, the time history of the
control force contains high-frequency components (see Fig. 11b). The peak values of the control

Syy,v Syy,d
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force are increased by 7.2% and 25.7%, for γ = 0.01 and 0.1, respectively. (2) Although the control
force is considerably affected by the sensor noise, the structure is still stable and the noise does not
have much influence on the floor displacements even with a noise ratio γ as high as 0.1 (see Fig.

Table 6 Comparison of maximum control force and roof response in the presence of modeling error
or sensor noise

Control condition Magnitude of 
error or noise

Control force1 
(kN)

Max. response of roof

Acceleration1

(m /s2) 
Relative displ. 1

(m)

DV1 Non 52.9 (1.00) 5.87 (1.00) 0.0868 (1.00)

DV1 
w/ sensor noise

γ = 0.01 56.7 (1.07) 5.87 (1.00) 0.0868 (1.00)
γ = 0.1 66.5 (1.27) 5.88 (1.00) 0.0867 (1.00)

DV1 
w/ modeling error

εk = 10% 57.2 (1.08) 6.41 (1.09) 0.0859 (0.99)
εk = 25% 61.4 (1.16) 7.26 (1.24) 0.0821 (0.95)

1 Value in parentheses denotes the ratio to that of the case without noise or error. 

Fig. 11 Comparison of control forces without and with sensor noise
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10). The reason for the second observation is explained below. Because a high-frequency excitation
may not cause much influence on a structure with a low natural frequency, the high-frequency
components of the control force, which is due to the sensor noise, has very little effect on the
dynamic response of the model structure that has all modal frequencies lower than 6 Hz (see Table
1). Nevertheless, the increase on the control force surely introduces extra internal forces in the
structural members, especially the columns; therefore, a large sensor noise should be avoided, even
though it may not destabilize the modal controlled structure. 

6.2 Effect of modeling error

Modeling errors can be caused by inaccurately estimating any of the three structural matrices,
namely, the mass, damping and stiffness matrices, see Eq. (1). The inaccuracy may further cause an
error on the estimation of the modal parameters, which are required in the computation of the
feedback gain for the proposed model control method, and finally results in deterioration of the
control performance. Among the three structural matrices, the damping matrix is usually a
postulated one and is normally assumed to be a function of mass and stiffness matrices if the
proportional damping is adopted. The damping matrix may have relatively small values for a lightly
damped structure, which is the case for most of building structures. On the other hand, the mass
matrix can be more precisely computed from the densities of the constitutive materials of the
structure. The stiffness matrix is the one that has the highest possibility of introducing a large
modeling error, for it is difficult to accurately model some of structural behaviors, such as stiffness
of shear walls or partition wall, combination stiffness of slab and girders, the semi-rigidity behavior
of member joints, etc. Since the stiffness matrix is most likely to introduce a large modeling error,
in this study, only the effect of the stiffness error on the control performance was investigated. 

For the convenience of discussion, let us assume that the relation of the actual stiffness  and
the estimated stiffness Ks has the following form

(33)

where ∆Ks and ε k denote the error stiffness matrix and the ratio of the error matrix, respectively.
The variable ε k that can be a negative or positive real number represents a measurement of the error
magnitude. After Ks is replaced by  in Eq. (4), the system matrix A becomes a function of ε k and
may be denoted by . Accordingly, Eq. (9) must be modified as

(34)

where  denotes the closed-loop system matrix with modeling error ε k. In the last equation
the feedback gain F is designed based on Ac with the estimated stiffness Ks, not on . Eq.
(34) was used for simulating the response of the controlled structure with modeling error and the
result is shown below. Note that in Eq. (34) the control stability of the closed-loop system can be
determined by the signs of the real parts of the  eigenvalues, or by the signs of the
equivalent damping ratios ζ i (i = 1~n) computed by Eq. (7), as discussed previously. The modal
control becomes unstable if at least one of the closed-loop modes has the negative ζ i . 

Figs. 12(a) and 12(b) show all modal frequencies and damping ratios of the controlled structure as
functions of the modeling error ε k . From these two figures it is shown that: (1) For a modeling

K̂s

K̂s = Ks + ∆Ks = 1 εk+( )Ks

K̂s

Â εk( )

x· = Â εk( ) BFC+( )x + f  x··g = Âc εk( )x + f  x··g

Âc εk( )
Âc εk( )

Ac
ˆ εk( )
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error |ε k | up to 25%, the control system is still stable, since all damping ratios remain positive, see
Fig. 12(b). There remains a large control stability margin for |ε k | > 25%. (2) When the structural
stiffness is underestimated (ε k > 0) during the design of feedback gain, the resulting modal
frequencies of the controlled structure become larger than the expected ones (the dashed lines in
Fig. 12), and in contrast the resulting damping ratios are lower than the expected values. This
implies that the proposed model control method with an underestimated structural stiffness produces
a stiffer but less damped structural system. The situation for the closed-loop modal parameters will
be reversed if the structural stiffness is overestimated (ε k < 0). Fig. 13 shows the effect of ε k on the
maximum relative floor displacements and maximum control force, when the structure is excited by
the El Centro earthquake. From Fig. 13, it is observed that: (1) For a modeling error |ε k | up to
25%, the influence on the floor displacements is marginal and on the control force is not very
significant, either. (2) When the structural stiffness is underestimated (ε k > 0), the applied control
force is increased, and at the meantime the floor displacements are decreased. This implies that the
extra control effort does not destabilize the control system, but rather it suppresses the motion of the
structural displacements. In Table 6, it is shown that when ε k = +25%, the absolute acceleration of
the top floor is increased by 24%, although the floor displacement is reduced by 5%. This implies

Fig. 12 Effect of stiffness error on the modal properties of the controlled structure (dash lines represent modal
values without error)
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that the stiffness modeling error is more critical to the structural accelerations than to the
displacements for the proposed model control. This unexpected increase of the acceleration may not
destabilize the control system but may greatly deteriorate the control performance and thus it should
be carefully dealt with if a stiffness error may exist. 

7. Conclusions

In this paper, the computation of the feedback gain for modal control with direct output feedback
is formulated in a concise matrix form. With this gain matrix, the number of the controllable
eigenvalues is equal to the number of the sensors installed on the structure, while the number of the
actuators available decides the number of the controllable elements in each controlled eigenvector.
A method for generating the best achievable eigenvectors that are most consistent with the desired
ones is also proposed. For experimental verification, the proposed control method was applied to a
full-scale building model for suppressing its seismic motion. The model, which was equipped with
an active bracing system, was placed on an earthquake simulation table for the test. For comparison,
two modal control cases, one with full-state feedback and the other with direct output feedback,
were tested and the experimental result is presented. The latter control case requires very few
sensors for feedback control. It is shown by the test results that although the latter control case
requires slightly higher control effort than the former one, the two control cases are equally
effective in mitigating the seismic response of the building model. Finally, the control performance
of the proposed method in the presence of sensor noise and modeling error is also investigated. The
numerical result shows that although the maximum control force may be increased, the maximum
structural displacements are very insensitive to sensor noise and modeling error, when Gaussian
white noise and structural stiffness error are considered. This implies that sensor noise and modeling
error may be influential to the control performance, but they do not easily cause control stability
problem. 

Fig. 13 Effect of Stiffness error on the maximum floor displacements and control force (dash lines represent
responses without error) 



Seismic test of modal control with direct output feedback 655

Acknowledgments

This research was sponsored in part by the National Center for Research on Earthquake
Engineering (NCREE) and also by National Science Council, Taipei, Taiwan. The author is grateful
to Dr. L. L. Chung and Mr. S. K. Huang at NCREE for their assistance with the experimental work,
and also to his graduate student Mr. G. L. Lin at National Kaohsiung First University of Science &
Technology for preparing some of the simulation data. 

References

Andry, A.N., Shapiro, E.Y., and Chung, J.C. (1983), “Eigenvalue assignment for linear systems”, IEEE
Transaction on Aerospace and Electronic Systems, 19(5), 711-728.

Balas, M.J. (1979), “Direct output feedback control of large space structures”, J. Astronaut. Sci., 27(2), 157-180.
Baruh, H. (1987), “A recursive pole placement method for large flexible structures”, Proc. of ASME Design

Technology Conference, 11th Biennial Conference on Mechanical Vibration and Noise, 79-84.
Bendat, J.S., and Piersol, A.G. (1991), Random Data, 2nd edn., John Wiley & Sons Inc., Singapore.
Chang, C.-C., and Yu, L.-O. (1998), “A simple optimal pole location technique for structural control”, Eng.

Struct., 20(9), 792-804. 
Chang, M.I.I. and Soong, T.T. (1980), “Optimal controller placement in modal control of complex system”, J.

Math. Anal. and Appl., 75, 340-358.
Clough, R.W., and Penzien, J. (1993), Structural Dynamics, 2nd edn., McGraw Hill Inc., 492-498.
Davison, E.J. (1970), “On pole assignment in linear system with incomplete state feedback”, IEEE Transactions

on Automatic Control, 15, 348-351.
Davison, E.J., and Wang, S.H. (1975), “On pole assignment in linear multivariable systems using output

feedback”, IEEE Transactions on Automatic Control, 20, 516-518.
Dyke, S.J., Spencer, B.F., Quast, P., Sain, M.K., Kaspari, D.C., and Soong, T.T. (1996a), “Acceleration feedback

control of MDOF structures”, J. Eng. Mech., ASCE, 122(9), 907-918. 
Dyke, S.J., Spencer, B.F., Quast, P., Kaspari, D.C., and Sain, M.K. (1996b), “Implementation of an active mass

driver using acceleration feedback control”, Microcomputers in Civil Engineering: Special Issue on Active and
Hybrid Structural Control, 11, 305-323.

Kautsky, J., and Nichols, N.K. (1985), “Robust pole assignment in linear state feedback”, Int. J. Control, 41(5),
1129-1155.

Kimura, H. (1975), “Pole assignment by gain output feedback”, IEEE Transactions on Automatic Control, 20,
509-516. 

Kurata, N., Kobori, T., Motoichi, T., Niwa, N., and Midorikawa, H. (1999), “Actual seismic response controlled
building with semi-active damper system”, Earthq. Eng. and Struct. Dyn., 28(11), 1427-1447. 

Lu, L.Y., Bain, J.J., and Chung, L.L. (1999), “Use of the active member concept in vibration mitigation of
seismic structures”, Eng. Struct., 21(4), 341-351. 

Lu, L.Y., Utku, S., and Wada, B.K. (1993), “Vibration suppression for large scale adaptive truss structures using
direct output feedback control”, J. of Intelligent Mater. Sys. and Struct., 4(3), 385-397.

Maghami, P.G., and Juang, J.N. (1989), “Efficient eigenvalue assignment for large space structures”, Proc. of
AIAA/ASME/ASCE/AHS 30th Structures, Structural Dynamics, and Materials Conference, Mobil, AL, USA,
2037-2045.

Meirovitch, L. (1990), Dynamic and Control of Structures, John Wiley & Sons, New York, USA.
Moore, B.C. (1976), “On the flexibility offered by state feedback in multivariable systems beyond closed loop

eigenvalue assignment”, IEEE Transaction on Automatic Control, 21, 689-692.
Nishitani, A. (1998), “Application of active structural control in Japan”, Progress in Structural Engineering and

Materials, 1(3), 301-307.
Öz, H., and Meirovitch, L. (1980), “Optimal modal-space control of flexible gyroscopic systems”, J. Guidance



656 Lyan-Ywan Lu

and Control, 3(3), 218-226.
Porter, B., and D’Azzo, J.J. (1978), “Closed loop eigenstructure assignment by state feedback in multivariable

linear system”, Int. J. of Control, 27(3), 487-492.
Simon, J.D., and Mitter, S.K. (1968), “A theory of modal control”, Information and Control, 3, 316-353.
Soong, T.T. (1990), Active Structural Control - Theory and Practice, Longman, London (U.K.).
Srinathkumar, S. (1978), “Eigenvalue/eigenvector assignment using direct output feedback”, IEEE Transaction

on Automatic Control, 23(1), 79-81.
Varga, A. (1981), “A Schur method for pole assignment”, IEEE Transactions on Automatic Control, 26(2), 517-

519.
Wonham, W.M. (1967), “On pole assignment in multi-input, controllable linear systems”, IEEE Transaction on

Automatic Control, 12, 660-665.




