
Structural Engineering and Mechanics, Vol. 12, No. 5 (2001) 507-526 507

On the local stability condition in the
planar beam finite element
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Abstract. In standard finite element algorithms, the local stability conditions are not accounted for in
the formulation of the tangent stiffness matrix. As a result, the loss of the local stability is not adequately
related to the onset of the global instability. The phenomenon typically arises with material-type localizations,
such as shear bands and plastic hinges. This paper addresses the problem in the context of the planar,
finite-strain, rate-independent, materially non-linear beam theory, although the proposed technology is in
principle not limited to beam structures. A weak formulation of Reissner’s finite-strain beam theory is
first presented, where the pseudocurvature of the deformed axis is the only unknown function. We further
derive the local stability conditions for the large deformation case, and suggest various possible
combinations of the interpolation and numerical integration schemes that trigger the simultaneous loss of
the local and global instabilities of a statically determined beam. For practical applications, we advice on
a procedure that uses a special numerical integration rule, where interpolation nodes and integration points
are equal in number, but not in locations, except for the point of the local instability, where the interpolation
node and the integration point coalesce. Provided that the point of instability is an end-point of the beam−
a condition often met in engineering practice−the procedure simplifies substantially; one of such
algorithms uses the combination of the Lagrangian interpolation and Lobatto’s integration. The present paper
uses the Galerkin finite element discretization, but a conceptually similar technology could be extended to
other discretization methods.
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1. Introduction

Loss of stability is a common phenomenon in the nonlinear mechanics of solids and structures.
Typical examples are the buckling of a rod, the necking of a bar due to tension, and the localization
of deformed shear bands. In stability analyses, we have to distinguish between global and local
instabilities. The objective of the present paper is to set up a procedure that, in a context of a finite
element analysis of planar materially and geometrically nonlinear beams, consistently relates the
loss of the local stability in an element with the global instability of the structure.

In standard finite element formulations, the emergence of the local instability is not automatically
accounted for in the tangent stiffness matrix. Consequently, the loss of the local stability within a
finite element is not correctly related to the deterioration of the bearing capacity of a structure, and,
in particular, to the possible loss of its global stability. This kind of instability is typically−but not
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only-associated with materially driven strain localizations in ductile solids, such as shear bands and
plastic hinges (see the original works by Ortiz et al. 1987 and Belytschko et al. (1988) for the
description of the phenomenon and their proposals leading to an enhanced performance of the finite
element method). It appears, however, that the issue here termed the ‘consistent consideration of
local stability conditions in the stiffness matrix’, has not received an adequate attention in the finite
element literature. This lack of interest is in sharp contrast with the activities aiming at the
deduction of methods for the computation of global instability points, which are now relatively well
developed, see, Crisfield (1991) for an overview of the methods, and Wriggers et al. (1988),
Wriggers and Simo (1990), Fujii and Okazawa (1997) and Planinc and Saje (1998).

The starting point of our study is Reissner’s (1972) finite-strain planar beam theory. Several
variational, weak-form settings are possible for Reissner’s theory for their finite element
implementations (Saje et al. 1997). To facilitate the derivation of the local stability conditions in a
beam, we first shortly describe a variational formulation of Reissner’s beam where the
pseudocurvature of the deformed axis of a beam plays the role of the fundamental unknown
function. Then we derive the set of local stability conditions of a beam and study how these
conditions can be incorporated into the tangent stiffness matrix of a finite element so that the onset
of the local instability triggers the simultaneous loss of the global stability of a beam. The
discussion that follows shows that these conditions can be satisfied indeed, provided that the
positions of the interpolation points and the integration algorithm satisfy certain requirements. This
is described in Section 4 in detail. Our discussion was inspired by the work of Banovec (1986) on
the moderate-strain, large displacement, large rotation, co-rotational, mixed-energy based finite
element formulation of elastic-plastic planar beams, in which the transverse displacement is the
fundamental unknown function. Based on the small-strain material stability conditions, he proved
that the number of interpolation nodes for the transverse displacements and the number of
integration points must be equal for the local stability to be consistently captured in the tangent
stiffness matrix of an element. We interpret our work as an extension and generalization, in a
systematic way, of that carried out by Banovec (1986), to include large deformations.

2. Formulation of basic equations

2.1 Kinematic and constitutive equations

We consider an initially straight, planar, materially non-linear beam of undeformed length L and
of constant cross-section A. The beam is analyzed in the (X, Z)-plane of a fixed-in-space Cartesian
coordinate system (X, Y, Z) with orthonormal base vectors EX, EY, EZ, where EY=EZ×EX. Without a
loss of generality and for the sake of simplicity, we assume that the centroid axis of the beam
initially coincides with the X axis. The shape of the cross-section of the beam, and material
distribution over the cross-section are assumed to be symmetric with respect to plane (X, Z), but
otherwise arbitrary. A material particle of the beam is identified by material coordinates x∈[0, L],
(y, z)∈A, coinciding with coordinates X, Y, Z in the undeformed state. The centroid axis is identified
by y=z=0. Extensional, bending, and shear strains are assumed to take part in the deformation of
the beam, but Bernoulli’s hypothesis of planar and undistorted cross-sections is only considered.
The beam is subjected to the action of distributed loads px(x), pz(x), and distributed moment load
my(x) along its span and to concentrated generalized forces Si (i=1, 2, Î, 6) at its ends; px and pz
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are the components of the distributed load vector with regard to base vectors EX and EZ. The
loading is assumed to be deformation-independent.

A deformed configuration of the centroid axis of the beam is defined by a vector-valued function

(1)

where u(x) and w(x) are the components of the displacement vector of the centroid axis with respect
to base vectors EX and EZ, respectively.

The components of the displacement vector are related to geometrical and deformation variables
of the beam by the equations derived by Reissner (1972):

(2)

(3)

(4)

In Eqs. (2)-(4) the prime (') denotes the derivative with respect to x, whereas functions ε(x)>−1,
γ (x), ϕ (x), and κ (x) mark the extensional strain (i.e., the specific elongation), the shear strain, the
rotation, and the pseudocurvature of the centroid axis, respectively. Functions u, w, and ϕ will here
be termed the geometrical variables, as they determine the geometrical configuration space of the
beam. Functions ε, γ, and κ, i.e., the generalized strains of the beam, span the deformation
configuration space (superposed to the rigid displacements) and will, therefore, be termed the
deformation variables. Observe that κ coincides with the actual curvature of the deformed centroid
axis of the beam only when ε=γ=0; thus, the term ‘pseudocurvature’ is appropriate. The extensional
strain of an arbitrary material particle (x, y, z) of the beam is denoted by e and is determined by
Bernoulli’s hypothesis-based relation

e (x, z) = ε (x) + zκ (x). (5)

In order to relate equilibrium axial and shear forces, 1 and 4, and equilibrium moment 0 to a
material model, we introduce the set of constitutive equations which assures the balance of the
equilibrium and constitutive cross-sectional forces, Antman and Rosenfeld (1978)

1 (x) = 1c (ε(x), γ(x), κ(x)), (6)

4 (x) = 4c (ε(x), γ(x), κ(x)), (7)

0(x) = 0c (ε(x), γ(x), κ(x)). (8)

Constitutive functions 1c, 4c, and 0c are defined as cross-sectional true stress resultants, and are
termed the constitutive axial and shear forces and the constitutive bending moment, respectively.
The constitutive functions are subordinate to the adopted material constitutive model, which is, in
our case, defined by the normal true stress-strain law given by the generic relation σc = ) (e), and
by the shear stress-strain law τc=* (γ ) which will be defined later; here ) and * designate functions
appropriate for material to be considered. These relationships describe a broad set of materials,
including hyperelastic, and elastic-plastic ones. In terms of stresses, the constitutive functions are
given by the equations

 , (9)

r x( )= x u x( )+( )EX+w x( )EZ,

1+u′ 1 ε+( )– ϕ γ–cos ϕsin = 0,

w′+ 1 ε+( ) ϕ γ–sin ϕcos = 0,

ϕ′ k– = 0.

1c ε γ κ, ,( )= σcA∫ x y z, ,( )dA
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, (10)

. (11)

A simple constitutive model for the shear strain is adopted here, so that 4c = GAsγ ; G(γ ) is the
shear strain-dependent tangent shear modulus of material, and 0<As<A is the area of the shear
cross-section (Cowper 1966).

2.2 The modified principle of virtual work and its finite element formulation

The principle of virtual work states that the difference of virtual work of internal and external
forces is zero (Washizu 1981)

(12)

Here, δu, δw, and δϕ are virtual displacements and rotation, and δε, δγ, δκ are virtual strains of the
centroid axis; δui (i = 1, 2,Î, 6) denote the generalized virtual boundary displacements such that

δu1 = δu (0),  δu2 = δw (0), δu3 = δϕ (0),

δu4 = δu (L),  δu5 = δw (L),  δu6 = δϕ (L).

In (12) the deformation geometrical variables as well as their variations must satisfy the three
kinematic Eqs. (2)−(4). Thus, only three among the six functions u, w, ϕ, ε, γ, and κ are mutually
independent. A common practice is to express the deformation variables in terms of the geometrical
ones, ε=ε (u', w', ϕ), γ =γ (u', w', ϕ), κ =ϕ' (2)−(4); then by inserting these expressions into the
constitutive relations Eqs. (9)-(11) and after employing Eqs. (6)−(8) in (12), one obtains the
displacement-based principle of virtual work. Disadvantages of a such formulation are well known
in the finite element literature (see, e.g., the comprehensive book by Crisfield 1991, 1997). In
contrast to the displacement-based formulation, the present study relies on the deformation variables
as basic unknowns of the problem. Such a deformation-based formulation offers a number of
advantages, two of which are more transparent local stability criteria discussed later on in the paper,
and a consistent cross-section equilibrium.

The starting point of the deformation-based Galerkin-type of the finite element discretization
method is the modified principle of virtual work (Planinc 1998)

+( )

+( )

+( )
−

− . (14)

4c ε γ κ, ,( )= τcA∫ x y z, ,( )dA=GAsγ x( )

0c ε γ κ, ,( )= z
A∫ σc x y z, ,( )dA

1δε 4δγ 0δκ+ +( )
0

L∫ dx  pxδu pzδw myδϕ+ +( )
0

L∫– dx  Si
i=1

6

∑– δui= 0.

0c 0–( )
0

L∫ δκdx

u L( ) u– 0( ) 1 ε+( ) ϕcos + γ ϕsin[ ] x+Ld
0

L∫– δ51 0( )

w L( ) w– 0( )+ 1 ε+( ) ϕsin γ– ϕcos[ ] xd
0

L∫ δ52 0( )

ϕ L( ) ϕ– 0( ) κ xd
0

L∫– δ0 0( )

S1+51 0( )[ ]δu1 S2+52 0( )[ ]– δu2 S3+0 0( )[ ]– δu3

S4 51– L( )[ ]δu4 S5 52– L( )[ ]δu5– S6 0– L( )[ ]δu6– = 0
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The only function defining the principle given above is the deformation variable−the pseudocurvature
κ(x); note that the geometrical and force variables are included only through their boundary values
u(0), w(0), ϕ(0), u(L), w(L), ϕ(L), 51(0), 52(0), and 0(0). Function κ(x) and nine parameters
(51(0), 52(0), 0(0), u(0), w(0), ϕ(0), u(L), w(L), ϕ(L)) fully describe the principle (14). For the
approximation of pseudocurvature κ(x) along a finite element, Lagrangian polynomials Pn(x) (n =
1, 2,Î, N ) of degree N−1 are used. N-node mesh is applied with the end points of the element
being the first and the last node, respectively. The distribution of the pseudocurvature along the
element axis is represented by the interpolation equation:

. (15)

After the introduction of (15) into (14) we get the following discrete system of the equilibrium
equations of the planar beam (Planinc 1998):

, (16)

, (17)

, (18)

, (19)

, (20)

, (21)

, (22)

, (23)

, (24)

, (25)

in which 1 =51cosϕ −52 sinϕ, 4 =51 sinϕ +52 cosϕ are the equilibrium axial and shear forces,
respectively, and

(26)

is the equilibrium bending moment. Functions 0c, ε, and γ are determined from Eqs. (11), (6), and
(7), respectively.

Eqs. (16)−(25) constitute the system of N + 9 nonlinear equations for the determination of N + 9
degrees of freedom, i.e., N + 3 internal, κn (n=1, 2,Î, N), 51(0), 52(0), 0(0), and six external
degrees of freedom, u(0), w(0), ϕ(0), u(L), w(L), ϕ (L), of the beam finite element. In the matrix
form, these equations read

. (27)

κ x( )= Pn
n=1

N

∑ x( )κn

gn= 0c 0–( )
0

L∫ Pndx=0, n=1 2 … N, , ,

gN+1=u L( ) u– 0( ) 1 ε+( ) ϕcos + γ ϕsin[ ]
0

L∫– dx+L=0

gN+2=w L( ) w– 0( )+ 1 ε+( ) ϕsin γ– ϕcos[ ]
0

L∫ dx=0

gN+3= ϕ L( ) ϕ– 0( ) Pn
*

n=1

N

∑– L( )κn= 0

gN+4=S1+51 0( )= 0

gN+5=S2+52 0( )= 0

gN+6=S3+0 0( )= 0

gN+7=S4 51– 0( )+ px0

L∫ dx=0

gN+8=S5 52– 0( )+ pz0

L∫ dx=0

gN+9=S6 0– 0( ) 1 ε+( )4 γ1 my––[ ]
0

L∫– dx=0

0 x( )=0 0( )+ 1 ε+( )4 −γ1 −my[ ]
0

x∫ dξ

g x λ,( )= R x( )  P–  = R x( ) λ– P = 0
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Here, x denotes the (N + 9)-dimensional generalized displacement vector, R is the corresponding
internal force vector, P = λ  is the deformation independent vector of external loads,  is a
reference load vector, while λ is a loading factor. Formally a fully analogous equation is valid for
an element assemblage−a planar frame.

Because internal degrees of freedom κn (n = 1, 2,Î, N), 51(0), 52(0), and 0(0) need not be
continuous across the boundaries of the element, they may (but not necessarily) be eliminated from
Eqs. (16)−(25) on an element level; the finite element equation then takes a similar form as in Eq. (27)

. (28)

Here, xb denotes the vector of generalized boundary displacements, u(0), w(0), ϕ (0), u(L), w(L), ϕ (L),
and Rb,  are the corresponding internal and external force vectors.

For a prescribed loading factor, λ = λp, and for prescribed boundary conditions, the system of
equations given by (27) and assembled for the whole structure is solved for x(λp) by Newton’s
iterative method. In an iteration step i + 1, Eq. (27) is linearized around the solution vector in
iteration step i, yielding a system of linear equations for increments of unknowns

,

, (29)

which is repeatedly solved until the required accuracy of x is achieved. The expression

(30)

denotes the directional differential (Hughes and Pister 1978). The associated Fréchet’s derivative KT

ù  is, in the mechanics context, termed the tangent stiffness matrix. The definiteness of the
tangent stiffness matrix of an element plays a crucial role in the local and global stability analyses,
as discussed in the next section.

3. Singular points and local stability criteria

3.1 Preliminaries

The solution x(λ) of Eq. (27) may be imagined as a continuous collection of points of the
equilibrium of the structure in its displacement configuration space. In general, we distinguish between
regular and singular points. Regular points are characterized by the regular tangent stiffness matrix (det
KTø W). In a singular point, the matrix is singular:

singular point =0. (31)

The corresponding generalized displacement vector and loading factor in the singular point are
called the critical displacement vector and the critical loading factor, respectively, and are denoted
by xcr and λcr. According to the implicit function theorem, Eq. (27) need not be uniquely solved for
x in the singular point. The singular point, therefore, indicates a possible loss of uniqueness of the
solution.

The points may further be divided into stable and unstable. For deformation-independent external
loads considered here, the stable point is characterized by the positive definite tangent stiffness

P P

gb xb λ,( )= Rb xb( ) λ– Pb= 0

Pb

∇xg xi λp,( )∆xi +1= g– xi λp,( )

xi +1= xi+ ∆xi +1 i= 0 1 2 …, , ,( )

∇xg xi λp,( )∆xi +1=
d

dα------- g xi+ α∆xi +1 λp,( )[ ]
α=0

∇xg

det⇔  KT xcr λcr,( )
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matrix, i.e., by the condition (Waszczyszyn et al. 1994)

(32)

In (32), (Á)t denotes the transpose operation. Necessary and sufficient conditions for the positive
definiteness of a matrix are well known (see, e.g., Hohn 1973 and Ting 1996). For any matrix, M,
the relation y tMy=y tMsy holds true, where Ms=1/2(M + M t) is the symmetric part of M. Therefore,
for a matrix to be positive definite, the leading principle minors of its symmetric part, Ms, have to
be positive. If matrix Ms is singular or negative definite, the point is unstable. In the engineering
terminology, we call a structure having singular or negative definite symmetrized tangent global
stiffness matrix to be unstable.

As the determinants of a matrix and its symmetric part are generally not equal, the stability and
uniqueness criteria for non-symmetric stiffness matrices are not coincidental. Thus, a singular point
of a structure, characterized by det KT=0, may be stable or unstable, depending on the definiteness
of the symmetric matrix 1/2(KT + KT

t ). For a symmetric matrix, its singularity indicates both the loss
of stability and the loss of uniqueness. Regular points may generally be stable or unstable for any
type of the stiffness matrix (de Borst et al. 1993), too.

We further distinguish between global and local instabilities. The term ‘global instability’ describes
the instability (in the sense defined above) of the whole structure, while the term ‘local instability’
indicates instability of a material point of a body. The two types of instabilities are only indirectly
related; i.e., the local instability may or may not instantaneously trigger the global instability, yet it
may well quantitatively change the global stiffness of the structure. It is, therefore, of the utmost
importance to incorporate the onset of local instabilities into the global analysis. The aim of the
present paper is to derive the algorithm that accounts for the effect of the local instability onto the
global stiffness matrix in the context of Galerkin’s beam finite element method and to present the
conditions that the local instability sets to numerical integration schemes. However prior to the
relevant discussions, we, have to deduce the local stability criteria for the beam.

3.2 Local stability criteria for the beam

Making use of (26) in (8), one obtains

[ ] (33)

Eqs. (6)−(7) and (33) relate equilibrium and constitutive forces of the beam and must be satisfied
for all x∈[0, L]. Assume further that the constitutive Eqs. (9)−(11) define a stable material. Such
material requires Fréchet’s derivative of the constitutive matrix with respect to ε, γ, and κ to be
positive definite for any triple ε, γ, and κ.

The directional differentiation of constitutive Eqs. (9)−(11) with respect to ε, γ, and κ gives

(34)

(35)

(36)

ytKTy> 0 for all y 0.≠,

r3=0c 0– 0( )  
0

x∫– 1 ε+( )4 γ– 1 −my dξ= 0.

∆1c=
∂σc

∂e
-------- Ad

A∫ 
  ∆ε+ z

∂σc

∂e
-------- Ad

A∫ 
  ∆κ=C11∆ε+C13∆κ,

∆4c=
∂τc

∂γ------- Ad
A∫ 

  ∆γ=C22∆γ,

∆0c= z
∂σc

∂e
-------- Ad

A∫ 
  ∆ε+ z2∂σc

∂e
-------- Ad

A∫ 
  ∆κ=C31∆ε+C33∆κ.
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Functions C11(x), C13(x)=C31(x), C33(x), and C22(x)=G(x)As introduced above are the components of
the symmetric tangent constitutive matrix of the cross-section, C(x). C11, C13, and C33 are functions
of the current distribution of the uniaxial tangent modulus of material in tension and compression,

, while C22 is a function of the tangent shear modulus; all of them depend also on cross-
sectional geometry. For stable materials, C must be positive definite in any cross-section x; this
requires its leading principal minors to be positive

C11>0, C11 C22> 0, det C=C22 (C11C33−C13
2 )> 0. (37)

Observe that the second inequality in Eq. (37) can be substituted by the inequality C22>0, and the
third by the inequality C11C33−C13

2 > 0. When one of the three quantities C11, C22 or det C/C22 becomes
zero, the cross-section exhibits material instability. For materials that do not exhibit softening, it can
be shown that whenever C11 becomes zero, so do C13, C33, and det C. The material instability is
then characterized by a double zero eigenvalue of C. This clustering of zero eigenvalues of material
tensor has also been reported by Reese and Wriggers (1997) in the 3D finite elasticity context.
Observe also, and as noted by Belytschko and Fish (1989) in the context of strain-softening
materials, that zero-valued tangent material modulus, , in a material point (x, y, z) of
the cross-section, is generally not a sufficient condition for the material instability of the supported
beam.

Solving Eqs. (6) and (7) for ε and γ functions of κ and boundary parameters , and
ϕ(0) inserting the results into (33) gives

(38)

For a set of prescribed boundary parameters, 51(0), 52(0), 0(0), and ϕ(0), the linearization of Eq.
(38) is performed only with respect to κ ; the resulting operator must be positive definite in a locally
stable state which requires

(39)

Inequality (39) also expresses the physically based requirement that the variation of the modified
principle of virtual work Eq. (14) is positive definite for arbitrary length L. Upon performing the
indicated derivative, we obtain

δκ D ∆κ > 0, (40)

where

D(x) = DM(x) − DS(x), (41)

and DM(x) and DS(x) designate the expressions

(42)

( ) (43)

∂σc/∂e

Et= ∂σc/∂e=0

51 0( ) 52 0( ),

r3∗ κ x( ) 51 0( ) 52 0( ) 0 0( ) ϕ 0( ),,, ,( )=0c 0 0( )– 1 ε+( ) 1
GAs
----------– 4 my–

 
 
 

0

x∫– dξ= 0.

δκ d
dα-------r3∗ κ+ α∆κ( ) α=0 > 0.

DM x( )=C33  
C13

2

C11
--------– =C33,

DS x( )= C134
C11

------------ ∂ϕ 
∂κ
--------– C134

C11
------------+

0

x∫ 1
C11
-------- 1

GAs
----------– 

 4 2  1 ε+( )– 1 +1
2

GAs
----------

∂ϕ
∂κ------  f ξ( )dξ.



On the local stability condition in the planar beam finite element 515

Arbitrary function f is defined as f (ξ )=∆κ(ξ )/∆κ(x), |f |ú 1. After imposing the requirement of the
positive definiteness of D in Eq. (40), and repeating the reformulated inequalities of Eq. (37) as
discussed, we obtain the complete set of the necessary and sufficient conditions for the local
stability in the beam

(44)

The first three inequalities define ‘material’ stability conditions, and D>0 is a ‘structural’ stability-
type constraint in a local sense.

In a typical Galerkin-type finite element discretization, the local stability conditions as given in
(44) are not consistently accounted for in the formulation of the tangent stiffness matrix of an
element. As a result, the loss of the local stability does not adequately generate the onset of the
global instability.

Observe that D, given by (41), is generally valid for a wide variety of materials, including elastic
and hyperelastic ones. It can formally be split into a sum of a pure material part, DM, and a
combined material−stress−resultant part, DS. In a small strain situation, where the material part
dominates, the local stability occurs when material moduli decrease sufficiently, while for large
displacements, the local instability may also be stress-triggered. When the tangent constitutive
matrix becomes singular at some x, a bifurcation can occur in such a manner that subsequent
deformations at x become discontinuous. However, the analysis of this post-bifurcation, ‘shear band’
phenomenon is beyond the scope of the present paper.

In the next section, we show how the local stability condition D>0 (44) can consistently be
incorporated into the element tangent stiffness matrix of the planar beam finite element presented in
Section 2 and derive the set of rules for the numerical integration algorithm over the axis of the
beam such that the consistency is assured.

4. The consideration of the local stability condition in the planar beam finite element

The basis of our deduction is the finite element beam formulation presented in Section 2.3. To
facilitate the analysis of the local stability, we assume that the beam finite element is clamped at
one end, and free at the other. Then the loss of the stability of the element coincides with the first
appearance of the local instability within the element. As discussed above, the loss of the stability
of the element is characterized by the loss of the positive definiteness of its tangent stiffness matrix
KT. It can be shown that the determinants of the whole stiffness matrix and of its pseudocurvature-
dependent part are linearly related; thus we only need to study the definiteness of the latter. For the
present finite element, it takes the form

(45)

where Dp is given by the equation

− . (46)

C11> 0, C22> 0, C33> 0, D>0 for all x 0 L,[ ].∈

Knp=
∂gn

∂κp
--------= D p0

L∫ PpPndx n p=1 2 … N, , , ,( ),,

Dp x( )=C33
1
Pp
-----–

C314
C11

------------




Pp∗  
0

L∫ C134
C11

------------Pp+
1

C11
-------- 1

GAs
----------– 

 4 2
1 ε+( )– 1+ 1

2

GAs
----------  

  Pp∗ dξ
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As observed, Dp is D from Eq. (41) with f taken to be a specific function f=Pp. As required in (44),
whenever Dp at some  becomes zero or negative, the local instability takes place at xcr

and matrix [Knp] must simultaneously become singular or negative definite. The replacement of the
integral in (45) with a numerical quadrature gives

(47)

where positive numbers wi (i=1, 2,Î, M) are the integration weights and M is the number of
integration points. Numbers  designate the x-coordinates of the i-th integration point. The
square matrix [Knp] as defined by (47) may be written in the form of a product of three matrices

(48)

where P is the rectangular matrix of the values of the polynomials at the integration points

(49)

W is the diagonal, positive definite matrix of integration weights

(50)

and the rectangular matrix DP is defined by the expression

(51)

If the number of interpolation nodes is greater than the number of integration points (N>M), the
rank of matrix [Knp]N×N  is at most M and is, thus, always singular, even if all Dp(ξi)>0. In contrast,
if N<M, the matrix is generally non-singular even if one of Dp(ξi)’s is zero. Only if N=M the matrix
may−although only under certain conditions−become singular exactly when one of Dp(ξi)’s vanishes.
A special consideration is needed to further establish additional conditions when N=M.

When N=M, matrices P and DP become quadratic. The determinant of [Knp] is then computed as
a product of the determinants of the matrix factors

(52)

Because M interpolation polynomials of degree M−1 are linearly independent and continuous
functions, it can be proved that the first determinant on the right-hand side of (52) is always
positive, i.e., det P>0. Likewise is true for det W. The sign of det [Knp] then solely depends on the
sign of det DP :

xcr 0 L,[ ]∈

Knp= wi

i=1

M

∑ Dp ξ i( )Pp ξ i( )Pn ξ i( ), n p=1 2 … N, , , ,( ),

ξ i 0 L,[ ]∈

Knp[ ]= PWDP
t ,

P=

 P1 ξ1( ) P1 ξ2( ) … P1 ξM( ) 
 P2 ξ1( ) P2 ξ2( ) … P2 ξM( ) 

 
 PN ξ1( ) PN ξ2( ) … PN ξM( ) N M×

,

Î Î

Î

···

W=

 w1 0
w2

0 wM M M×

,···

DP=

 D1 ξ1( )P1 ξ1( ) D1 ξ2( )P1 ξ2( ) … D1 ξM( )P1 ξM( ) 
 D2 ξ1( )P2 ξ1( ) D2 ξ2( )P2 ξ2( ) … D2 ξM( )P2 ξM( ) 

    
 DN ξ1( )PN ξ1( ) DN ξ2( )PN ξ2( ) … DN ξM( )PN ξM( ) N M×

.···Î

Î Î

·

det Knp[ ]= detP detW detDP
t .
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(53)

We seek a combination of a numerical integration scheme and an interpolation that yields zero
determinant whenever one of Di (ξj)’s becomes zero. For the sake of simplicity of discussion, but
without losing generality, we accept that the local stability is lost in integration point one, then
D1(ξ1)=0. There are a variety of possible solutions. If we employ equidistant interpolation nodes
with Lagrangian interpolation polynomials in combination with the Newton-Cotes integration rule
with the integration points coinciding with the interpolation nodes, then P1(ξ1)=1 and
P1(ξ2)=P1(ξ3)=Î= P1(ξM)=0. The first row in Eq. (53) then vanishes if D1(ξ1)=0, and so does the
determinant. We here advise a more practical and simple approach which causes in the first column
to vanish. We require that interpolation polynomials other than polynomial P1 are zero in integration
point one, i.e. Pi (ξ1)=0 (i=2, 3,Î, M ). This condition essentially demands that both the first
interpolation node and the first integration point, are located at the point of the local instability.
Such a condition is automatically satisfied for the two boundary nodes when the Lagrangian
interpolation in conjunction with Lobatto’s integration is employed.

Therefore, Eq. (52) reduces to

(54)

where [DP
t ]M−1×M−1 is a (M−1)-dimensional submatrix of DP

t . As observed from (54), the determinant
of the tangent stiffness matrix is now proportional to D1(ξ1).

Unfortunately, the point of local instability is in general not coincident with an integration point of
any standard numerical integration rule (such as, e.g., Simpson’s, Gaussian, and Lobatto’s rules).
Thus, in order to capture the onset of the local instability correctly, one has (i) to detect the point of
the local instability on the axis of the beam, (ii) to collocate the interpolation, the integration and the
instability points, and (iii) to construct proper interpolation functions and a customized integration
rule. This, a rather complicated procedure, may in practice be largely avoided, because local
instabilities usually occur at the two end points of the finite element; therefore, the Lagrangian
interpolation with the set of equidistant nodes (which includes the two end points) combined with
standard Lobatto’s integration, suffices. Lobatto’s formulae have been used extensively in practical
elastic-plastic analyses, see, e.g., Banovec (1986), Bergan (1984), Cichon' (1984), Hsiao et al. (1988),
and Saje et al. (1997).

Remark 4.1. The derivation indicates that taking an order of numerical integration higher than
deduced above (M >N) gives the determinant greater results than expected which induces in an
overstiff response and an overestimation of the global instability load. This will be confirmed by
numerical experiments. An exception occurs, however, if an element is subjected to a homogeneous
bending, where all Dp(ξ )’s become zero simultaneously along the beam.

Remark 4.2. For the small deformation theory (the so called 1st order theory) matrix [Knp] again
takes a form of a triple matrix product

(55)

det Knp[ ]( )sgn = det DP( )sgn =

D1 ξ1( )P1 ξ1( ) D1 ξ2( )P1 ξ2( ) … D1 ξM( )P1 ξM( )
D2 ξ1( )P2 ξ1( ) D2 ξ2( )P2 ξ2( ) … D2 ξM( )P2 ξM( )

    
DM ξ1( )PM ξ1( ) DM ξ2( )PM ξ2( ) … DM ξM( )PM ξM( )

sgn .···Î

Î Î

det Knp[ ]=D 1 ξ1( ) detP detW det DP
t[ ]M 1 M 1–×– ,

Knp[ ]= PCwPt,
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but the deduction and the results are now more simple due to the diagonal form of matrix :

. (56)

Here, the local stability condition reduces to =− C13
2 / C11>0. Since det P>0, matrix [Knp]

becomes singular when one of the (ξ i)’s becomes zero, provided, however, that N=M. This is a
lot less restrictive condition than that appearing in the finite deformation case, where interpolation,
integration and instability points must coalesce. Fully analogous results have been derived by
Banovec (1986) for his mixed-energy based, moderate-rotations, co-rotational, elastic-plastic beam
element, and Saje et al. (1997) for their exact-kinematics, rotation-based, elastic-plastic beam finite
element.

Remark 4.3. It is clear from (52) that the proposed integration technology guarantees that the
value of the determinant of the tangent stiffness matrix in the neighbourhood of the critical point
decreases with the determinant of DP

t . Moreover, Eq. (54) shows that det KT is proportional to
Dp(ξcr). Thus, both the determinant of the tangent stiffness matrix and Dp(ξcr) approach zero
linearly. This fact is essential for the appropriate numerical accuracy of the incremental solution in
the vicinity of the singular or instability point, where substantial changes in deformations should
result from small load increments. This also suggests that the accuracy of the evaluation of the
residual forces is essential in the neighbourhood of the singular point.

Remark 4.4. The lowest reasonable order of numerical integration of the finite elements described
in Section 2.3 can be estimated by requiring that the integral in (45) shall be integrated exactly for a
materially and geometrically linear case, when Dp can be assumed constant as in Jelenic'  and Saje
(1995) for the elastic, rotation-based space beam model. Then its integrand appears to be the
polynomial of degree 2(N−1). An exact integration of this polynomial is possible by, e.g., the N-
point Gaussian, the N-point Lobatto-like integration with only one integration point prescribed in
advance, and the (N+1)-point classical Lobatto’s integration. For a linear elastic case, Gaussian
integration is obviously optimal. In contrast, for the capturing of the local-global stability relation
consistently, the use of the Lobatto-like integration with only one prescribed integration point (this
one being the local stability point) is essential.

Remark 4.5. Notice from Eq. (46) that Dp=  at x=0 and x=L.

5. Numerical examples

To show the validity of the present theoretical results and to give an estimate of the errors
possibly made when the local stability conditions are not accounted for properly, we consider two
numerical examples: (i) a rather flexible elastic-plastic cantilever subjected to a transverse point
load, and (ii) a simply supported beam subjected to a transverse uniform load and/or an axial point
load at the support.

Elastic-plastic material is assumed whose uniaxial stress-strain law is taken to be represented by a
bi-linear rule of the form

Cw

Cw=

 w1C33 ξ1( ) 0
w2C33 ξ2( )

0 wMC33 ξM( ) M M×

···

C33 C33

C33

C33
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. (57)

Parameter E>0 is the elastic, and Epû 0 is the plastic tangent modulus of material; σY = EeY>0 is
the yield stress, and eY>0 denotes the yield extensional strain. In what follows, we consider the
numerically most demanding case−elastic−perfectly plastic material (Ep=0). Note that the law, given
by (57), enables the exact analytical integration over the cross-section.

The influence of various integration schemes on the local-global stability relation is studied using
finite elements of Saje et al. (1997) with various degrees of interpolation polynomials for the
rotation approximation and different types and orders of the numerical integration. These finite
elements are designated by Ei-n, where the first subscript, ‘i’, specifies the degree of the rotational
interpolation polynomial, and subscript ‘n’ determines the order of the numerical integration.

5.1 Flexible cantilever

The descriptive geometric, material, and loading data are given in Fig. 1. We study a very slender
cantilever beam with a large length-to-height ratio, L/h=50, which makes the effect known as shear
negligible. The rectangular cross-section is assumed with the width-to-height ratio 1/4.

With an increasing load, the plastic zone localizes at the clamped cross-section. When the
clamped cross-section is sufficiently plastified, the cantilever loses its stability. The instability is
materially dominant. As the clamped end is the potential point of the local instability, it must be
taken to be both the interpolation and the integration point. Lobatto’s integration rule satisfies this
requirement, but not the Gaussian.

For the purpose of comparison of various results, we first constructed several numerical solutions
using uniform meshes of one, ten, and twenty, Lobatto’s consistent integration-based elements E5-5,
and compared the solutions for the geometrical, deformation, and stress quantities. We found
relative differences to be less than 10−3 between the ten- and twenty-element solutions. The twenty-
element solution thus appears to be sufficiently accurate and is, therefore, chosen as the reference
solution in the subsequent analyses; in the sequel, it will be marked as ‘exact’ solution.

Fig. 2a shows the non-dimensional force−tip deflection diagrams as predicted by twenty-element
uniform meshes using (i) element E5-5 and Lobatto’s integration with the consistent number of
integration points, and (ii) element E5-7 with an inconsistent number of points, yet with the correct
location of the first point. The localized plastic zone makes the cantilever rather flexible. The results
are shown for the range w/L�[0, 0.36]. As seen from the figure, 20-element E5-7 solution exhibits a
slightly smaller tip deflection for λ>4 than the solution that employsE5-5. This shows that the
influence of a solely inconsistent numerical integration order is not very pronounced when the

σc e( )= Ee  e eY<,
σY+Ep e eY–( )( ) e( ),sgn e eY≥




Fig. 1 A cantilever subjected to transverse point load P
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number of elements is sufficiently large. The use of the Gaussian integration with a consistent
number of points but with an inconsistent location of the first point gives the results that show the
same trend (Fig. 2b).

Fig. 3 shows the non-dimensional force-tip deflection diagrams as predicted by one-element
meshes using elements E5-5 and E5-7 with Lobatto’s (Fig. 3a) and Gaussian (Fig. 3b) integrations.
The figures clearly show (i) that an inconsistent Lobatto’s or Gaussian numerical integrations (E5-7)
lead to an overestimation of the bearing capacity of the cantilever, although for the present
numerical example absolute errors in the load are relatively small; and (ii) that the tip deflections
for a prescribed load are significantly smaller when the inconsistent integration is used.

This is further demonstrated by Fig. 4, where the deformed shapes of the cantilever for  λ=4.3 are
shown for one-element E5-5 and E5-7 meshes using Lobatto’s (Fig. 4a) or Gaussian integration (Fig. 4b)
and compared to the ‘exact’ solution. The comparison shows that the deflections obtained by the
inconsistent integration are roughly one half of the correct values, while the consistent integration
results in practically accurate deflections.

The cause for the underestimation of the deflections is inability of the inconsistent integration
solutions to predict a sufficient localization of the pseudocurvature at a clamped section. Fig. 5

Fig. 2 Force−tip deflection diagrams, 20 elements E5-5 (‘exact’ solution) or E5-7

Fig. 3 Force−tip deflection diagrams, one element E5-5 or E5-7
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shows the graph of the curvature variation along the cantilever for a one-element mesh. Note that
the application of the consistent integration predicts about the three times bigger localization.

5.2 Simply supported beam

The geometric, material, and loading data are given in Fig. 6. Again, the effect of shear is taken
to be negligible. For convenience, the combined load is defined by

(58)

where λ is the loading factor, applied to the reference distributed load , and the point load P;  α�
[0, 1] is a parameter. When α=0, the beam bends and the instability stems from the spread
material; plasticity we call this case a ‘materially dominant instability’; in contrast, for α=1 the
stability is lost by buckling and is, therefore, ‘geometrically dominant’. 

Materially Dominant Instability. We study the materially dominant instability first. Since the beam
is now subjected to the transverse load q=λ , the plastic zone will localize at the center point of
the beam. For the consistent consideration of local instability, an interpolation point and an
integration point should be situated at the center point. The condition is met when (i) Lobatto’s or
Gaussian integration of an odd order is used, or (ii) such that the end node of an element coincides

F α( )= λ 1 α–( )q+αP( ),

q

q

Fig. 4 Deformed shapes at λ = 4.3, one element E5-5 or E5-7

Fig. 5 Variation of the pseudocurvature, κ, with x at λ = 4.3, one-element mesh
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with the center point if the beam is modelled by several finite elements; in the latter case, only
Lobatto’s integration (but of an arbitrary order) is consistent. From these considerations and
recalling the results of Section 5.1, it is obvious that Lobatto’s integration is a better choice.
Therefore, in what follows, we show only results using Lobatto’s integration.

We first obtained a series of numerical solutions using uniform meshes of one, ten, and twenty
Lobatto’s consistent integration-based elements E9-9, and compared the solutions. We found relative
differences between geometrical, deformation, and stress quantities to be less than 5·10−3 for ten
and twenty-element solutions. The twenty-element solution is chosen as the reference solution; in
figures, it is marked as ‘exact’ solution.

Fig. 7a shows the loading factor-mid-point deflection diagrams as predicted by twenty-element
uniform meshes using (i) consistent element E9-9, and (ii) inconsistent element E5-7. Fig. 7a shows
that the differences are small, and indicates that the influence of an inconsistent order of integration
diminishes when the number of elements grows. In contrast, when only one-element mesh is
employed, the inconsistent elements E6-6 and E5-7 give roughly three times smaller deflections,
compared to our reference solution. The consistent element E5-5, on the other hand, gives nearly
accurate results for deflections.

This is further illustrated by Fig. 8, where the deformed shapes of the simply supported beam for
λ=0.12 are shown for one-element E5-5, E5-7, and E6-6 meshes and compared to the deformed shape
obtained by the ‘exact’ solution. Note that element E6-6 has the correct order of integration, but is
inconsistent because the order is not an odd number. Observe also that the error in deflections due
to the inconsistency is now even bigger than found in the example in Section 5.1 (the factor is here

Fig. 7 Force−tip deflection diagrams, α =0

Fig. 6 Simply supported beam
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about 4 compared to 2 in Sec. 5.1). Both examples indicate that the inconsistent elements of type
En-m, mûn, yield too stiff tangent matrices.

Fig. 9 shows the graph of the variation of the pseudocurvature along the axis of the beam. Again,
the quantitative differences between the results of consistent element, E5-5, and inconsistent
elements, E5-7 and E6-6, are remarkable. Both solution graphs also differ qualitatively: while the
graph obtained by element E5-5 exhibits a trend towards the localization, the graphs of E5-7 and E6-6

do not.
The pseudocurvature (and the extensional strain) serves to compute the constitutive bending

moment in the beam. Thus, the error in the pseudocurvature results in the error of the bending
moment. This is demonstrated by Fig. 10. The inconsistent elements E5-7 and E6-6 yield several
times more substantial relative errors compared to the errors of element E5-5.

Geometrically Dominant Instability. The beam is subjected (i) solely to a compressive axial force
P (i.e., α=0), and (ii) to a combined load with α=0.9999. The computed values of critical loading
factors λcr for various element types and number of elements are presented in Table 1. As observed
from Table 1, the inconsistency of elements do not play a significant role in the determination of the
critical load.

6. Conclusions

In standard finite element algorithms, the local stability conditions are not consistently accounted

Fig. 8 Deformed shapes at λ =0.12−Lobatto’s integration; α =0, one element E5-5, E5-7 or E6-6

Fig. 9 One-element mesh−Lobatto’s integration; α =0, variation of the pseudocurvature, κ, with x at λ =0.12
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for in the formulation of the tangent stiffness matrix. As a result, the loss of the local stability is not
adequately related to the onset of the global instability. The phenomenon typically arises with
material-type localizations, such as shear bands and plastic hinges. This paper addresses the problem
in the context of the planar, finite-strain, rate-independent, materially nonlinear beam theory,
although the proposed technology is in principle not limited to beam structures.

To make the stability analysis more transparent, we first presented a weak formulation of
Reissner’s finite-strain beam theory, where the pseudocurvature of the deformed axis plays a role of
the only unknown function. Next, we derived the local stability conditions for the large deformation
case, and suggested possible combinations of the interpolation and numerical integration schemes
that trigger the simultaneous loss of the local and global stabilities of a statically determined finite
element. For practical applications, we advised a procedure that uses a special numerical integration
rule, where interpolation nodes and integration points equal in number, but not in locations, except
for the point of the local instability, where the interpolation point and the integration node coalesce.

The previously derived large-displacement elastic-plastic beam formulations by Banovec (1986)
and by Saje et al. (1997) employ a similar integration strategy but are based solely on small-strain
material instability conditions. As a result, those procedures also require certain relation between a
number of interpolation and integration points, but do not additionally set the condition that the
interpolation node, the integration point, and the point of the local instability coincide, which is the
implication of the present procedure.

In general, the point of local instability is not a priori located in an integration point or in an
interpolation node. To fulfill the requirement of the coalescence of the three points, a special
algorithm must be used whose essential part is the update of interpolation functions and the
construction of a customized integration rule. The details of these issues, however, were not the

Fig. 10 Variation of the relative error of the bending moment, ∆M(%)=100 (0−0exact)/0exact, with x at
λ =0.12; α =0; Lobatto’s integration

Table 1 Global stability of the simply supported beam-λλcr; Lobatto’s integration

α =1 α =0.9999
20 elements one element 20 elements one element

E5-5 157.966 158.054 127.866 127.311

E5-7 157.966 157.966 127.866 127.705

E6-6 157.966 157.963 127.866 128.634

E9-9 157.966 157.966 127.866 127.937
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subject of this paper. Provided that the point of instability is an end-point of a beam−a condition
often met in engineering practice−the algorithm simplifies substantially; one such algorithm uses the
Lagrangian interpolation and Lobatto’s integration as in Banovec (1986) and Saje et al. (1997).
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