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Post-peak behavior and flexural ductility of doubly
 reinforced normal- and high-strength concrete beams

H.J. Pam†, A.K.H. Kwan‡ and J.C.M. Ho‡†

Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

Abstract.  The complete moment-curvature curves of doubly reinforced concrete beams made of normal-
or high-strength concrete have been evaluated using a newly developed analytical method that takes into
account the stress-path dependence of the constitutive properties of the materials. From the moment-
curvature curves and the strain distribution results obtained, the post-peak behavior and flexural ductility
of doubly reinforced normal- and high-strength concrete beam sections are studied. It is found that the
major factors affecting the flexural ductility of reinforced concrete beam sections are the tension steel
ratio, compression steel ratio and concrete grade. Generally, the flexural ductility decreases as the amount
of tension reinforcement increases, but increases as the amount of compression reinforcement increases.
However, the effect of the concrete grade on flexural ductility is fairly complicated, as will be explained
in the paper. Quantitative analysis of such effects has been carried out and a formula for direct evaluation
of the flexural ductility of doubly reinforced concrete sections developed. The formula should be useful
for the ductility design of doubly reinforced normal- and high-strength concrete beams.

Keywords: flexural ductility; high-strength concrete; moment-curvature behavior; reinforced concrete
beams.

1. Introduction

In the design of a reinforced concrete beam, both the flexural strength and ductility need to be
considered. However, whilst the flexural strength can be quite easily evaluated by the ordinary beam
bending theory, the flexural ductility cannot be determined directly by any simple method (Park and
Paulay 1975). Because of the difficulties involved, ductility analysis is seldom carried out in normal
design practice. But this does not imply that the flexural ductility of a beam is unimportant. From
the structural safety point of view, ductility is at least as important as strength. Good flexural
ductility provides the beam a much better chance of survival when it is overloaded or subjected to
strong impact.

If normal-strength concrete is used for the beam, the flexural ductility is, in most cases, not
critical and it is usually sufficient to just limit the tension steel ratio so that the beam is under-
reinforced. However, if high-strength concrete, which is generally more brittle, is used, more careful
checking of the flexural ductility is considered advisable. A recent experimental study by Pam et al
(2001) has indicated that a reinforced high-strength concrete beam, if not properly designed, could
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fail in a rather brittle manner and that just limiting the tension steel ratio to keep the beam under-
reinforced might not be sufficient to maintain the flexural ductility of a high-strength concrete beam
at the same minimum level as that normally provided in a normal-strength concrete beam.
Nevertheless, because of obvious advantages, the use of high-strength concrete is increasing (ACI
Committee 363 1992). To ensure that high-strength concrete beams are provided with sufficient
ductility, detailed investigation of the effect of concrete grade on flexural ductility is urgently
needed.

Irrespective of whether normal- or high-strength concrete is used, the flexural ductility can
become critical when the concrete section is relatively small and a relatively large amount of
tension reinforcement has to be added to achieve the required flexural strength. This problem may
be resolved by increasing the beam size or by adding compression reinforcement. However, a
larger size beam will increase dead weight and may impose difficulties on the design of the
geometric layout. The addition of compression reinforcement is a good way to restore the flexural
ductility to a higher level, but this will lead to a significantly higher cost, which may or may not
be justified depending on the situation and the resulting increase in flexural ductility. To
understand better the possible increase in flexural ductility due to the addition of compression
reinforcement, detailed ductility analysis of beam sections with or without compression reinforcement
added is required.

However, there is no simple method for direct evaluation of flexural ductility. To evaluate the
flexural ductility of a beam section, it is necessary to first analyze the complete moment-curvature
relation of the section covering both the pre-peak and post-peak ranges and then calculate the
amount of inelastic curvature that the section can sustain before failure. Whatever method
employed, a nonlinear structural analysis, using the actual stress-strain curves of the constitutive
materials and an iterative numerical procedure, is required. Up to now, very limited analysis of the
complete moment-curvature relation of reinforced concrete sections has been carried out (Carreira
and Chu 1986, Samra et al. 1996, Sheikh and Yeh 1997) and as a result there has been few data on
the flexural ductility of reinforced concrete beams. 

The authors have recently developed a new method of analyzing the complete moment-curvature
behavior of reinforced concrete beam sections that not only uses the actual stress-strain curves but
also takes into account the stress-path dependence of the constitutive properties of the materials (Ho
et al. 2001). Application of the method to analyze the post-peak behavior of reinforced concrete
beam sections has revealed that at the post-peak stage, the neutral axis depth keeps on increasing
and beyond a certain point, the strain in the tension reinforcement starts to decrease. To cater for
such strain reversal, the stress-path dependence of the stress-strain relation of the steel reinforcement
must be taken into account. In fact, the numerical results have indicated that the negligence of the
stress-path dependence of the material properties in the previous analysis methods developed by
others could lead to significant errors in the post-peak moment-curvature relation and flexural
ductility. 

The analysis method developed by the authors has so far been applied only to singly reinforced
sections. However, doubly reinforced sections with both tension and compression reinforcement
provided are equally important because very often a high-strength concrete beam is provided with a
relatively large amount of tension reinforcement thereby rendering the flexural ductility of the beam
very critical and leading to no other alternative apart from adding compression reinforcement. In the
present study, this newly developed method is applied to analyze the post-peak moment-curvature
behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beam sections.
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2. Stress-strain curve of concrete

To compare the flexural behaviors of normal- and high-strength concrete beams, a complete
stress-strain curve model that is applicable to both normal- and high-strength concretes is needed.
Herein, the stress-strain curve model developed by Attard and Setunge (1996), which has been
shown to be applicable to a broad range of concrete strength from 20 to 130 MPa, is used. The
main parameters employed to establish the equation were the initial Young’s modulus Ec, peak
stress fco, strain at peak stress εco, and the stress fci and strain εci at the inflection point on the
descending branch of the stress-strain curve. It is given by:

(1)

in which σc and εc are respectively the stress and strain in the concrete. To allow for the difference
between the in-situ uniaxial compressive strength and the cylinder strength, the peak stress fco may
be taken as 0.9 times the cylinder strength fc. The parameters A and B have been obtained by Attard
and Stewart (1998) as follows:

For ascending branch of the stress-strain curve,

(2a)

(2b)

For descending branch of the stress-strain curve,

(3a)

B = 0 (3b)

In the above, the values of Ec, εco, fci and εci may be determined from:
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Fig. 1 Stress-strain curves of concrete derived from Attard and Setunge’s model
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Ec = 4370 (fco)
0.52 (4a)

εco = 4.11 (fco)
0.75/Ec (4b)

fci /fco = 1.41 − 0.17 ln(fco) (4c)

εci /εco = 2.50 − 0.30 ln(fco) (4d)

where Ec and fco are in MPa and εco is dimensionless. Fig. 1 shows some typical stress-strain curves
derived from Attard and Setunge’s model. 

3. Stress-strain curve of steel reinforcement

The steel reinforcement is assumed to be linear elastic-perfectly plastic. To cater for strain
reversal, the stress-path dependence of the stress-strain relation is taken into account by assuming
that the unloading path follows the initial elastic slope, as shown in Fig. 2. Incorporating stress-path
dependence, the stress-strain equation of the steel reinforcement may be formulated as follows.
When the strain is increasing, the stress in the steel is given by:

at elastic stage: σs = Esεs (5a)

after yielding: σs =  fy (5b)

in which σs and εs are respectively the stress and strain in the steel, Es is the Young’s modulus and
fy is the yield stress. At the initial elastic stage, there is no residual plastic strain but after yielding,
there will be a residual plastic strain εp given by:

εp = εs − σs/Es (6)

On the other hand, when the strain is decreasing, the stress in the steel becomes:

σs = Es (εs − εp) (7)

where εp is the residual strain at the end of the last strain increasing cycle.

Fig. 2 Stress-strain curve of steel with stress-path dependence allowed for
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4. Nonlinear bending theory for reinforced concrete beams

Three basic assumptions are made in the derivation of the theory: (1) plane sections before
bending remain plane after bending; (2) the tensile strength of the concrete may be neglected;
and (3) there is no bond-slip between the reinforcement bars and the concrete. They are all
commonly accepted and are nearly exact except in deep beams or in localized areas near
cracks. 

For convenience, the sign conventions adopted are such that all strain and stress quantities are
positive: (1) compressive strain and stress in concrete are positive; (2) compressive strain and stress
in compression reinforcement are positive; and (3) tensile strain and stress in tension reinforcement
are positive.

Referring to Fig. 3 and denoting the curvature of the beam by φ, the strain developed in the beam
section is given by:

ε = φ x (8)

where x is the distance from the neutral axis. Having determined the strains, the corresponding
stresses developed in the concrete and steel reinforcement may be evaluated from their respective
stress-strain curves. The stresses developed in the beam section must satisfy the conditions of axial
equilibrium and moment equilibrium. Axial equilibrium leads to:

(9)

in which P is the applied axial load (compression force positive). On the other hand, moment
equilibrium leads to:

(10)

in which M is the resisting moment (sagging moment positive). If no axial load is applied, a value
of zero is assigned to P. 

P = σcb xd Ascσsc Astσst∑–∑+
 0

  dn

∫

P σcbx xd Ascσsc d1–nd( ) Astσst d dn–( )∑+∑+
0

 dn

∫=

Fig. 3 A beam section subjected to bending moment
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5. Method of analysis

The moment-curvature relation of the beam section is analyzed by applying prescribed curvature
to the beam section incrementally in very small steps starting from zero curvature. For a given
curvature, the strains developed in the section are first evaluated based on an assumed or the
previous value of the neutral axis depth. From the strains evaluated, the corresponding stresses
developed in the concrete and the steel reinforcement are determined from their respective stress-
strain curves. 

Axial equilibrium of the beam section is then checked. Normally, the axial equilibrium condition
is not immediately satisfied and there is an unbalanced axial force. An iterative procedure of
successively adjusting the neutral axis depth until the unbalanced axial force is negligibly small is
used to satisfy the axial equilibrium condition. Having determined the neutral axis depth that would
satisfy the axial equilibrium condition, the resisting moment of the beam section is evaluated from
the moment equilibrium condition. This gives a pair of curvature and moment values. 

The above numerical process is repeated for each prescribed curvature value and continued until
the curvature is large enough for the resisting moment to increase to the peak and decrease to less
than 50% of the peak value. 

6. Results of analysis

6.1 Sections analyzed

The beam sections analyzed are the same as the one shown in Fig. 3. These beam sections are
given constant dimensions of b = 300 mm, h = 600 mm, d = 550 mm, and d1 = 50 mm. They represent
typical doubly reinforced rectangular beam sections. For parametric study, the in-situ concrete
compressive strength (peak stress in the stress-strain curve) fco is varied from 30 to 100 MPa to
cover both normal- and high-strength concretes, the compression steel ratio ρc (ρc = Asc/bd) is
varied from 0 to 2% to cover the case with no compression reinforcement added and the case with
compression reinforcement added, and the tension steel ratio ρt (ρt = Ast/bd) is varied from 0.4 to
2.0 times the balanced steel ratio to cover both under-reinforced and over-reinforced sections. On
the other hand, the steel reinforcement is assumed to have constant properties with fy = 460 MPa
and Es = 200 GPa. 

6.2 Complete moment-curvature relation and general behavior

Some selected moment-curvature curves of the beam sections analyzed are plotted in Fig. 4. It is
seen that the moment-curvature curves of under- and over-reinforced sections have very different
shapes. In the case of an under-reinforced section, the moment-curvature curve is almost linear
before the peak moment is reached and there is a fairly long yield plateau at the post-peak stage
before the resisting moment drops more rapidly till complete failure. However, in the case of an
over-reinforced section, the moment-curvature curve is more like a single smooth curve with a
sharp peak. 

To study the nonlinear flexural behavior of the beam sections, the variations of the neutral axis
depth dn, the concrete strain at extreme compression fiber εce, the steel strain in the tension
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reinforcement εst and the steel strain in the compression reinforcement εsc with the curvature φ in
some typical sections are plotted in Fig. 5. It is seen that initially, the neutral axis depth remains
almost constant. As the curvature increases and the concrete becomes inelastic, the neutral axis
depth gradually decreases or increases depending on whether the section is under- or over-
reinforced. However, regardless of whether the section is under- or over-reinforced, after entering
into the post-peak stage, the neutral axis depth starts to increase rapidly and beyond a certain point,
the strain in the tension reinforcement starts to decrease causing strain reversal. This strain reversal
phenomenon in the tension reinforcement occurs in all sections. On the other hand, the strain in the
compression reinforcement, if provided, always increases monotonically. 

6.3 Failure mode and balanced steel ratio

In both sections with or without compression reinforcement provided, three failure modes have

Fig. 4 Complete moment-curvature curves of some beam sections analyzed
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been observed: (1) tension failure under which the tension reinforcement yields before the concrete
fails in compression; (2) compression failure under which the tension reinforcement remains
unyielded even when the concrete has failed in compression completely; and (3) balanced failure
under which the tension reinforcement just yields when the concrete fails in compression. For given
concrete strength and compression steel ratio, there is a tension steel ratio that will lead to balanced
failure. Such a tension steel ratio is called balanced steel ratio and is denoted hereafter by ρb. At a
tension steel ratio smaller than the balanced steel ratio, tension failure will occur and at a tension
steel ratio larger than the balanced steel ratio, compression failure will occur. Since the failure mode
will affect the flexural ductility of the beam, it is important to determine the balanced steel ratio so
that the failure mode may be predicted. 

In this study, the balanced steel ratio is evaluated by a trial and error process of analyzing beam
sections with different tension steel ratios and checking whether the tension reinforcement has ever

Fig. 5 Changes of neutral axis depth, concrete strain and steel strain with curvature for beam sections with
fco = 60 MPa
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yielded. It has been found during such analysis that at a relatively low tension steel ratio, the
tension reinforcement yields right at the point of peak moment. However, at a relatively high
tension steel ratio close to the balanced steel ratio, the tension reinforcement does not yield at the
point of peak moment, but rather yields within the yield plateau range after the point of peak
moment. So long that the tension reinforcement yields before the beam section fails completely,
regardless of when it yields, the beam section is regarded as an under-reinforced section. If the
tension reinforcement just yields before strain reversal as the beam section is loaded till complete
failure, the beam section is regarded as a balanced section and its tension steel ratio taken as the
balanced steel ratio. The balanced steel ratios so obtained are listed in Table 1. 

It is seen that at a fixed concrete strength, the balanced steel ratio ρb increases linearly with the
compression steel ratio ρc. In fact, the difference (ρb − ρc) is found to be independent of ρc.
Denoting this difference by ρbo, which is actually the balanced steel ratio of the section when no
compression reinforcement is provided, the balanced steel ratio ρb may be obtained as:

ρb = ρbo + ρc (11)

The value of ρbo is found to increase with the concrete strength but not in direct proportion
because the percentage increase in balanced steel ratio is generally smaller than the percentage
increase in concrete strength.

6.4 Ultimate concrete strain

The ultimate concrete strain εcu of a beam section is determined as the value of εce when the beam
section develops its peak resisting moment. Some of the εcu results for sections with fco = 60 MPa,
ρc = 0, 1 and 2 %, and ρt varying from 0.4 to 2.0 times the balanced steel ratio are listed in Table 2.
It is seen that for given concrete strength and compression steel ratio, the ultimate concrete strain
remains more or less constant when the tension steel ratio is smaller than the balanced steel ratio.
However, as the tension steel ratio increases to beyond the balanced steel ratio, the ultimate concrete
strain increases quite abruptly to a certain maximum value. Then, as the tension steel ratio further
increases, the ultimate concrete strain gradually decreases. 

Although the variations of the ultimate concrete strain with the compression and tension steel
ratios are quite complicated, the actual value of ultimate concrete strain used in the design has little
effect on the calculated value of flexural strength. Therefore, it is better to adopt a single design
value of ultimate concrete strain for a given concrete grade regardless of the steel ratios, provided

Table 1 Balanced steel ratios evaluated by nonlinear flexural analysis

fco (MPa)
Balanced steel ratio ρb (%)

ρc = 0% ρc = 0.5% ρc = 1.0% ρc = 1.5% ρc = 2.0%

30
40
50
60
70
80
90

100

3.19
3.95
4.69
5.39
6.06
6.70
7.30
7.87

3.69
4.45
5.19
5.89
6.56
7.20
7.80
8.37

4.19
4.95
5.69
6.39
7.06
7.70
8.30
8.87

4.69
5.45
6.19
6.89
7.56
8.20
8.80
9.37

5.19
5.95
6.69
7.39
8.06
8.70
9.30
9.87
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the error so introduced in the calculated value of flexural strength is acceptably small. 
During the nonlinear analysis, it has been found that near the peak of the moment-curvature

curve, the concrete strain at the extreme compression fiber εce increases substantially while there is
little change in the resisting moment. To study the range of variation of εce near the peak of the
moment-curvature curve, the values of εce at 99% of the peak moment before and after the resisting
moment has reached the peak (denoted by εcu′ and εcu′′ respectively) are evaluated for each beam
section and the results are tabulated alongside the εcu values in Table 2. Since 99% of the peak
moment is virtually the same as the peak moment, both εcu′ and εcu′′ may be regarded as alternative
measures of ultimate concrete strain. Any value between εcu′ and εcu′′ may be chosen as the design
value of ultimate concrete strain. 

In order to be applicable throughout the ranges of compression and tension steel ratios covered in this
study, the design value of ultimate concrete strain for the given concrete grade should be greater than
the maximum value of εcu′ and smaller than the minimum value of εcu′′ within the entire ranges of
compression and tension steel ratios considered. In all cases, including the particular case of fco = 60
MPa presented in Table 2, the minimum value of εcu′′ is found to be slightly larger than the maximum
value of εcu′. Thus, the mean of the maximum value of εcu′ and the minimum value of εcu′′ is taken as
the design value of ultimate concrete strain for the given concrete grade. The design values of ultimate
concrete strain so evaluated for each concrete grade are presented in Table 3. By curve fitting, the
following equation for evaluating the design value of ultimate concrete strain is obtained:

Table 2 Ultimate concrete strains (in µε) for beam sections with fco = 60 MPa

ρ t /ρb

ρc = 0% ρc = 1% ρc = 2%

εcu εcu′ εcu′′ εcu εcu′ εcu′′ εcu εcu′ εcu′′
0.40
0.60
0.80
1.00
1.25
1.50
1.75
2.00

2775
2775
2775
3215
3185
3160
3135
3110

2130
2270
2460
2955
2915
2895
2870
2855

3450
3305
3230
3525
3480
3440
3405
3380

2905
3010
2860
3230
3190
3160
3135
3105

2225
2400
2500
2940
2905
2875
2855
2835

4365
3605
3290
3565
3500
3455
3420
3395

2970
3260
2900
3240
3195
3165
3130
3100

2040
2475
2575
2925
2885
2860
2840
2820

6140
3975
3380
3605
3535
3485
3445
3415

Max. − 2955 − − 2940 − − 2925 −

Min. − − 3230 − − 3290 − − 3380

Table 3 Recommended design values of ultimate concrete strain (in µε)

fco (MPa) Design value of εcu derived 
from εcu′ and εcu′′

Design value of εcu derived 
from Eq. (12)

30
40
50
60
70
80
90

100

3225
3175
3130
3095
3070
3055
3045
3040

3195
3170
3145
3120
3095
3070
3045
3020
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εcu = 3270 − 2.5 fco (12)

in which εcu is in micro-strain and fco in MPa. The design value of εcu evaluated by this equation is
accurate to within 30 micro-strain for fco ranging from 30 to 100 MPa, as depicted in Table 3. In
fact, the εcu value of a given concrete grade so derived is always within the range between the
maximum value of εcu′ and the minimum value of εcu′′ of the concrete grade and therefore the use
of this equation would produce less than 1% error in the calculated value of flexural strength.

7. Ductility analysis

The flexural ductility is measured in terms of a ductility factor µ given by:

µ = φu/φy (13)

where φu and φy are the ultimate curvature and yield curvature respectively. The ultimate curvature
φu is taken as the curvature at which the resisting moment has, after reaching the peak, dropped to

Fig. 6 Ductility factor plotted against tension steel ratio ρt
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80% of the peak moment. On the other hand, the yield curvature φy is defined as the curvature at
the hypothetical yield point of an equivalent elasto-plastic system whose equivalent elastic stiffness
is taken as the secant stiffness at 75% of the peak moment before the peak moment is reached and
yield strength is taken as the peak moment; the yield curvature so defined is actually equal to the
curvature at 75% of the peak moment divided by 0.75.

The values of µ so evaluated are plotted against the corresponding values of tension steel ratio ρt

in Fig. 6. It is seen that at a given concrete grade and a given compression steel ratio, the ductility
factor decreases as the tension steel ratio increases. On the other hand, at a given concrete grade
and a given tension steel ratio, the ductility factor increases as the compression steel ratio increases.
However, the effect of the concrete grade on the ductility factor is more complicated. At given
compression and tension steel ratios, the ductility factor seems to increase slightly with the concrete
grade albeit a higher grade concrete should be less ductile. This is because the major factor
affecting the flexural ductility is actually the degree of the beam section being under-reinforced or
over-reinforced. As the concrete grade increases, the balanced steel ratio ρb also increases and
consequently the tension steel to balanced steel ratio (ρt /ρb) is reduced leading to an increase in the
degree of being under-reinforced or a decrease in the degree of being over-reinforced. The increase
in flexural ductility due to the reduction in the (ρt /ρb) ratio has out-weighed the decrease in flexural

Fig. 7 Ductility factor plotted against the (ρt − ρc)/ρbo ratio
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ductility due to the reduction in ductility of the concrete.
For doubly reinforced sections, however, there are two different ways of measuring the degree of

the section being under- or over-reinforced, one in terms of the ratio (ρt − ρc) /( ρbo) and the other
in terms of the ratio (ρt)/( ρbo + ρc). Both these two ratios are smaller than 1.0 for under-reinforced
sections, equal to 1.0 for balanced sections, and larger than 1.0 for over-reinforced sections. To
study how these two ratios affect the flexural ductility, µ is plotted against (ρt − ρc) /( ρbo) in Fig. 7
and against (ρt)/( ρbo + ρc) in Fig. 8. It can now be seen that at a given (ρt − ρc) /( ρbo) or (ρt) /( ρbo

+ ρc) ratio, the flexural ductility decreases as the concrete grade increases.
In a previous study by the authors (Ho et al. 2001) on the flexural ductility of singly reinforced

sections, the relationship between µ and the parameters fco and ρt for sections with no compression
reinforcement provided has been derived as:

µ =  10.7 (fco)
−0.45( ρt/ρbo)

−1.25 (14)

in which ρt should be taken as equal to ρb when ρt is greater than ρb (µ is independent of ρt when
ρt is greater than ρb). This formula produces less than ±10% error in µ within the same range of
structural parameters covered in this study. It is proposed to extend this formula for application to

Fig. 8 Ductility factor plotted against the ρt /(ρbo + ρc) ratio
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doubly reinforced sections by adding an extra term to the formula to allow for the effect of
providing compression reinforcement. However, before doing so, the term (ρt/ρbo), which serves as
a measure of the degree of the section being under- or over-reinforced in singly reinforced sections,
needs to be replaced by either (ρt − ρc )/( ρbo) or (ρt )/( ρbo + ρc ). Hence, there are two ways of
extending these formulas. Replacing (ρt /ρbo) by (ρt − ρc )/( ρbo) and adding an extra term f1( ρc ),
the following formula is obtained:

µ = 10.7 (fco)−0.45((ρt  − ρc )/ρbo)−1.25f1( ρc ) (15)

On the other hand, replacing (ρt /ρbo) by (ρt )/(ρbo + ρc ) and adding an extra term f2( ρc ), the
following formula is obtained: 

µ = 10.7 (fco)−0.45 (ρt /(ρbo+ρc ))−1.25f2( ρc ) (16)

The numerical values of the extra term f1( ρc ) have been determined by solving Eq. (15) using the
given values of fco, ρt and ρc and the corresponding theoretical values of µ evaluated by the
nonlinear flexural analysis. Fig. 9 shows how f1( ρc ) varies with fco, ρt and ρc. Curve fitting yields
the following equation:

f1( ρc) = 1 + 95.2(fco)−1.1 (ρc/ρt)3 (17)

in which ρt should be taken as equal to ρb when ρt is greater than ρb. Substituting back to Eq. (15),
the following formula for direct evaluation of the flexural ductility of doubly reinforced beam
sections is derived:

µ =10.7(fco)−0.45 ((ρt − ρc )/ρbo)−1.25(1 + 95.2(fco)−1.1 (ρc/ρt )
3) (18)

in which, as before, ρt should be taken as equal to ρb when ρt is greater than ρb. Within the ranges
of structural parameters studied, the values of µ obtained by this formula are accurate to within
±10% error. 

The numerical values of the extra f2( ρc ) term have also been determined in a similar way.
However, no simple equation could be found for f2( ρc ). It does not seem that Eq. (16) would yield
any simple and yet accurate formula for direct evaluation of µ. This is probably because relatively
speaking the ratio (ρt )/( ρbo + ρc ) is not as good as the ratio (ρt − ρc )/( ρbo) as a measure of the
degree of the section being under- or over-reinforced. 

Fig. 9 The extra term f1(ρc) plotted against compression steel ratio ρc
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From Eq. (18), it can be seen that the addition of compression reinforcement has two effects.
Firstly, it decreases the degree of the section being over-reinforced by decreasing the ratio (ρt − ρc )/
( ρbo). Secondly, it increases the ductility factor through the term f1(ρc). Although the addition of
compression reinforcement is generally quite costly, it is very effective in increasing the flexural
ductility. For instance, the addition of 1% compression reinforcement could increase the ductility
factor by as much as 40%.

8. Conclusions

The nonlinear flexural behavior of doubly reinforced concrete beam sections have been evaluated
using a newly developed analysis method that takes into account the stress-path dependence of the
stress-strain relation of the tension reinforcement. By analyzing beam sections with or without
compression reinforcement provided and made of concrete with in-situ compressive strength ranging
from 30 to 100 MPa, a comprehensive parametric study has been carried out. From the study, the
following conclusions may be drawn. (1) Strain reversal of the tension reinforcement occurs in both
singly and doubly reinforced sections. (2) The balanced steel ratio of a doubly reinforced section
increases linearly with the compression steel ratio. (3) The ultimate concrete strain varies with the
compression and tension steel ratios in a fairly complicated manner but for practical applications,
the design values of ultimate concrete strain derived herein, which are independent of the steel
ratios, may be used. (4) The flexural ductility decreases with the tension steel ratio but increases
with the compression steel ratio. At given steel ratios, the flexural ductility increases with the
concrete grade but at a given degree of the section being under- or over-reinforced, the flexural
ductility decreases as the concrete grade increases.

Finally, by correlating the ductility factors of the beam sections to the structural parameters
involved, a formula for direct evaluation of the flexural ductility of doubly reinforced normal- and
high-strength concrete beam sections has been developed. Within the ranges of structural parameters
studied, this formula is accurate to within ±10% error. It reveals the possible effects of adding
compression reinforcement on flexural ductility and may be used to develop guidelines for the
ductility design of doubly reinforced high-strength concrete beam sections.
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Notation

Asc, Ast : areas of compression and tension reinforcement
b, d : breadth and effective depth of beam section
d1 : depth of compression reinforcement
dn : neutral axis depth
Ec, Es : Young’s moduli of concrete and steel reinforcement
fc : cylinder compressive strength of concrete
fci : stress at inflection point on descending branch of stress-strain curve
fco : in-situ uniaxial compressive strength of concrete
fy : yield strength of steel reinforcement
h : total depth of beam section
M : resisting moment of beam section
P : applied axial load to beam section
x : distance from neutral axis
εc, εce : strain in concrete and strain in concrete at extreme compression fiber
εco : strain in concrete at peak stress
εci : strain at inflection point on descending branch of stress-strain curve
εcu : ultimate concrete strain (value of εce at peak moment)
εp : residual plastic strain in steel reinforcement
εs : strain in steel reinforcement
εsc, εst : strains in compression and tension reinforcement
εy : yield strain of steel reinforcement
φ : curvature of beam section
φu, φy : ultimate and yield curvatures of beam section
µ : ductility factor
ρb : balanced steel ratio of beam section
ρbo : balanced steel ratio of beam section with no compression steel
ρc, ρt : compression steel ratio (ρc = Asc/bd) and tension steel ratio (ρt = Ast/bd)
σc, σs : stresses in concrete and steel reinforcement
σsc, σst : stresses in compression and tension reinforcement




