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Vibrations of long repetitive structures by a double scale 
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Abstract. In this paper, an asymptotic two-scale method is developed for solving vibration problem of
long periodic structures. Such eigenmodes appear as a slow modulations of a periodic one. For those, the
present method splits the vibration problem into two small problems at each order. The first one is a
periodic problem and is posed on a few basic cells. The second is an amplitude equation to be satisfied
by the envelope of the eigenmode. In this way, one can avoid the discretisation of the whole structure.
Applying the Floquet method, the boundary conditions of the global problem are determined for any order
of the asymptotic expansions.
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1. Introduction

Long flexible structures exhibiting a repetitive form are used in many domains. Aircraft fuselages,
space and ship structures, parabolic antennas, etc. are typical examples of long periodic structures,
the interior of which consists of identical cells connected in identical manner along the structure. If
the periodic system has only one type of coupling between adjacent cells, it is called mono-coupled
system, otherwise it is called multi-coupled. Such structures have a large number of vibration
eigenfrequencies which are closely located in well separated bands (Fig. 3). Thus the periodic
structure has the characteristic of a filter (Brillouin 1953, Mead 1970, Touratier 1986, and Lee et al.
1992). By using finite element method to compute the eigenmodes of a lattice structure, we note
(Fig. 1) that some eigenmodes in the first packet are global modes, but other modes appear as slow
modulations of a periodic one.

Many interesting investigations have been developed to simplify the analysis of these structures.
So, periodic structure can be analysed by the homogeneization technique. This approach is to
replace the actual lattice by a substitute continuum model that is equivalent to the original structure
in some sense, by considering the constitutive relation, the strain energy, and/or kinetic energy
(Noor and Anderson 1979, Moreau 1996). This method gives good approximations of the global
modes. However, the general analysis of modulated modes has to take into account local
deformation of eigenmodes in the homogeneization method (Hubert Palencia 1989, Daya 1994).
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The wave propagation approach can be adopted to analyse the periodic structures (Mead 1970,
Lee and Ke 1992). Generally, the wave propagation method is applied most simply to infinite or
semi-infinite periodic structures.

Some analytical methods such as the difference equation approach (Lin 1962), the transfer matrix
method (Lin and McDaniel 1969) or the propagation constant method (Gupta 1970) have been
applied to study periodic structures. Moreover, for such complex structures (i.e. truss structures), it
is more difficult to find analytical solutions. This is due to the existence of many types of wave
motions. So, it has been suggested that a Timonshenko beam element (Flotow 1986) or other
continuum elements (Noor and Anderson 1970) could be substituted for such a complicated structure
cell in the analysis. However, the error involved in such a substitution may be quite significant.

Other contributions combined finite elements and transfer matrix method, mainly for cyclically
symmetric structures or structures with a simple geometry (McDaniel and Chang 1980, Anderson et
al. 1986, William 1986). For instance, vibrations of a mono-coupled system are very well described
by considering the eigenvalues of the transfer matrix (Faulkner and Hongo 1985, Young and Lin 1989).
The transfer matrix method has also been applied to study localization phenomena in nearly periodic
systems. This phenomenon, whose dynamical effect could be dramatic, is governed by the existence
of some irregularities in the periodic system. By using the Lyapunov exponents of a transfer matrix,
Castanier and Pierre (1995) measure the degree of wave localization in multi-coupled nearly periodic
systems.

In this paper, we present a two scale asymptotic method to account for a packet of modulated
modes. In other words, this way is equivalent to a homogenization technique, but it is applied to
another class of modes (i.e. modulated modes in Fig. 1). This method has the advantage to be easily
applicable in the nonlinear range or for two-dimensional or three-dimensional arrays, what is well
known in cellular stability analysis (Wesfreid and Zaleski 1984). Here we limit ourselves to evaluate
the possibilities of the method, in the framework of a linear modal analysis and for a representative
example of a one-dimensional periodic array. The boundary layer analysis is done with the help of
the Floquet theory (Jordan and Smith 1987).

2. Representative example with modulated modes

In this section, we consider a periodic structure with modulated modes. This is a beam related to
springs that are discretely and periodically distributed, as pictured in Fig. 2. In this paper, we limit
our selves to bending motion of beam.

2.1 Equation of motion

The formulation of natural vibrations of the representative structure is obtained from the virtual

Fig. 1 First, second, 19th and 20th modes of a lattice structure with 20 basic cells
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work equation:

(1)

where U(x, t) is the deflection
δU(x, t): the virtual deflection
x : co-ordinate along the beam
K1: stiffness of spring at the extremities of a cell
K2: stiffness of spring at the middle of a cell
E: Young’s modulus
I: second moment of cross section area
S: cross section area of beam
ρ: mass density

The total length is denoted by L, the length of the basic cell is l and N=L/l is the number of basic
cells.

The displacement can be expressed as harmonic time function as given below:

U(x, t)=u(x)eiωt (2)

Where  and ω is the natural frequency.
Combining Eqs. (1) and (2) and using two integrations by parts, one can rewrite the natural

vibrations problem in the following form:

(3a-3c)

 
0

L∫ EI∂
2U x,t( )

∂x2
---------------------∂2δU x,t( )

∂x2
------------------------dx+  

i =0

N

∑ K1U il ,t( )δU il ,t( )

+  
i =1

N−1

∑ K2U il − l
2
---,t 

  δU il − l
2
---,t 

  +  
0

L∫ ρS∂2U x,t( )
∂t2

---------------------δU x,t( )dx=0











i= 1–

d4u
dx4
--------=λu

d3u
dx3
-------- il( ) =−k1u il( )

d3u
dx3
-------- il − l

2
--- 

  =−k2u il− l
2
--- 

 
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








Fig. 2 The representative structure
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where  (j=1, 2) and [[.]] is the usual jump symbol.
Thus, the Eqs. (3) represent an eigenvalues problem in which λ and u(x) are the unknowns. Of

course, these equations have to be completed by boundary conditions at the ends of the beam.
As said in section 1, the eigenvalue problem (3) can be analyzed by different ways: direct computation

by finite element method, homogeneization technique, wave propagation approach and transfer
matrix or Floquet method.

The first method becomes very expensive when the structure is very large. The second one is only
available for eigenmodes without local deformation (as first and second modes in Fig. 1). The other
methods cannot be applied easily for periodic structures with complex geometry of cells. 

The goal of this paper is to develop an asymptotic two-scale method which splits the Eq. (3) into
two problems. The first one is posed on a few basic cells with periodicity conditions. The second is
an amplitude equation to be satisfied by the envelope of the eigenmode. The product of the
solutions of these problems yield approximation of solutions of Eq. (3). As in most analysis with
the help of the asymptotic two-scale method, there exist boundary layers (Hubert and Palencia
1989). In the present method, the Floquet theory is used to satisfy accurately boundary conditions of
the amplitude equation.

Now, we analyze direct computations of Eq. (3) by finite element method, we define the periodic
modes of the representative structure and we recall the Floquet analysis of modes packet.

2.2 Direct computation of Eq. (3) 

For example, the eigenvalues spectrum and the corresponding eigenmodes have been computed by
the finite element method for a clamped beam with 20 cells. The eigenvalues spectrum is plotted in
Fig. 3 and some eigenmodes of the first packet are pictured in Fig. 4. 

After a look at the computed modes, the following comments can be given:
a) the number of modes in one packet is exactly equal to the number of cells. 
b) the first, second and third modes appear as slow modulations of the same periodic mode

(periodicity=2l).
c) the last mode (mode number 20) in the first packet is periodic (periodicity=l).

λ=ρSω2/EI, kj=Kj /EI

Fig. 3 Packets of eigenvalues obtained by direct numerical simulation (L=20, l=1, k1=100000, k2=0, 
clamped beam)
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d) the mode number 19 appears as a slow modulation of the last periodic mode.
Similar remarks can be done for the others packets.

2.3 Definition of periodic modes

The periodic modes are defined as the eigenmodes of a vibration problem that is posed on a few
basic cells with periodicity conditions. The periodic problem of the representative structure can be
written in following form, where p is an integer: 

i=0...p−1 (4)

In Fig. 5, we present the shape of some periodic modes of the representative structure. One denotes
that the two first (respectively last) modes in Fig. 4 appear as slow modulations of the first
(respectively second) mode that is plotted in Fig. 5.

2.4 Evolution of floquet multipliers in a mode packet

In this section, we recall the evolution of Floquet exponents of transfer matrix when the
eigenvalue λ takes its value in a mode packet. Let us rewrite the differential Eq. (3a) and the
associated jump conditions (3b), (3c) in the form of a first order differential system:

d4

dx4
--------u=λu

d3

dx3
--------u il( ) =−k1u il( )

d3

dx3
--------u il− l

2
--- 

  =−k2u il− l
2
--- 

 

u x( ) is periodic of period pl











Fig. 4 Modulated shape of the eigenmodes at the beginning and at the end of the first packet (L=20, l=1,
k1=100000, k2=0, clamped beam)
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(5)

where  is 4x 4 matrix whose coefficients are periodic with respect to x, and where the new
unknown is . In the case of Eq. (3), the operator 
involves Dirac function because of the jump conditions (3b) (3c). The Floquet theory, for instance
(Lee and Ke 1992, William 1986), permits to characterise the general solution of the system (5),
whatever initial and boundary conditions may be. First one defines the fundamental matrix

� (IR4,IR4) as follows: 

The Floquet multipliers σ are the eigenvalues of the fundamental matrix Φ(l). One can note that
Φ(l) is also the transfer matrix of the periodic structure. A special solution of the system (5) is
obviously associated with the corresponding eigenvectors. This special solution is decreasing if |σ |
is lower than 1, and it is increasing if |σ | is greater than 1. If σ is equal to 1 (respectively −1) the
solution is l-periodic (respectively 2l-periodic) and if σ is equal to pth root of 1 the solution is pl-
periodic.

In the case of Eqs. (3), the fundamental matrix involves, first the general solution Γ(λ) of the
differential Eq. (3a), second a matrix Ψ(k) corresponding to shear forces discontinuity 

d
dx
------u x( )=ℑ λ, x( )u x( )

ℑ λ, x( )
u x( )= u x( ),u″ x( ),u′ x( ),u″′ x( )( ) IR4∈ ℑ λ, x( )

Φ x( ) ∈

d
dx
------Φ x( )=ℑ λ, x( )Φ x( )

Φ 0( )=Identity



Fig. 5 The three lowest periodic modes. The first periodic mode is of period 2l and corresponds to the
beginning of the first packet; The second periodic mode is of period l and corresponds to the end of
the first packet; The third periodic mode is of period l and corresponds to the beginning of the second
packet. (l=1, k1=100000, k2=0)
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So the fundamental matrix is given by:

The previously described properties of the vibration spectrum of long repetitive structure can be
related to the evolution of the Floquet exponents as a function of the eigenvalue λ. This analysis is
briefly recalled in what follows and it is well known in wave propagation domain (Brillouin 1953,
Touratier 1986, Lee and Ke 1992).

There are generally four different Floquet multipliers, that are denoted by σ1, σ2, σ3, σ4. Because
the system (5) has real coefficients, we get conjugate pairs of Floquet multipliers σ,  except if σ
is real. Because the basic cell has symmetry properties, we get conjugate pairs of Floquet
multipliers σ, 1/σ except if σ = ±1.

We have analysed the evolution of the Floquet multiplier in the case of the representative
example, especially when λ crosses λ0 the smallest eigenvalue of the periodic problems. If λ is
smaller than λ0, the four multipliers are real, as pictured in the Fig. 7. Two of them are inside the
unit circle, which corresponds to two types of localised solutions near the left boundary x=0.
Because of the symmetry, the two others are outside the unit circle. When λ reaches λ0, two
eigenvalues σ2, σ3 become equal to −1. As it is generic, this eigenvalue is not semi-simple, which
means that the corresponding eigenspace is of dimension 1 only. The eigenvector corresponds to the
periodic solution of period 2l, that has been got numerically in section 2.2. The two eigenvalues σ4,
σ1 characterise respectively an increasing and a decreasing solution of the system. When λ exceeds
λ0, σ2 becomes a complex number with unit modulus and σ3 is its conjugate. 

If one increases λ, the eigenvalues σ2=  move along the unit circle. They reach the value
σ2= =1 for a λ that corresponds exactly to the end of first mode packet and to the second
eigenvalue of the periodic mode (Fig. 5). 

The same evolution of Floquet multipliers in the other packets can be pointed out.

3. An asymptotic two-scale method 

In this section, an asymptotic two-scale method is developed to determine the solutions of Eq. (3).

ψ k( )=
 1 0 0 0 
 0 1 0 0 
 0 0 1 0 
 k– 0 0 1 

Φ 1( )=Ψ k1

2
---- 

  Γ λ( )Ψ k2( )Γ λ( )Ψ k1

2
---- 

 

σ

σ3

σ3

Fig. 6 Basic cell for fundamental matrix definition
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3.1 Principle of the method

As described in section 2, some modes at the beginning and at the end of the packet appears as
slow modulations of periodic modes. An asymptotic two-scale method is developed from this
observation. The principle of this method can be described as follows. A small parameter η is
introduced, for instance as the ratio between the length of the basic cell and the length of the
complete structure. As it is classical (Hubert and Palencia 1989), u and λ are sought as integro-
power series with respect to η:

(6a)

where x is a local variable and X=ηx is a global variable that can describe the slow variation of the
eigenmodes (Fig. 4). Furthermore, we supposed that the mode u(x,X) is locally periodic, i.e. periodic
with respect to the local variable x. The period is exactly the same as in section 2.2. Thus, if we
consider the asymptotic development from the beginning (respectively end) of the first packet, the
period is equal to 2l (respectively l) and λ0 is the eigenvalue corresponding to the first (respectively
second) periodic mode that is plotted in Fig. 5. After insertion of the series (6a) into (3) and
application of the classical rules of the two-scale expansion method (Sanchez and Palencia 1989):

 (6b)

one gets linear equations to be satisfied by ui that are brought together in the following manner:

u=  
i =0
∑ η iui x,X( )

λ=  
i =0

∑ ηiλ i









d
dx
------= ∂

∂x
-----+η ∂

∂X
------

Fig. 7 Evolution of Floquet multipliers
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First order problem

(7)

Second order problem

(8)

Third order problem

(9)

(k+1)th order problem

(10)

At each order, the problem has to be completed by periodicity conditions. The general solution of
the first order problem (7) can be written in the following form:

u0(x,X)=A0(X)w0(x)

where w0(x) is the periodic mode defined in section 2.2 and A0(X) is an amplitude function that can
account for slow modulations of the modes. The other problems (8), (9), (10) have a solution if and
only if the right-hand sides Fi of these equations satisfy the following solvability condition:

(11)

∂4

∂x4
--------u0−λ0u0=0

∂3

∂x3
--------u0 il( ) =−k1u0 il( )                 i=1…p−1

∂3

∂x3
--------u0 il − l

2
--- 

  =−k2u0 il − l
2
--- 

 










∂4

∂x4
--------u1−λ0u1=−4 ∂4

∂X∂x3
---------------u0+λ1u0

∂3

∂x3
--------u1 il( ) =−k1u1 il( )                  i=1…p−1

∂3

∂x3
--------u1 il − l

2
--- 

  =−k2u1 il − l
2
--- 

 










∂4

∂x4
--------u2−λ0u2=−6 ∂4

∂X2∂x2
-----------------u0+λ2u0−4 ∂4

∂X∂x3
---------------u1

∂3

∂x3
--------u2 il( ) =−k1u2 il( )                                  i=1…p−1

∂3

∂x3
--------u2 il − l

2
--- 

  =−k2u1 il − l
2
--- 

 










∂4

∂x4
--------uk−λ0uk=−4 ∂4

∂X∂x3
---------------uk−3−6 ∂4

∂X2∂x2
-----------------uk−2−4 ∂4

∂X3∂x
---------------uk−1− ∂4

∂X3
---------uk−4+  

j =0

k-1

∑ λk− juj

∂3

∂x3
--------uk il( ) =−k1uk il( )                                                             i=1…p−1

∂3

∂x3
--------uk il − l

2
--- 

  =−k2uk il − l
2
--- 

 













Fi , w0〈 〉=0
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where 

By this solvability condition, we shall find the equations governing the global evolution of the
problem. In the following part, this treatment is presented in the case of the amplitude A0(X).

3.2 Amplitude equation (Global problem) and corresponding boundary conditions

In this part, we establish differential equations and boundary conditions in order to define the first
or the last eigenpairs of a packet. In the case of a truss, the global modes, that correspond to the
lowest eigenvalues can be obtained by an equivalent homogeneous beam (Noor and Anderson 1989,
Noor and Nemoth 1980, John et al. 1985, Flotow 1986, Noor 1988, Caillerie et al. 1989). In what
follows, we present a similar homogeneous model for the modulated modes (Figs. 5).

3.2.1 Amplitude differential equation

The general solution of the Eqs. (7) and (8) can be written as :

(12)

where w1 is the pl-periodic function that satisfies:

By using the solvability condition for the problem at the second and third orders, we obtain λ1=0
and an amplitude differential equation to be satisfied by the envelope A0(X). This equation is written
in the form: 

(13)

where C is a constant that is defined explicitly from the previously computed periodic functions (In
the appendix, we present numerical method which permits us to obtain the periodic function w1):

The amplitude Eq. (13) is the sought “equivalent homogeneous model”, that will permit us to
characterise the eigenpairs close to λ0. It is also an eigenvalue problem, where the unknowns are
A0(X) and λ2. To get a well-posed problem, it is necessary to complete the Eq. (13) by the boundary
conditions.

f x( ), g x( )〈 〉=  
0

pl

∫  f x( )g x( )dx

u0 x,X( )=A0 X( )w0 x( )

u1 x,X( )=A1 X( )w0 x( )+dA0

dX
---------w1 x( )




d4

dx4
--------w1 X,x( )−λ0w1 X,x( )=−4d3

dx3
--------w0

d3

dx3
--------w1 il( ) =−k1w1 il( )                            i=1…p−1

d3

dx3
--------w1 il − l

2
--- 

  =−k2w1 il − l
2
--- 

 










C
d2A0

dX2
-----------+λ2A0=0

C=
6– w0″,w0〈 〉 4 w1″′,w0〈 〉–

w0,w0〈 〉
---------------------------------------------------------------
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3.2.2 How to get the boundary conditions for the global problem

For example, let us consider a clamped beam. These conditions are written as:

(14)

The two scale expansion method yields a rule for the expansion derivative (6b). This rule allows us
to write the displacement and its derivative with respect to x in the following asymptotic form.

(15)

The boundary conditions for A0(X) are to be deduced from the exact boundary conditions (14) and
from the estimate (15). By considering the shape of the mode in Fig. 4, one expects those boundary
conditions to be different at the beginning and at the end of the packet. Two cases are considered.

a - Suppose that w0 and dw0/dx are not simultaneously equal to zero at the ends of the beam, as it
is the case for the first periodic mode in Fig. 5. Thus the boundary conditions for A0(X) are: 

 
A0(0)=0 and A0(Lη)=0

b - Suppose that w0 and dw0/dx are simultaneously equal to zero at the ends of the beam, as the
second periodic mode in Fig. 5. Thus the boundary conditions for A0(X) are:

 

One remarks that these boundary conditions correspond to the observed shapes in Fig. 4. A more
detailed analysis of the boundary conditions will be presented in section 3.3. Similar analysis can be
applied to other boundary conditions.

3.2.3 A second order estimate of the spectrum

The global problem can be completely solved with account of the latter boundary conditions. The
eigenvalues of Eq. (3) can be obtained in an asymptotic form. For example, we present the
amplitude equation corresponding to the first modes of the first packet for clamped beam:

Then, the solutions are in form:

u 0( )=du 0( )
dx

--------------=0

u L( )=du L( )
dx

--------------=0






u=A0 X( )w0 x( )+ηu1 x,X( )+θ η2( )
du
dx
------=A0 X( )dw0

dx
---------+η dA0

dX
---------w0 x( )+ d

dx
------u1 x,X( ) 

  +θ η2( )






dA0

dX
--------- 0( )=0  and  

dA0

dX
--------- Lη( )=0

C
d2A0

dX
-----------+λ2A0=0

A0 0( )=A0 Lη( )=0





A0 X( )= a  sin nπ
Lη-------X 

 

a is an arbitrary constant

λ2=Cn2π2

L2η2
-----------   n=1,2,...








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Using the formula (6a) we obtain from an eigenvalue λ0 (first eigenvalue of periodic problem
defined in section 2.2), an asymptotic estimate of the beginning of the first packet in the form:

(16)

At this stage of the asymptotic two scale analysis, one can note that the method permits to
generate from a periodic mode a infinite number of eigenvalues of the initial structure. 

3.3 Boundary layer analysis and fourth order estimate of the spectrum

From the previous analysis, one can guess the existence of boundary layers. The initial Eq. (3) is
a fourth order one, that requires four boundary conditions. The global evolution is governed by the
second order differential Eq. (13) that requires only two boundary conditions. Because of this lack
of boundary conditions, it is not possible to satisfy the initial boundary conditions at any order,
except by correcting the assumed expansions (6a) to account for boundary layers solutions. This
correction is made from the boundary layer solution wloc that we can compute by Floquet theory.
Two asymptotic expansions have to be done, the first one being valid is close to x=0 and the second
one is close to x=L. In the first case x=0, wloc is the decreasing function that corresponds to the first
Floquet exponent σ1 (|σ1|<1), see Fig. 7. In the second case x=L, wloc is the increasing function that
corresponds to the fourth Floquet exponent σ4 (|σ4|>1). This solution is introduced in the asymptotic
expansion close to one end for instance x=0:

(17)

Using the expansions (17) and from the boundary conditions (15), we get a simple system of two
equations where the unknowns αi are Ai(0), what permits us to find exactly the global boundary
conditions at any order. For example, this system for x=0 is in the following form.

So, the boundary conditions for A1(X) at x=0 is:
 

where C1 is a constant defined from  and

We can obtain a similar boundary condition at x=L. By this way, the boundary conditions for the
envelope can be treated accurately at any order. Thus, we have got the following asymptotic
eigenvalue spectrum at order η4 for the case presented in section 4.2 (for the details, we refer to
Daya 1994):

λ n( )=λ0+Cn2π2

L2
----------+θ η2( )

n=1,2,...





u=u0 x,X( )+  
i=1
∑ η i ui x,X( )+αiwloc x( )( )

A1 0( )w0 0( )+α1wloc 0( )=−dA0

dX
--------- 0( )w1 0( )

A1 0( )dw0

dx
--------- 0( )+α1

dwloc

dx
----------- 0( )=−dA0

dX
--------- 0( ) w0 0( )+dw1

dx
--------- 0( )






A1 0( )=C1
dA0

dX
--------- 0( )

w0 0( ), dw0

dx
--------- 0( ), w1 0( ), dw1

dx
--------- 0( ), wloc 0( )

dwloc

dx
------------ 0( )
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(18)

where C and D are determined from the periodic modes and from the function wloc. Similar analysis
can be applied to find the asymptotic estimate of the spectrum at superior order.

4. Numerical results and discussion 

4.1 Results at order 2 

In this section, we present comparison between the presented method at order 2 and the direct
computation of Eq. (3) by finite element method. The solutions of periodic problems have also been
obtained by finite element method. 

In the following tables, we present the first nine eigenvalues of the first packet for different cases
that mainly differ from one by another by the beam length, the values of k1, k2 and the boundary
conditions.

From the previous results, one can note that the asymptotic two scale method at order two
describes quite perfectly the eigenvalues near λ0. The corresponding eigenmodes are not reported
here, but we have observed that the first term of the expansions (6a) is a good approximation of the
exact mode. Nevertheless, this method is not able to evaluate the number of modes in the packet.
Indeed the mode number n is not limited except by the assumption of two different length scales,
which would lead to “n/N small”.

Similar results have been obtained for the last nine eigenvalues of the first packet. The
corresponding values at order 4 are presented in the following.

4.2 Results at fourth order and asymptotic estimate of the whole first packet

In the following table, we present the first and last nine eigenvalues obtained at fourth order of

λ n( )=λ0+Cn2π2

L2
----------+Dn4π4

L4
----------+θ η4( )

n=1,2, ...





Table 1 Results for clamped beam (k1=100000, k2=10, l=10, L=200, C=2.368)

Proposed method 0.1564 0.1582 0.1611 0.1652 0.1705 0.1769 0.1845 0.1932 0.2032

Direct computation 0.1564 0.1580 0.1606 0.1643 0.1691 0.1749 0.1817 0.1896 0.1985

Table 2 Results for clamped beam (k1=100000, k2=10, l=10, L=300, C=2.368)

Proposed method 0.1559 0.1561 0.1569 0.1582 0.1600 0.1623 0.1655 0.1685 0.1725

Direct computation 0.1559 0.1561 0.1568 0.1580 0.1596 0.1617 0.1643 0.1674 0.1709

Table 3 Results for simply supported beam (k1=100000, k2=0, l=1, L=23, C=59.194)

Proposed method 97.41 98.51 101.83 107.35 115.08 125.03 137.18 151.54 168.11

Direct computation 97.41 98.47 101.60 107.00 114.40 123.90 135.60 149.50 165.40
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the asymptotic method (formula 18) for clamped beam.
In Fig. 8, we present the eigenvalues of the first packet obtained by the two analyses. We can note

that the two-scale method gives a good approximation of the beginning and end of the eigenvalues
packet. Nevertheless, it is not possible to get the whole packet by the present method, because the
assumption of two different length scales is not satisfied in the middle of the packet. This analysis
also does not permit to predict the number of the modes that are in the packet.

5. Conclusions

In this paper, we have presented an asymptotic two scale method, which splits the original
problem into periodic problems and global ones. The periodic problems are modal problems on few
basic cells with periodicity conditions. The global problems are amplitude differential equations to
be satisfied by the envelope of the mode. The boundary conditions can be treated accurately, the

Table 4 Results for clamped-simply supported beam (k1=100000, k2=0, l=1, L=30, C=59.194)

Proposed method 97.56 98.86 101.46 105.35 110.55 117.04 124.83 133.92 144.31

Direct computation 97.56 98.81 101.30 105.00 110.00 116.30 123.80 132.50 142.50

Table 5 First nine eigenvalues λ (k1=100000, k2=0, l=1, L=20, C=59.194, D=−1.013)

Proposed method 98.87 103.19 110.40 120.39 133.04 148.21 165.72 185.36 206.90

Direct computation 98.88 103.00 110.00 119.90 132.50 148.00 166.30 187.30 211.10

Table 6 Last nine eigenvalues λ (k1=100000, k2=0, l=1, L=20, C=−209.94, D=63.73)

Proposed method 326.70 338.63 363.10 394.04 426.35 455.82 479.20 494.15 499.3

Direct computation 297.70 329.4 362.28 396.00 427.70 456.10 478.90 493.80 498.9

Fig. 8 First mode packet (L=20, l=1, k1=100000, k2=0, clamped beam)
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boundary layer solutions being derived from the Floquet theory. The larger the number of cells is,
the more efficient the asymptotic method is. Unfortunately it is not possible to predict in that
manner the number of modes that are in the packet. Moreover, it is not possible to get the whole
packet. To achieve these goals it is necessary to account for the interaction between two periodic
modes, a first approach having been proposed in Daya (1994).

The presented method could be interesting to simplify more complex problems like coupling
between local and overall modes, non-linear resonance effects and general dynamic problems or to
study two-dimensional or three-dimensional arrays, that are encountered in many applications
(Bourgeois 1997).
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Appendix A1

How to get the constant C

After insertion of the general solutions (12) into the third problem (9) and using the solvability condition
(11), we obtain the following equation:

Because w0 is pl-periodic function, we have the following property:

So, we get the amplitude differential equation to be satisfied by the envelope A0(X):

where 

Appendix A2

Numerical computation of the periodic functions wi

By using the finite element method, one finds that the nodal displacement vector [wi] of the periodic func-
tion wi satisfies an equation in the form:

i=1, ... (19)

where [A]=[K]−λ0[M]
[K] is the stiffness matrix of the basic cell
[M] is the mass matrix of the basic cell
[w0] is the nodal displacement vector of the periodic problem (4)
λ0 is the eigenvalue value of the problem (4)
[Fi] depends only on the previously computed vectors [w] and coefficients λ1, λ2, ....

We note that the matrix [A] is singular. But, if we take into account the condition (19b) by means of a Lagrange
multiplier k as in Damil and Potier-Ferry (1990), we get the following equation that involves an invertible matrix

i=1, ... (20)

6– d2A0

dX2
----------- w0″,w0〈 〉−4

d2A0

dX2
----------- w1″′ ,w0〈 〉−4

dA1

dX
--------- w0″′ ,w0〈 〉 +λ2A0 w0,w0〈 〉=0

w0″′,w0〈 〉=  
0

pl∫  w0″′w0dx=0

C
d2A0

dX2
-----------+λ2A0=0

C=
6 w0″,w0〈 〉– 4 w1″′ ,w0〈 〉–

w0,w0〈 〉
----------------------------------------------------------------

A[ ] wi[ ]= F[ ]
wi[ ]t w0[ ]




A[ ] w0[ ]
w0[ ]t 0

wi

k
= Fi

0




