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Hydroelastic vibration analysis of wetted thin-walled 
structures by coupled FE-BE-Procedure

Udo Röhr† and Peter Möller‡

Department of Mechanical Engineering, University of Rostock, Albert-Einstein-Str. 2,
18059 Rostock, Germany

Abstract. The reliable prediction of elastic vibrations of wetted complex structures, as ships, tanks,
offshore structures, propulsion components etc. represent a theoretical and numerical demanding task due
to fluid-structure interaction. The paper presented is addressed to the vibration analysis by a combined
FE-BE-procedure based on the added mass concept utilizing a direct boundary integral formulation of the
potential fluid problem in interior and exterior domains. The discretization is realized by boundary
element collocation method using conventional as well as infinite boundary element formulation with
analytical integration scheme. Particular attention is devoted to modelling of interior problems with both
several separate or communicating fluid domains as well as thin-walled structures wetted on both sides.
To deal with this specific kind of interaction problems so-called “virtual” boundary elements in areas of
cut outs are placed to satisfy the kinematical conditions in partial connected fluid domains existing in
realistic tank systems. Numerical results of various theoretical and practical examples demonstrate the
performance of the BE-methodology presented. 

Key words: fluid structure interaction; vibration analysis; coupled finite and boundary element method;
potential problem. 

1. Introduction

Prognoses of global and local vibration characteristics of ship structures are essential in modern
product development. The growing tendency towards three-dimensional finite-element models
requires physically adequate fluid modelling for the hydroelastic vibration problem. 

The discrete equations of motion for the linear elastic structure are formulated in the known way,
(1).

(1)

M, B and K represent the inertial, damping and stiffness features of the structure as consistent
matrices; ,  and D are the discrete acceleration, velocity and displacement vectors. Outer
excitation forces F as well as the force vector FH are parts of (1). FH represents the interaction
between elastic-kinetic behaviour of the structure and the surrounding fluid, caused by the
hydrodynamic pressure distribution p on the wetted surface. In case of linear ship structure vibration
that are hydrodynamic inertial effects. 

M D·· + B D·  + K D = F  + FH⋅ ⋅ ⋅

D·· D·
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Especially at higher frequencies a spatial interactive flow pattern exists near the ship hull due to
the complex structure deformation. After usual physical simplifications this interaction is described
by the proportionality (2) with the hydrodynamic added mass matrix MH.

(2)

Starting point to evaluate the global vibration behaviour is the knowledge of the natural spectrum,
the solution of the general eigenvalue problem (3). 

(3)

Early complex investigations (Camisetti 1979, Geßner and Schmitz 1983, Payer 1981, Skaar and
Carlsen 1979) on (3) done by finite element method were simplifying the three-dimensional
interaction problem and dealing with the two-dimensional rigid body flow problem in form of the
well-known added masses by Lewis (Lewis 1929, Landweber 1957). This procedure is widely used
in practice since it is simple (diagonal added mass matrix), despite known physical restrictions
(Payer and Asmussen 1985, Payer and Pleß 1985).

On the other hand the three-dimensional hydrodynamic mass effect in case of ship structure
vibrations has been demonstrated by more detailed calculation models since the early eighties.
Additional effects caused by shallow water can be taken into account in this way only. 

The aim of this paper is to present an effective boundary element method to take the
hydrodynamic inertial effects into consideration. Some principal cases of application are shown in
Fig. 1. 

2. The mathematical model

Calculation models combining finite element and boundary element method (FEM-BEM) prove
their suitability in many technical applications dealing with structure problems in contact with an
unbounded continuum. Linear structure vibrations are in general considered as boundary value
problem for the velocity potential in a three-dimensional fluid which is incompressible and free of
rotation and friction (Armand and Orsero 1979). Vibration induced waves on the free surface are of
low influence on the flow pattern near the motionless ship (Hakala 1986) and can be neglected.
Damping is not considered.

FH =−MH D··⋅

K−ω2 M+MH( )[ ] D=0⋅

Fig. 1 Typical cases of application in vibration analysis
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The fluid is mathematically modelled as potential-theoretical field problem when eliminating time
variable according to the separation method:

=0 in Ω (fluid domain) (4a)

=0 on Γ1 (free water surface) (4b)

almost everywhere on Γ2 (canal bottom and canal walls) (4c)

almost everywhere on Γc (contact surface) (4d)

(4e)

with a regular normal derivative almost everywhere on Γ (4f )

for (4g)

Φ defines the velocity potential in the fluid domain Ω. Additionally to the cases shown in Fig. 1
problems with an outer fluid domain which is bounded in some directions are considered. The
boundary condition on the free surface is (4b) (Dirichlet condition) when surface waves are
excluded. The potential function Φ on the remaining boundary satisfies Neumann conditions. Those
are homogeneous boundary conditions on solid walls (canal walls, bottom) and inhomogeneous on
the contact surface (see Fig. 2). The function h is assumed to be piecewise continuous, the boundary
itself is piecewise of class C2 type. The usual requirements of differentiability on Φ are defined by
(4f ). In the case of an unbounded domain Ω the decay condition (4g) holds.

It is well-known that the problem (4) is uniquely solvable provided that the Dirichlet-boundary
doesn’t vanish in (4b). For numerical handling with BEM the direct method is used. Therefore (4)
needs to be transformed into an integral equation:

(5a)

on Γ1 (5b) 

with a regular normal derivative almost everywhere on Γ (5c) 

for  (5d)

(single layer potential)

∆Φ

Φ

∂Φ
∂n
-------=0

∂Φ
∂n
-------=h

Γ=Γ1 Γ2 Γc∪ ∪

Φ C Ω( )∈

Φ=O R 1–( ) R ∞→

α x( )Φ x( )=V0 x,∂Φ,Γ1( )+V0 x,h,Γc( )−V1 x,Φ,Γ2 Γc∪( )      x∀ Ω∈

Φ=0

Φ C Ω( )∈

Φ=O R
1–( ) R ∞→

V0 x,∂Φ,Γ( )=  
Γ∫

1
x−y
------------ ∂

∂ny

--------Φ y ( )dΓy

Fig. 2 Sectional view of the fluid domain
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(double layer potential)

(5a) has to be satisfied at every point x of Ω and its boundary. For deriving this matter of fact
Green’s identity is used inside the fluid domain. The validity on Γ follows from some limit relations
(Brebbia, Telles and Wrobel 1984, Vladimirov 1977). Parameter α(x) is a function of geometry:
Inside Ω it is 4π, outside  it is 0, on Γ the value varies between both while for smooth segments
2π is assumed. It can be shown that the boundary value problem (4) and the integral equation
problem (5) are equivalent and uniquely solvable.

3. The two-dimensional discrete model

The stepwise derivation of a BEM procedure is described in the following. It has to be kept in
mind that the integral Eq. (5a) under continuity, differential and boundary conditions is still a three-
dimensional problem. Also while discretization it needs a relation to the inner domain since the
definition of an outer boundary normal derivative would be senseless otherwise. So the finally
resulting boundary element formulation is a restriction of a makeshift three-dimensional discrete
problem.

The function space W in which (5) is defined contains all functions being continuous in the fluid
domain and on their boundary, having a regular boundary normal derivative almost everywhere on
Γ and satisfying the Dirichlet conditions of the problem. (5) is uniquely solvable in this space. This
allows a three-dimensional discretization: A mesh of octahedral elements according to Fig. 3 is
assumed with tri-linear geometrical adaptation but globally continuous, element-wise tri-polynomial
interpolation functions of uniform kth degree (k > 0).

A collocation method with collocation points defined at the nodes is converging in the way of a
h-refinement. The (n+1)th mesh should be generated by dividing all elements of the nth mesh. This
gives a progressive sequence of function spaces. Each refinement step adapts the outer mesh
contour closer to the real geometry of Γ. It can be realised easily that the chosen interpolation
functions are elements of W if the Dirichlet boundary condition is in addition required explicitly. All
those elements having a common side-area with the boundary Γ are to be called first layer elements
(refer to Fig. 3).

The resulting equation system contains in the horizontal row i the Eq. (5a) required at collocation
point i. It couples the first m degrees of freedom (right hand side of 5a) with the ith one (left hand

V1 x,Φ,Γ( )=  
Γ∫ Φ y ( ) ∂

∂ny

-------- 1
x−y
------------dΓy

Ω

Fig. 3 Mesh of the makeshift 3D finite element model
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side of 5a). That means the first m equations include only the first m degrees of freedom, those
belonging to the first layer elements. This sub-system can be solved separately. Since the behaviour
of Φ is of interest on Γ only the problem will be restricted to the equations of the first layer
elements.

In the nth discrete problem presented above a global discontinuous approximation of the
continuous interpolation functions of the potential Φ and its normal derivative  by
piecewise tri-polynomial functions in element-wise Cartesian co-ordinate systems of kth degree in x
and y as well as of first degree in z can be found in a way that the error of this approximation
vanishes for . The so defined approximation functions don’t satisfy Eq. (5a). But the
residuum will vanish for  because the single layer and the double layer potential are
continuous functions of  and Φ, respectively. 

On the other hand it is an analogous deduction that global discontinuous and element-wise tri-
polynomial shape functions satisfying (5a) in some suitable collocation points are approximating the
analytical solution of the problem (5) in the nth discrete problem with vanishing numerical error for

. Restriction to the boundary Γ gives the equivalent and uniquely solvable two-dimensional
problem (6) in two-field formulation with separate global discontinuous and element-wise bi-
polynomial interpolation for Φ and =Ψ formulated in local Cartesian co-ordinate systems.
(The same functions are chosen for Φ and Ψ.) It can be shown that now even a polynomial degree
of 0 is suitable in this two-field formulation (constant boundary elements).

All collocation points are placed on Γ in the interior of the boundary elements. It needs to be
guaranteed that the collocation points are forming an “admissible system”. 

Remark: An element system should be designated as “admissible” if Haar’s matrix (the value
matrix of the interpolation functions at these points) is regular.

for all collocation points (6a)

=0 on Γ1 (6b) 

Ψ=0  on Γ2 (6c)

on Γc (6d)

Φ=O(R−1) for (6e)

 is an element of the space of shape functions converging to h for .
The geometric factor α(x) is defined in (6a) as 2π since the inner-element collocation points have

got a smooth (even plane) neighbourhood.

4. The element concept

Besides reducing the problem dimension and the effort (especially for the pre-processing) the
BEM offers high flexibility when choosing suitable elements due to neglecting the continuity
requirements on the functions. Complete families of elements can be developed systematically
following simple procedures. Bi-polynomial functions in elemental x-y-co-ordinates of arbitrary
order are to be defined using an appropriate number of collocation points without changing the
mesh geometry as described above.

∂Φ/∂n( )

n ∞→
n ∞→

∂Φ/∂n( )

n ∞→

∂Φ/∂n( )

2πΦ x( )=V0 x,∂Φ,Γ( )−V1 x,Φ,Γ( ) x Γ∈

Φ

Ψ=ĥ

R ∞→

ĥ n ∞→
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Quadrilateral as well as triangular finite boundary elements are used. If Cartesian element co-
ordinate systems are applied a fully analytical element-wise integration can be done in (6a) instead
of the usual numerical integration. 

In addition the transfer of the collocation points inside the elements solves the problem of non-
unique boundary normal vectors in these points, see Fig. 4. The contact surface as well as the
bottom and the canal walls (in case of bounded fluid domain) are modelled with finite boundary
elements. Fig. 4 depicts a possible mesh on the free water surface. Starting from the structure the
water surface is modelled with finite elements until a geometrically rectangular contour is reached.
In case of unbounded fluid domain this contour is surrounded by infinite boundary elements
allowing an effective description of such a surface: A single layer of these elements represents the
entire remaining X-Y-plane. 

A detailed description of the meshing technique with infinite boundary elements follows. Today a
widely used method to model unbounded domains is to operate with a sufficiently wide limited area
accepting an additional (even small) error. That leads to some problems in terms of implementation
and deployment:

− The solution behaviour in the infinity is not reproduced exactly. For sufficiently wide “canal”
dimensions this fact is practically without influence, because wall effects are negligibly small,
but

− the effort for creating a mesh on the free water surface is increasing enormously for extremely
large canal dimensions which causes a loss in efficiency of the program.

− The user therefore is forced to start with optimal parameters a priori which is hardly possible
since they depend on the problem. To find a safe and reliable optimum (most slim canal without
relevant wall effects) requires several complete calculation procedures, a method which is not
acceptable.

An elegant solution of these problems is given by using infinite boundary elements. This terminus
implies that geometrically unbounded areas can be modelled and the decay behaviour of the
concerned field variable is simulated by suitable “semi-analytical” functions. Research related to this
topic was running for years, some basically theoretical relationships are explained in (Bettes and

Fig. 4 Boundary element mesh of finite and infinite elements
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Bettes 1979). The application of such elements mainly takes aim at increasing efficiency of the
algorithm described here.

The rectangular element form is in general suitable for the presented case, offering the advantage
of semi-analytical integration. That means an analytical calculation of the inner and a numerical
calculation of the outer integrals in (6a) can be used. (A fully analytical integration is not
practicable for infinite elements due to the complicated form of the integrand − weak singularity is
possible− and unlimited domain of integration.) Fig. 5 displays the geometric classification of
infinite elements according to the usage in Fig. 4. Both types have been implemented in a BE-
program (Möller and Röhr 2000, Reich 1998). 

The deployment of functions for the “infinite co-ordinate direction” to simulate the decay
behaviour is a special feature of infinite elements. Inverse polynomials of the type

(7)

are used, the requirement a0=0 guarantees the necessary O(x−1)-characteristic for the interpolation
function. In addition a second type (8) of shape functions has been implemented in the BE-program.

(8)

The exponential decay behaviour of these functions is sufficiently fast in the “remote-field” in both
cases, with the group of exponential decay functions much faster than required. Nevertheless both
classes are proved to be as good as the other in practical examples. The possibility of semi-
analytical integration however is given in the case of type (7) only.

In the case of infinite strip elements the same shape functions as for the finite boundary elements
are used in the y-direction, refer to Fig. 5.

To estimate the position of the collocation points in global co-ordinates the transformation (9) is
used for an equidistant distribution of the  in the interval (−1; 1).

(9)

The maximum possible order of polynomials or inverse polynomials has been limited to 5 per co-
ordinate direction in the BE-program (Reich 1998). Practical numerical convergence investigations
(bi-linear interpolation functions for both the structure and the fluid model assumed) prove that the
significant higher calculation effort of BEM (no sparse system matrix) is reflected in much more

a0+a1 x 1– +…+an x n–⋅ ⋅

a0+a1 x
1+…+an xn⋅ ⋅( ) e

x
L
---–

⋅

ξ i

x=
1+ξ i

1−ξ i

----------- K+d⋅

Fig. 5 Classification of infinite elements according to the geometry
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accurate results. A series of test calculations with known analytical solution revealed that the
separated relative error the BEM-program has contributed to the total error amounts to some percent
only (for details refer to chapter 8). The errors from FE-calculation and from BE-calculation are of
the same order of quality for constant BE-interpolation and bi-linear FE-interpolation. So the use of
finite boundary elements with an order higher than 0 therefore is not efficient. In the following
finite boundary elements and infinite strips in the “finite direction” are always considered with
constant interpolation.

5. Calculation of the added mass matrix

The discretization of boundary integral Eq. (6a) gives a linear equation system (10) taking the
boundary conditions (6b), (6c) into account.

(10)

with the generalized parameter vectors ϕ and ψ. After elimination of variables being not of interest
the resulting system is reduced to the degrees of freedom which are associated with the contact
surface:

(11)

The solution of this system and therefore of the whole fluid problem gives a linear dependence of
the potential vector  on the vector of its normal derivatives , see (12). C is called
“connectivity matrix”.

(12)

The coupling between structure and fluid model is realised by the Neumann condition (4d) on the
contact surface Γc with the normal velocity distribution of the structure h. In the case of being
interest it is assumed as a globally continuous and element-wise bi-linear function on Γc according
to the bi-linear FE-formulation of the structure. The chosen shape functions of the problem (6) do
not satisfy this demand exactly. It is replaced by the approximate condition (6d) where the bi-
polynomial function (in Cartesian element co-ordinates)  is given for each element Γm by

 → minimum (13)

(6d) and (13) lead to a coupling of fluid and structure model by the relation (14) between the
parameter vector of the distribution of the boundary outer normal derivative of the fluid domain and
the vector of structure node velocities.

(14)

Finally the potential vector depends on the degrees of freedom of the node displacements of
structure. Based on an energetic principle the hydrodynamic added mass matrix is calculable by

(15)

Ĥ ϕ =Ĝ ψ⋅ ⋅

H ϕc =G ψc⋅ ⋅

ϕc ψc

ϕc=C ψc⋅

ĥ

 Γm
∫ ĥ−h[ ]2

dΓ

ψc=R D·⋅

MH=
1
2
--- M̂H+M̂H

T( );   M̂H=RT CT Q R⋅ ;   Q=ρf  Γc
∫ Nc

T y ( )Nc y( )dΓ⋅ ⋅



Hydroelastic vibration analysis of wetted thin-walled structures 109

where Nc denotes the vector of shape functions of the boundary elements on the contact surface and
ρf the fluid density.

6. Non-connected fluid domain

The practical background to extend the program functionality to non-connected fluid domain is
provided by the demand to deal with ship internal, partly or fully filled tank structures while
considering the outer ship fluid field, refer to Fig. 1.

The basic problem in the mathematical formulation is the necessity to model two-dimensional
structure elements wetted from both sides. The following geometry-specific definitions are agreed
upon:

Def. 1: A subdivision of the entire fluid domain Ω into the n+1 sub-domains Ω0 (outer area) and
Ω1, ... , Ωn (inner sub-domains) is called cluster division of Ω if and only if

(a) every Ωi is connected,
(b) the union of two different arbitrary subdomains  is not connected,
(c) the boundary  of an arbitrary subdomain is divided into two non-empty parts, a Dirichlet-

and a Neumann-boundary corresponding to problem (4). 
The subdomains Ωi are named clusters.

 
Def. 2: A cluster Ωi of a cluster division  is named of the first kind if and only

if there is no surface  belonging to the boundary  with both sides, upper and lower
side. Otherwise Ωi is named a cluster of the second kind. The whole domain Ω is a fluid domain of
the first kind if it consists of clusters of the first kind only, otherwise it is named fluid domain of
the second kind. 

Remark: Def. 2 classifies clusters in accordance with the characteristics of partial boundary
surfaces wetted on both sides: If there do not exist such a surface or if there exists a both side
wetted surface but wetted by the fluid of two different clusters, so the considered cluster is of the
first kind. Fig. 6 for instance shows a fluid domain of the first kind − it only contains clusters of the
first kind. 

Analogous to the so far handling of the outer fluid problem the algorithm described above is used
for each separate domain Ω0, ..., Ωn. n+1 boundary value problems are defined and transformed into
boundary integral equation problems. So there is no essential difference in handling fluid domains
of the first kind compared with the procedure for only the exterior problem. The hydrodynamic

Ω i Ω j∪
∂Ωi

Ω0, Ω1, …, Ωn{ }
S ∂Ω i⊂ ∂Ω i

Fig. 6 Fluid domain of the first kind
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added mass matrices calculated for each sub-domain separately have to be added to form the total
added mass matrix. 

The problem of both side wetted elements, wetted by the fluid of different sub-domains is taken
into account explicitly: The contact conditions required for the element’s upper and lower side,
respectively are combined directly by coupling them with the same normal velocity degree of
freedom of the structure. This is a basic difference to a fluid domain of the second kind discussed
now.

Fig. 7 depicts a typical example of a cluster of the second kind. The part of the inner bulkhead
lying below the free surface of the fluid is wetted on both sides by the fluid of the very same
cluster, because the two parts of the tank are connected by a cut-out of the bulkhead.

Remark: It has to be mentioned explicitly that the classification of def. 2 does not depend on the
structure geometry only but also on the fluid level. For a sufficient low fluid level in the tank of
Fig. 7 the fluid domain is of the first kind consisting of two clusters of the first kind.

For the structure model a two-dimensional idealisation of the plates is carried out. Both sides of
such a plate element are part of the fluid boundary, need to be elements in the BE-program and
have to be attached to collocation points, see Fig. 8. 

The outer normal vectors are always pointing to the outside of the fluid domain as shown in the
sketch of Fig. 9 with separated side areas.

This coupling of a single structure plate element with two potential boundary elements may cause
theoretical inconsistencies between physical and mathematical model as well as enormous
difficulties in the numerical realisation. The idea to assign both side areas of a structure plate
element to boundary elements having the same geometry and identical collocation points failed as
well as the approach taking a thickness d of the structure into account.

Only the transformation to a fluid domain of the first kind is a possible way. Fig. 10 depicts a

Fig. 7 Typical example of a cluster of the second kind

Fig. 8 Characteristic geometry of fluid domains of the second kind
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principle sketch. The considered domain Ω is divided into two sub-domains (Ω1 and Ω2) by adding
an internal boundary part Γi. 

Theorem 1 is the basis for such a partitioning. This theorem investigates under which
circumstances a piecewise harmonic function is harmonic in the entire domain. There is an analogue
result for more than two sub-domains Ωj. 

Theorem 1: Under the geometrical assumptions fixed above (16) and (17) are equivalent:

u is a harmonic function in Ω. (16)

uj are harmonic functions in Ωj for  and on Γi holds (17)

(with uj as restriction of u onto the sub-domain Ωj).

Proof: Assuming (16) in particular u is a harmonic function in the interior of the subdomains Ω1

and Ω2. Besides that u as harmonic function is in  and therefore the continuity behaviour of
u and its normal derivative on Γi holds, that means (17) is proofed. 

Assume (17) now. Let  be an arbitrary test function with compact support. So (18)
holds because  in Ωj. 

(18)

ϕ and uj are elements of  and therefore satisfy the conditions of Green’s theorem. It leads to 

(19)

(All boundary integrals on Γ are vanishing cause of the compact support of ϕ.) ϕ and its derivatives
are continuous on Γi. Taking the relations  into account
additionally the integral on Γi vanishes too in (19). So 

(20)

j 1; 2{ }∈

u1=u2; 
∂u1

∂n1

--------=−
∂u2

∂n2

--------

C∞ Ω( )

ϕ C0
∞∈ Ω( )

∆uj=0

 Ω1
∫ ϕ∆u1dΩ +  Ω2

∫ ϕ∆u2dΩ=0

C∞ Ω j( )

 Ω1
∫ u1∆ϕdΩ +  Ω2

∫ u2∆ϕdΩ +  Γ i
∫ ϕ

∂u1

∂n1

--------−u1
∂ϕ
∂n1

--------+ϕ
∂u2

∂n2

--------−u2
∂ϕ
∂n2

-------- 
  dΓ=0

n1=−n2;  u1=u2;  ∂u1/∂n1( )=− ∂u2/∂n2( )

 Ω1
∫ u1∆ϕdΩ +  Ω2

∫ u2∆ϕdΩ =  
Ω∫ u∆ϕdΩ=0

Fig. 9 Outer boundary normal vectors of a structure
element wetted on both sides

Fig. 10 Transformation of a fluid domain of the
second kind by partitioning
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is valid. (20) describes the weak Laplace equation. So because u is an element of  it is a
weakly harmonic function in Ω . Finally (16) follows from Weyl’s lemma. concludes the proof of
Theorem 1.

The numerical realisation corresponds to a sub-structure method. The elements of the additionally
inserted boundary part Γi might be named virtual elements. The numerical treatment of a fluid
domain of the second kind therefore is in accordance with the processing of a first kind domain
under constraints. 

7. Implementation

The entire algorithm of the hydroelastic vibration analysis is divided into three main parts.

1. Estimation of the hydrodynamic added mass matrix by the BEM-program HYDROEL.
2. Calculation of structure stiffness and structure mass matrix by FEM as well as adding up

structure mass and hydrodynamic added mass matrix.
3. Solution of the general eigenvalue problem (3).

Points 2 and 3 have to be realised by commercial software components. 
The BEM-program HYDROEL deals with an algorithm for calculation of the hydrodynamic

added mass matrix as described above. In particular it is able to handle the exterior, the interior and
the coupled exterior-interior problem. In the case of an outer fluid domain the cluster Ω0 also may
be bounded in some directions (shallow water or canal conditions). The program is coded in
FORTRAN 90-standard.

It includes a pre-processor for automatic generating the BE mesh on the wetted surface of
structure, the free surface of the fluid and the canal walls and bottom. For inner domains the
meshing principle is quiet simple. After partitioning of clusters of the second kind as described in
chapter 6 the fluid surface of every subdomain constructed by addition of virtual elements according
to theorem 1 is meshed as shown in the sketch in Fig. 11.

For a bounded outer fluid domain the pre-processor creates a mesh as depicted in Fig. 12. For
unbounded domains refer to Fig. 4.

The user may vary the position of the structure model to define some geometric parameters, the
draught of a ship, for instance, the filling level of tanks or a nose-up vessel trim. The water line is

L2 Ω( )

Fig. 11 Boundary element mesh of the free fluid surface for interior problems
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defined as intersection between the structure model and the free fluid surface plane z=0. So the pre-
processor in general has to generate new nodes and elements.

Collocation points are placed in the interior of the boundary elements in accordance with the
order of the shape functions. 

After calculation of all element integrals (see 6a− analytical calculation for finite boundary elements,
half-analytical one for infinite elements with inverse polynomial shape functions, fully numerical
calculation for infinite elements with exponential decay behaviour) being necessary to form the
equation system (10) and reducing to the form (11) the solution of the equation system leads to the
connectivity matrix and the final result is the added mass matrix (15) as described in chapter 5. This
algorithm works cluster-wise, see chapter 6, and the resulting added mass matrix is formed by
summation of all cluster matrices. 

As all boundary solution processes involve very large full matrices, especially if applied in a fully
three-dimensional case, as alternative solution method a mode superposition algorithm was
implemented (Möller and Röhr 2000). 

It shall be mentioned that the handling of the pure Neumann problem is not possible yet with the
present programme version, but this does not contain theoretical difficulties.

8. Test calculations

A series of academic test examples has been modelled in order to verify the program as well as
study convergence and efficiency. So the analytical solution for a single-side wetted square plate
opposite to a solid wall is available, Fig. 13.

To deal with bi-linear shape functions for finite boundary elements a special test version of the
program was coded. The main result of these investigations is the fact that bi-linear shape functions

Fig. 12 Automatic mesh generation for a bounded fluid domain
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for the structure model and constant finite boundary elements are compatible with regard to
numerical accuracy. The choice of shape functions of higher order for the finite boundary elements
however leads to a rapidly increasing numerical effort not justified by the achieved relatively little
decreasing numerical error of the entire problem (because of the superposition of the numerical
errors of the FE and the BE-calculation).

A practically relevant model shall be discussed now, a container vessel, refer to Fig. 1, left hand
side. The results from eigenfrequency analysis contain beside a comparison with the method of
added masses by Lewis (see Fig. 14) the verification that the calculation model presented here is
applicable to special fairway conditions. 

For the investigations on the influence of fairway depth the advantages of three-dimensional mass
modelling emerge clearer. So the eigenvibration behaviour of the vessel as a function of water depth
is considered, refer to Fig. 15. The frequency spectrums including those for deep water are
summarized. As expected frequencies decline with decreasing water depth (h/D) for a fixed mode of
vibration.

Focussing on the frequency changes only no conclusion can be obtained with regard to the real
hydrodynamic influence on the structure. While considering the transition from deep water (h/D
=7.5) to canal conditions of h/D=1.6 for the 12th mode only a slight frequency decline of 2.4 per
cent is detectable. It is raising only for extreme decreased water depth (h/D=1.2) up to 9 per cent.
Taking the assigned modes of vibration, the deformation modes of same order, into consideration
the hydrodynamic influence becomes more clear. Even frequency changes of this quantity lead to
transition into another mode. 

Looking at the very same mode, e.g. the deck house mode (refer to Fig. 16), in the frequency
spectrums calculated for different water depth an interesting observation can be done. Whereas the
mode by itself remains almost unaffected the related frequency varies by more then 1 Hz. This

Fig. 13 Calculation example “one-side wetted plate opposite to a solid wall”



Hydroelastic vibration analysis of wetted thin-walled structures 115

“shifting-effect” of deformation modes might be of interest from a practical point of view.
Furthermore investigations have been carried out on the influence of vessel trim (nose-up trim) in

eigenvalue analysis as well as on the problem of forced vibration.
The following test example for the interior problem focuses on a comparison of numerical and

analytical solution again. Considered for this purpose are geometrical models of cubic, open-top,
fully filled tanks with a partition bulkhead of variable height, Fig. 17. Each side wall has been
modelled by a mesh of 2N · 2N boundary elements.

A special test version of the program HYDROEL enables a direct comparison of calculated
velocity potential values Φ with the analytical solution as a function of N. Some boundary
conditions have been defined in a way that simple bi-linear solution functions are obtained. Two
examples have been considered:

Φ= z and Φ=z(4+3x+2y+xy) (21)

Fig. 14 Comparison of natural frequencies of a
container vessel floating on water

Fig. 15 Effect of water depth on natural frequencies
of a container vessel floating on water

Fig. 16 Vibration modes of the deck house as function of water depth
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The resulting relative errors based on the L2-norm are depicted in Fig. 17. 
Finally a practically relevant model has been investigated. Fig. 18 shows the finite element mesh

of a tank taken from Jefferies (1998). The fluid attached to the nearly fully filled tank is a domain
of the second kind because the filling level reaches the cut-outs in the bulkheads.

Table 1 shows the first eigenfrequencies. Fig. 19 presents some eigenmodes of special practical
interest. 

10. Conclusions

The paper has Presented an improved FE-BE-methodology to deal with hydroelastic vibration
problems of complex thin-walled structures in maritime areas especially. The main aspects of the

Fig. 17 Error estimation in the calculation example “filled tank”

Fig. 18 Finite element model of the tank structure
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analysis have been derived in general terms and verified by studies related to numerical
convergence as well as to practical applications. In details it could be shown that the proposed
boundary element concept is able to meet theoretical and practical demands as 

· Pre-processing by high-grade computer aided discretization of bounded and unbounded 3D as
well as interior and exterior fluid domains.

· FE compatible and variable order concept of finite fluid boundary elements.
· Improved efficiency by infinite formulations for discretization of free surfaces of unbounded
fluid domains.

· Numerical robustness of BE formulation for general fluid (thin-walled) structure configurations.

Table 1 Natural frequencies of the tank structure

mode number 1 2 3 4 5 6 7 8 9 10 11

f in Hz 4.48 6.29 7.15 9.20 9.98 10.37 10.81 11.69 12.63 12.83 13.19

mode number 12 13 14 15 16 17 18 19 20 21 22

f in Hz 14.20 14.59 14.87 15.02 15.33 15.47 16.12 16.56 17.25 17.46 17.78

mode number 23 24 25 26 27 28 29 30 31 32 33

f in Hz 18.01 18.78 18.90 19.32 19.80 19.87 20.04 20.40 20.59 21.07 21.19

mode number 34 35 36 37 38 39 40 41 42 43 44

f in Hz 21.50 21.85 22.36 22.56 22.60 23.05 23.42 23.87 23.98 24.09 24.16

Fig. 19 Selection of eigenmodes of the filled tank structure considered



118 Udo Röhr and Peter Möller

· Compatibility of BE fluid models to FE structural tools.
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