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Second-order analysis of planar steel frames
considering the effect of spread of plasticity

Liang-Jenq Leu† and Ching-Huei Tsou‡

Department of Civil Engineering, National Taiwan University, Taipei, 10617 Taiwan, R.O.C.

Abstract. This paper presents a method of elastic-plastic analysis for planar steel frames that provides
the accuracy of distributed plasticity methods with the computational efficiency that is greater than that of
distributed plasticity methods but less than that of plastic-hinge based methods. This method accounts for
the effect of spread of plasticity accurately without discretization through the cross-section of a beam-
column element, which is achieved by the following procedures. First, nonlinear equations describing the
relationships between generalized stresses and strains of the cross-section are derived analytically. Next,
nonlinear force-deformation relationships for the beam-column element are obtained through lengthwise
integration of the generalized strains. Elastic-plastic flexibility coefficients are then calculated by
differentiating the above element force-deformation relationships. Finally, an elastic-plastic stiffness matrix
is obtained by making use of the flexibility-stiffness transformation. Adding the conventional geometric
stiffness matrix to the elastic-plastic stiffness matrix results in the tangent stiffness matrix, which can
readily be used to evaluate the load carrying capacity of steel frames following standard nonlinear
analysis procedures. The accuracy of the proposed method is verified by several examples that are
sensitive to the effect of spread of plasticity. 
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1. Introduction

With regard to the modeling of distributed plasticity or spread of plasticity in steel structures,
plastic zone methods, often referred to as distributed plasticity or spread of plasticity methods, are
the most accurate one but they are computation intensive. In contrast, the conventional plastic hinge
method, often referred to as the lumped plasticity method, is computation efficient. However, it
often overestimates the ultimate strength of structures (e.g. White et al. 1993), especially for
structures whose members bend about the minor axis. The overestimation results from the fact that
the effect of member plastification, being modeled using zero-length plastic-hinges located at the
member ends, may not be accurately considered. To overcome the drawback, several modified
plastic-hinge models have been proposed recently. These include the notional-load plastic-hinge
(Liew et al. 1994), tangent-modulus plastic-hinge (White 1993), and refined plastic-hinge approaches
(Liew et al. 1993a, b). A detailed discussion of the above three plastic-hinge based approaches was
given by White et al. (1993). According to White et al., the refined plastic-hinge method is the
most accurate one. However, the above three approaches were all developed to evaluate the in-plane
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strength of structures; three-dimensional behaviors such as flexural-torsional effects were not
considered.

In plastic zone analyses (e.g. Clarke et al. 1992, Zhou and Chen 1994, Teh and Clarke 1999),
members need to be discretized along their length and through their cross-section to model the
gradual spreading of plastic zones. Discretization is often achieved using longitudinal fiber elements
considering only the uniaxial stress-strain relationship. Hence, methods of this type are also referred
to as fiber element methods. Although very accurate and applicable in analyzing spatial steel frames,
spread-of-plasticity methods are more computation intensive than plastic-hinge based methods.

Recently, Attalla et al. (1994) and Attalla (1995) proposed another accurate inelastic analysis
procedure, called the quasi-plastic-hinge approach. The computational efficiency of this approach is
greater than that of distributed plasticity methods since discretization through the cross-section of a
beam-column element is not required; however, the efficiency is still less than that of plastic-hinge
based methods. Moreover, it can be applied to carry out inelastic analysis for both planar and spatial
steel frames although only planar frames are discussed here. The reader is referred to Attalla (1995)
regarding the application of this approach in spatial steel frames including how to model the effect
of non-uniform torsional-flexural buckling. 

The derivation of the quasi-plastic-hinge approach starts from the inelastic model that expresses
the inelastic cross-sectional generalized strains, including curvature and centroidal axial strain, as
functions of the generalized stresses, containing moment and axial force. The results obtained from
plastic zone methods with respect to a W8×31 section are used to calibrate the inelastic model. The
resulting curvature and axial strain equations are then integrated numerically along the members to
obtain the member deformations, including end rotations and axial deformation, which in turn can
be used to formulate first the elastic-plastic flexibility matrix and then the elastic-plastic stiffness
matrix. 

The quasi-plastic-hinge method is very promising in that it can account for the effect of spread of
plasticity accurately for both planar and spatial steel frames and its computational effort is less than
that required in plastic zone methods. However, it has two drawbacks. First, the inelastic model is
calibrated using a W8×31 section; the accuracy is unclear when this model is applied in analyzing
frames that are made of sections of other sizes. Second, the derived elastic-plastic flexibility matrix
is unsymmetrical, which cannot be justified. This study aims at resolving the above two problems
and only planar steel frames will be considered.

2. Generalized stress-strain relationships

Consider a simply supported beam-column subjected to a compressive axial force P and end
moments M1 and M2 as shown in Fig. 1. If the curvature and the centroidal axial strain distributions
along the length of the member are known, then by integrating the curvature distribution or
equivalently by employing the conjugate beam theorem, the end rotations α1 and α2 can be
obtained. Similarly, the axial shortening δ can be obtained by integrating the centroidal axial strain
distribution. As will be explained later, the curvature and centroidal axial strain at any section of the
member are explicit functions of the member forces P, M1, and M2. Hence, the member
deformations δ, α1, and α2 are also functions of P, M1, and M2. 

In this section, we discuss briefly how to derive the moment-curvature-axial force and centroidal
axial strain-curvature-axial force relationships for I-shaped sections with the residual stress
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distribution being depicted in Fig. 2 (Galambos and Ketter 1959). Because the residual stress
distribution is symmetric, the derived relationships are applicable for both positive and negative
moments. 

2.1 Normalized moment-curvature-axial force relationship

According to the extent of yielding, six and eight configurations of partially plastified sections can
be distinguished for bending about the major and minor axes, respectively, as depicted in Figs. 3
and 4. Also, depending on the magnitude of axial forces, a cross-section under increasingly applied
moment has the evolutionary paths as shown in Figs. 5 and 6, for the major- and minor-axis bending,
respectively. Note that in Fig. 5, configuration IV-1 starts from  and ;
configuration IV-2  and . Also in Fig. 6, configuration IV-1 starts from

 and ; configuration IV-2  and ; configuration VIII-1
 and ; and configuration VIII-2  and . 

For each of the above configurations, the normalized moment-curvature-axial force (m−φ −p)
relationship, m(φ, p), has been derived and given explicitly in Tsou (1997). Note that m=M/My,
where M=moment and My=yield moment; φ =Φ/Φy, where Φ=curvature, Φy=My/EI, E=Young’s
modulus, and I= second moment of inertia; p=P/Py, where Py=Aσy, A=cross-sectional area, and σy=
yield stress. The procedure for deriving the (m−φ −p) relationship is briefly stated as follows.

h=h/2 h– /2 g h/2≤ ≤
g= h– /2 h– /2 h h/2≤ ≤

h=tw/2 b– /2 g tw/2≤ ≤ g= b– /2 b– /2 h tw/2≤ ≤
h= tw– /2 b– /2 g tw– /2≤ ≤ g= b– /2 b– /2 h tw– /2≤ ≤

Fig. 1 Simply supported beam-column

Fig. 2 Residual stress pattern
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First, let 

 (1)

(2)

where  and  are the maximum magnitude of the compressive and tensile residual stresses as
depicted in Fig. 2. Next, assume that

(3)

(4)

As the residual stresses are self-equilibrating, the following relation holds:

(5)

where b=width of the flange, tf =thickness of the flange, h=depth of the web, and tw=thickness of
the web. In this study, R1=0.3 is used; this value is quite typical for hot-rolled I-shaped sections
according to Galambos and Ketter (1959). Note that compressive strains and stresses are assumed to
be positive.

Consider, for example, configuration VIII of Fig. 4. The corresponding strain distribution over the
cross-section is shown in Fig. 7(a). To facilitate the determination of the associated stress
distribution, let’s define the strain caused by the residual stresses as a “virtual strain” field, whose

εrc=σrc/E

εrt=σrt /E

σrc σrt

σrc=R1σy

σrt=R2σy

R2=−
btf

btf+htw
------------------R1

Fig. 3 Partially plastified sections due to major-axis bending
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distribution is depicted in Fig. 7(b). Adding together the actual strain and the virtual strain results in
the total virtual strain shown in Fig. 7(c), from which the stress distribution of Fig. 7(d) can be
easily obtained. 

The virtual strain field shown in Fig. 7(b), denoted by εv( y), can be written as

for (6a)

for (6b)

Because  and  for configuration VIII of Fig. 4, the virtual strains at the interfaces
between the elastic and plastic regions, defined in Fig. 7(b), can be expressed as

εv y ( )=εrt+
2 εrc−εrt( )

b
------------------------y y 0≥

εv y ( )=εrt+
2 −εrc+εrt( )

b
----------------------------y y 0≤

g 0< h 0<

Fig. 4 Partially plastified sections due to minor-axis bending

Fig. 5 Spread-of-plasticity paths for major-axis bending
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 (7)

 (8)

Note that  and  are the y coordinates of the above interfaces as indicated in Fig. 4. 
Based on the Bernoulli-Euler hypothesis that plane sections remain plane or according to Fig. 7(a), it

can be derived that 

(9)

where , the yield strain. By substituting Eqs. (7) and (8) into Eq. (9) and making use of the
relations:  and , one obtains

(10)

ε1=εv h( )=εrt+
2 −εrc+εrt( )

b
----------------------------h

ε2=εv g( )=εrt+
2 −εrc+εrt( )

b
----------------------------g

g h

g=h−
2εy−ε1+ε2

Φ
-------------------------

εy=σy/E
εrc=R1εy εrt=R2εy

g=
b– +h φ−R1+R2( )

φ−R1+R2

-----------------------------------------

Fig. 6 Spread-of-plasticity paths for minor-axis bending

Fig. 7 (a) strain distribution, (b) “virtual strain distribution” due to residual stresses, (c) total virtual strain
distribution, (d) stress distribution
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From Fig. 7(a), the strain distribution due to sectional axial force and moment can be written as

(11)

With the use of Eqs. (6a, b) and (11), the stress distribution in the elastic core, which is the region
from  to  of Fig. 7(d), can be evaluated by Hooke’s law as follows: 

(12)

Referring to Fig. 7(d), the normalized axial force and moment can be written, respectively, as

(13)

 (14)

By making use of Eqs. (1)-(4), (6b)-(8), and (10)-(12), Eqs. (13) and (14) can be simplified as
follows:

(15)

(16)

In Eqs. (15) and (16), , and tf are considered as parameters. 
Eq. (15) expresses p as a function of φ and ; by rearranging the equation,  can be written as a

function of φ and p as follows: 

(17)

ε y( )=εy−ε1+ y−h( )Φ

g h

σ y( )=Eε y( )+Eεv y( )

p=
 

A∫ σ dA

Py

------------------=  b
2
---–

g

∫ σy–( )2tf dy+  
g

h∫ Eε +Eεv( )2tf dy+  
h

tw

2
----–

∫ σy( )2tf dy

+  tw
2
----–

tw
2
----

∫ σy h+2tf( )dy+  tw

2
----

b
2
---

∫ σy( )2tfdy
1

htw+2btf( )σy

--------------------------------

m=
 

A∫ σydA

My

---------------------=  
b
2
---–

g

∫ σy–( )2tf ydy+  
g

h∫ Eε +Eεv( )2tf y dy+  
h

tw

2
----–

∫ σy( )2tf ydy

+  tw

2
----–

tw
2
----

∫ σy h+2tf( )ydy+  tw

2
----

b
2
---

∫ σy( )2tfydy
1

htw
3

6b
-------+

b2tf

3
-------- 

  σy

--------------------------------

p=p φ,h;R1,R2,h,tw,b,tf( )

=
2tfb+ twh−4tfh( ) φ−R1+R2( )

φ−R1+R2( ) 2btf+htw( )
--------------------------------------------------------------------

m=m φ,g,h;R1,R2,h,tw,b,tf( )

=
3b3−12bg2+ φ−R1+R2( ) −8g3+12g2h−4h

3( )
2b

3
tf+htw

3( )
-----------------------------------------------------------------------------------------------------------

R1,R2,h,tw,b
h h

h=h φ, p;R1, R2, h, tw, b, tf( )

=
b

2 φ−R1+R2( )
-------------------------------−bp

2
------+

htw 1−p( )
4tf

-----------------------
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Finally, substituting  from Eqs. (10) into (16) and then using (17) yields the normalized
moment-curvature-axial force relationship, m(φ, p). 

In addition to m(φ, p), one also needs to know the starting φ and m for a give value of p when
formulating the elastic-plastic flexibility matrix of a beam-column element, as will be seen later.
Depending on the starting condition, configuration VIII of Fig. 4 can be further classified into two
types; one, called VIII-1, begins with  and , and the other, called VIII-2,
starts from  and . For configuration VIII-1, the starting φ, denoted by

, can be obtained by solving Eq. (17) knowing that ; this results in

(18)

Similarly for configuration VIII-2, obtaining  first from Eq. (17) with , and then solving
for φ from Eq. (17) yields

(19a)

where

(19b)

The starting normalized moment, denoted by m( p)0, can be obtained simply by substituting the
starting φ( p)0 into the m(φ, p) relationship.

In summary, for each configuration, one needs to derive the m(φ, p) relationship such as Eq. (16)
(after substituting  from Eq. 10 and then  from Eq. 17). In addition, the starting normalized
curvature for a given normalized axial force, φ( p)0, is also needed. Finally, the starting normalized
moment is evaluated using m( p)0=m(φ, p) .

All the above derivations are carried out using MATHEMATICA (Wolfram 1991). The m(φ, p),
φ( p)0, and m( p)0 for other configurations of Figs. 3 and 4 can also be derived similarly. The
resulting explicit (but lengthy) expressions are not given here for brevity; they are available in Tsou
(1997). 

2.2 Normalized centroidal axial strain- curvature-axial force relationship

A byproduct of the above normalized (m−φ −p) relationship, m(φ, p), is the normalized centroidal
axial strain-curvature-axial force (ε0−φ −p) relationship, , where the normalized centroidal
axial strain is defined as

 (20)

From Fig. 7(a), the centroidal axial strain can be expressed as

(21)

By substituting  from Eqs. (21) into (20) first, then making use of Eqs. (1)-(4) and (7), and
noting that , where  for the minor-axis bending, one obtains 

g

h=−tw/2 −b/2 g −tw/2≤ ≤
g=−b/2 −b/2 h −tw/2≤ ≤

φ p( )0,VIII -1 h=−tw/2

φ p( )0,VIII -1=
R1−R2( ) 2bptf+hptw−2tf tw( )+2btf +R2htw

2pbtf − 1−p( )htw−2tf  tw

-------------------------------------------------------------------------------------------------------

h g=−b/2

φ p( )0,VIII -2=−R1+R2+
−btf+btf R1−R2( )2− 1+R1−R2( )c

p−1( ) 2btf  +htw( )
-------------------------------------------------------------------------------

c= btf  2btf  3−4p( ) R1−R2( )+btf  1+R1
2+R2

2( )+4htw R1−R2( ) 1−p( )[ ]

g h

φ=φ p( )0

ε0 φ, p( )

ε0=ε0/εy

ε0=εy−ε1−hΦ

ε0

Φ=φΦy Φy=εy/ b/2( )
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(22)

Finally, substituting  from Eq. (17) into (22) yields .

2.3 Branching normalized axial loads

Depending on the magnitude of axial forces, a cross-section under increasingly applied moment
has the evolutionary paths shown in Figs. 5 and 6, for the major- and minor-axis bending, respectively.
How do we know, for a particular value of axial force, along which path the section will evolve?
For example, a section with configuration II of Fig. 6 will enter into either configuration VI or III;
which one is correct? This can be answered by comparing the starting normalized curvatures of
these two configurations. Obviously, if , the section will enter into configuration
VI and if , it will enter into configuration III. 

Another way of determining the right configuration is by use of the branching normalized axial
load which is defined as the normalized axial load at which the starting normalized curvatures of
two branching configurations are the same. For example, solving for p from 
yields the branching normalized axial load of configurations VI and III as follows:

(23)

where the subscript w means minor-axis bending. If , the section will enter into
configuration VI; otherwise, configuration III. Note that in Figs. 5 and 6, upper paths correspond to
lower axial loads. 

Similarly, we can determine the other two branching normalized axial loads associated with Fig. 6
as follows:

 (24)

(25)

For the paths shown in Fig. 5, which are associated with the major-axis bending, the only one
branching normalized axial load can be determined in a similar manner; it is given by

(26)

where the subscript s means major-axis bending.

3. Beam-column element

3.1 Member force-deformation relationships

Consider again the simply supported beam-column of Fig. 1, the normalized moment along its

ε0=1−R2−2h
b

------ φ−R1+R2( )

h ε0 φ, p( )

φ p( )0,VI φ p( )0,III<
φ p( )0,VI φ p( )0,III>

φ p( )0,VI =φ p( )0,III

pW,VI,III =
b btf+htw( )−tw btf+2htw( ) R1−R2( )−htw

2 −tf  tw
2 1+R1−R2( )

b+tw( ) 2btf +htw( )
---------------------------------------------------------------------------------------------------------------------------------------

p pW,VI,III<

pW,IV−2,VII  =
2b btf  +htw( )+btf  tw 2+R1−R2( )−tf  tw

2
R1−R2( )

2b 2btf  +htw( )
-------------------------------------------------------------------------------------------------------------

pW,V,VIII −1 =
htw

2btf +htw
----------------------

pS,VI,III  =
2bh2tf +h3tw( ) R1−2R2( )+bhtf  

2 3R1−5R2( )− btf
3
 −h2tf  tw( ) 1−R1+R2( )

2h h+tf( ) 2btf  +htw( )
---------------------------------------------------------------------------------------------------------------------------------------------------------------------
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length can be written as

(27)

where m1 and m2 are the normalized moments at the left and right ends, respectively. The conjugate
beam theory is employed here to determine the end rotations α1 and α2 as functions of m1, m2, and
p through the following steps. 

1. Determine the evolutionary path by comparing p with the branching normalized axial loads. 
2. Calculate the starting normalized moment, m( p)0, and the starting normalized curvature, φ( p)0,

for each configuration on the path determined using Step 1. 
3. Determine to which configurations the end sections belong; this could be done easily by

comparing m1 and m2 with the starting normalized moments calculated using Step 2. 
4. Obtain the normalized end curvatures φ1 and φ2 by solving iteratively the m(φ, p) relationships

corresponding to the end sections from the given m1, m2 and p. 
5. Divide the normalized curvature distribution into (2n+2) increments as shown in Fig. 8, where

the part between −φe and φe is elastic; the value of n=10 is used in this study. Let the sampling
normalized curvatures be represented by (k=1, 2n+3); notice that φ (1)=φ1, φ (n+1)=−φe, φ (n+2)=0,
φ (n+3)=φe, and φ (2n+3)=φ2. For each φ (k), the corresponding configuration can be determined by
comparing its value with the starting normalized curvatures calculated using Step 2.

6. Calculate the normalized moment, m(k)(k=1, 2n+3), associated with φ (k)(k=1, 2n+3) using the
m(φ, p) relationship corresponding to the configuration determined at Step 5. Note that m(1)=−m1

and m(2n+3)=m2.
7. Determine the position, x(k)(k=1, 2n+3), corresponding to m(k)(k=1, 2n+3) using x(k)=L(m(k)+m1)/

(m1+m2), which is obtained by rearranging Eq. (27). 
8. Finally, α1 and α2 can be obtained by the conjugate beam theory assuming that the normalized

curvature distribution is piecewise linear, constructed by connecting the sampling points of Step 5.
Namely, 

(28)

m x( )=−m1+
x
L
--- m1+m2( )

φ k( )

α1=−
Φy

L
------  

k=1

2n+2

∑ A k( )L k( )

Fig. 8 Discretization of normalized curvature along the element length
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( ) (29)

where A(k) is the area under the normalized curvature curve that is between x(k) and x(k+1), and L(k) is
the horizontal distance between the centroid of A(k) and the right end (x=L); they are given,
respectively, by

[ ][ ] , k=1, 2n+2 (30)

( ), k=1, 2n+2 (31)

Similarly, using the normalized centroidal axial strain-curvature-axial force relationship, ,
the normalized axial strain at (k=1, 2n+3), (k)(k=1, 2n+3), can be determined. The axial
shortening δ is then obtained by integrating (= ), which is assumed to be piecewise linear;
namely

[ (k)+ (k+1)]( ) (32)

3.2 Elastic-plastic flexibility matrix and tangent stiffness matrix

The member deformations δ, α1, and α2 can be considered as functions of the member forces P,
M1, and M2 as discussed in the above subsection. The incremental relationship between them can
therefore be written as:

(33)

or expressed in matrix form as
(34)

where  and  denote the increments of the member deformations and forces,
respectively, and [d ] represents the elastic-plastic flexibility matrix. In this study, the coefficients of
[d] are calculated by the finite difference method assuming a 0.01 percent difference. For example, 

(35)

where =0.0001M1 if  and =0.0001M2 when M1=0.
The above elastic-plastic flexibility matrix for the supported beam-column of Fig. 1 can be used

to derive the elastic-plastic stiffness matrix for the unsupported element of Fig. 9 having the degrees
of freedom of  as follows (McGuire et al. 2000): 

α2=
Φy

L
------  

k=1

2n+2

∑ A k( ) L−L k( )

A k( )=
1
2
--- φ k( )+φ k+1( ) x k+1( )−x k( )

L k( )=L−x k( )− φ k( )+2φ k+1( )

3 φ k( )+φ k+1( )( )
--------------------------------- x k+1( )−x k( )

ε0 φ,p( )
x k( ) ε0

ε0 ε0εy

δ=
1
2
---  

k=1

2n+2

∑ ε0 ε0 x k+1( )−x k( ) εy

∆δ
∆α1

∆α2 
 
 
 
 

=
∂δ/∂P ∂δ/∂M1 ∂δ/∂M2

∂α1/∂P ∂α1/∂M1 ∂α1/∂M2

∂α2/∂P ∂α2/∂M1 ∂α2/∂M2

∆P

∆M1

∆M2 
 
 
 
 

∆un{ }= d[ ] ∆fn{ }

∆un{ } ∆fn{ }

d32=
α2 P,M1+∆M1,M2( )−α2 P,M1,M2( )

∆M1

--------------------------------------------------------------------------------------

∆M1 M1 0≠ ∆M1

∆u{ }= ∆u1, ∆v1, ∆θ1, ∆u2, ∆v2, ∆θ2{ }T
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(36)

where 

(37)

The second-order or geometric nonlinearity effect is incorporated into the analysis by use of the
conventional geometric stiffness matrix , available in Yang and Chiou (1987). Therefore, the
tangent stiffness matrix takes the form:

(38)

4. Nonlinear analysis procedure

Nonlinear analysis of structures is often carried out by an incremental-iterative procedure. The
procedure consists of two major phases. The first one is to compute the increment of the
displacement vector, which is often referred to as the predictor phase. The second one is referred to
as the corrector phase; it is aimed at calculating the member end forces and at checking whether the
equilibrium between the member end forces and the applied external loads is satisfied. If the
equilibrium is not satisfied, iteration is started and continued until the magnitude of the unbalanced
force vector is small. Otherwise, begin next loading step (increment) and the whole procedure is
repeated. For a detailed discussion on the above aspects, the reader is referred to Yang and Kuo
(1994).

The Newton-Raphson method in conjunction with the generalized displacement control technique
proposed by Yang and Shieh (1990) are employed in the predictor phase since the technique can
deal with nonlinear problems with limit points. In the corrector phase, the member end forces are
updated according to the equation:

(39)

where  are the increments of the member end forces that correspond to the degrees of
freedom of Fig. 9. Also,  and  denote, respectively, the member end forces of the current
and the last calculated configurations. The calculation of  is carried out by

kep[ ]= T[ ]T d[ ] 1– T[ ]

T[ ]= 
 1 0 0 1– 0 0 

 0 1/L 1 0 1/L– 0 

 0 1/L 0 0 1/L– 1 

kg[ ]

kt[ ]= kep[ ]+ kg[ ]

f2{ }= f1{ }+ ∆f
 { }

∆f
 { }

f2{ } f1{ }
∆f

 { }

Fig. 9 unsupported beam-column element
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(40)

with  being the incremental natural deformations of the member,
which can be expressed in terms of the incremental nodal displacements as follows (Yang and Kuo
1994):

(41)

(42)

(43)

In Eqs. (41)-(43), L2 and L1 (=L) represent, respectively, the lengths of the member at the current
and last obtained configurations. It is worth noting that the member end forces  and  in
Eq. (39) are referred to their own member axes. 

5. Examples

The accuracy of the proposed method has been verified in Tsou (1997) through many examples
although only three of them are reported here. For all the presented examples, a column is
discretized into four elements and a beam one element, and all external loads are applied
proportionally. The reason why one column is modeled using four elements is that the frames
analyzed are all sidesway allowed and the geometric nonlinearity effect of columns is important for
this type of frame. The conventional geometric stiffness matrix, which is derived on the basis of
cubic shape functions, cannot capture such nonlinearity very accurately if only one element per
column is used. In this case our numerical experience indicates that the ultimate strength may be
overestimated by up to five percent. Also, unless otherwise stated, members are W8×31 sections
with the residual stress pattern as depicted in Fig. 2, where .

5.1 Kanchanalai portal frame

Consider the Kanchanalai portal frame of Fig. 10 (Kanchanalai 1977). Strength interaction diagrams
for bending about the major and minor axes obtained using the proposed method are plotted and
compared with Kanchanalai’s plastic-zone results in Figs. 11(a) and (b). From these figures
excellent agreement between both results can be observed for both major- and minor-axis bending. 

5.2 Kanchanalai leaned frame

Consider the Kanchanalai leaned frame of Fig. 12 (Kanchanalai 1977, Attalla et al. 1994).
Comparisons of interaction diagrams for bending about the major and minor axes are shown in Fig. 13.
Clearly, the proposed method yields excellent results compared with Kanchanalai’s plastic-zone results.

∆f { }= kt[ ] ∆un{ }

∆un{ }= 0,0,∆α1,∆δ,0,∆α2〈 〉T
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1
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--------------- 2L1 ∆u2−∆u1( )+ ∆u2−∆u1( )2+ ∆v2−∆v1( )2[ ]

∆α1=∆θ1−tan 1– ∆v2−∆v1

L1+∆u2−∆u1( )
------------------------------------

∆α2=∆θ2−tan 1– ∆v2−∆v1

L1+∆u2−∆u1( )
------------------------------------

f1{ } f2{ }

σrc=0.3σy
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5.3 El-Zanaty portal frame

The portal frame depicted in Fig. 14 studied by El-Zanaty et al. (1980) has been shown to be
sensitive to the spread of plasticity effect (King et al. 1992). Figs. 15(a) and (b) show the
normalized load-deflection curves obtained by the proposed method and those obtained using the
fiber element model and the conventional elastic-plastic hinge method (reproduced from Attalla et
al. 1994). From these figures, the accuracy of the present method is verified again.

Fig. 10 Kanchanalai portal frame

Fig. 11 (a) Strength interaction diagrams for Kanchanalai portal frame subjected to major-axis bending;
(b) Strength interaction diagrams for Kanchanalai portal frame subjected to minor- axis bending
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6. Discussions 

6.1 Effect of coupling terms in elastic-plastic flexibility matrix

As mentioned in the introduction section, the elastic-plastic flexibility matrix derived by Attalla et
al. (1994) is unsymmetrical. This is because both the reported normalized moment-curvature-axial
force relationship m(φ, p) and the normalized centroidal axial strain-curvature-axial force relationship

 are obtained by curve fitting the plastic zone results with respect to a W8×31 section;
these two fitted relationships are inconsistent. The inconsistency means that for given values of φ
ε0 φ, p( )

Fig. 12 Kanchanalai leaned frame

Fig. 14 El-Zanaty portal frame

Fig. 13 Strength interaction diagrams for Kanchanalai
leaned frame subjected to major- and minor-
axis bending
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and p, the values of m and  calculated according to m(φ, p) and  do not correspond to
the same configuration (state). To fully appreciate this point, recall that the relationship  is
a byproduct of the relationship m(φ, p) as discussed in Section 2.2. If these two relationships are
approximate, the derived force-deformation relationships are also approximate, and this results in
unsymmetrical elastic-plastic flexibility coefficients for the coupling terms, i.e.,  and

. Note that d32=d23 even though the generalized stress-strain relationships are approximate.
In the proposed method, it is found that the elastic-plastic flexibility matrix is always symmetric
since the generalized stress-strain relationships are derived exactly and analytically. 

To avoid the unsymmetry problem, Attalla et al. (1994) simply neglected the axial-flexural
coupling terms by assuming d12=d21=d13=d31=0. However, it is unclear that whether the effect of
these coupling terms is important. To investigate the effect, two versions of the proposed method
are used, one with nonzero (exact) and the other with zero coupling terms. The analysis results,
carried out with respect to the El-Zanaty frame bent about the minor axis with P=0.4Py, are
compared in Fig. 16. As shown in this figure, the ultimate strength is slightly overestimated if the
axial-flexural coupling terms are assumed to be zero. 

6.2 Effect of section sizes

Compared with the method proposed by Attalla et al. (1994), the proposed method is capable of
considering the effect of section sizes explicitly in addition to having symmetric elastic-plastic
flexibility matrix. This is because the generalized stress-strain relationships derived in this study are
explicit functions of the section dimensions but these relationships in Attalla et al. (1994) are not
although they are given in a nondimensional format.

To investigate the effect of section sizes, consider the El-Zanaty frame of Fig. 14 again with the
following three sections: W8×31, W12×14, and W44×335, which represent typical medium, small,
and large-size sections. The radii of gyration about the minor axis for these three sections are 2.02 in

ε0 ε0 φ, p( )
ε0 φ, p( )

d13 d31≠
d12 d21≠

Fig. 15 (a) Comparison of normalized load-deflection curves for El-Zanaty portal frame subjected to major-
axis bending, (b) Comparison of normalized load-deflection curves for El-Zanaty portal frame
subjected to minor-axis bending
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(5.13 cm), 0.75 in (1.91 cm), and 3.49 in (8.86 cm), respectively. Note that for each case the
slenderness ratio of the columns is still kept as 40. Figs. 17(a) and (b) show the normalized load-
deflection curves with respect to the minor-axis bending for the column load P of 0.2Py and 0.6Py,
respectively. It is seen clearly that the section sizes affect, to some extent, not only the ultimate
strength but also the deformation associated with the ultimate strength especially when the column
load is larger. 

6.3 Simplification of elastic-plastic flexibility matrix

The elastic-plastic flexibility matrix given in Eq. (33) is based on the member force-deformation

Fig. 16 Effect of coupling terms for El-Zanaty portal frame subjected to minor-axis bending with P=0.4Py

Fig. 17 (a) Effect of section sizes for El-Zanaty portal frame subjected to minor-axis bending with P=0.2Py,
(b) Effect of section sizes for El-Zanaty portal frame subjected to minor-axis bending with P=0.6Py
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relationships, which are in turn derived from the sectional moment-curvature-axial force and
centroidal axial strain-curvature-axial force relationships. As the elastic-plastic flexibility matrix is
symmetric and also the axial flexibility d11 is affected insignificantly by the effect of spread of
plasticity, it is possible to obtain the elastic-plastic flexibility matrix without using the centroidal
axial strain-curvature-axial force relationship as follows. First, simply let d12 equal d12 and let d13

equal d31. Then, two methods are proposed for evaluating d11 approximately. Method one simply
assumes that the axial flexibility does not change at all, i.e., d11=L/EA. Method two calculates d11

according to the equation:

(44)

Eq. (44) can be reasoned as follows. If the member is in the elastic state, its flexibility matrix will
be of the form

(45)

After the member enters into the inelastic state, its flexibility will increase. Eq. (44) means that
the inelastic axial flexibility is obtained from the multiplication of the elastic axial flexibility by an
amplification factor which is taken to be the average of the amplification factors of the flexural
flexibility coefficients d22 and d33. 

d11=
L

EA
-------1

2
--- 3EI

L
---------d22+

3EI
L

---------d33 
 

d[ ]=

 
L

EA
------- 0 0

0
L

3EI
--------- L

6EI
--------- –

0
L

6EI
---------–

L
3EI
--------- 

Fig. 18 Comparison of different methods for calculating
axial flexibility considering Kanchanalai portal
frame subjected to minor-axis bending

Fig. 19 Comparison of different methods for calculating
axial flexibility considering El-Zanaty portal
frame subjected to minor-axis bending
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Comparisons of the accuracy of the two methods with that of the exact one (present) are given in
Figs. 18 and 19, respectively, for the Kanchanalai portal frame and El-Zanaty frame, both bent
about the minor axis. These figures show that method two is as accurate as the exact one and
method one is also very accurate unless the axial force of columns is very large (>0.75Py).
Therefore, the strength of moment frames is not sensitive to how the axial flexibility is calculated
and both proposed methods can be applied practically.

7. Conclusions

This paper has improved the quasi-plastic-hinge approach proposed by Attalla et al. (1994) in two
aspects. First, it clearly shows that the unsymmetrical elastic-plastic flexibility matrix is due to the
approximate generalized stress-strain relationships used in that paper. The proposed method employs
exact generalized stress-strain relationships and therefore the derived elastic-plastic flexibility matrix
is symmetric. Second, the proposed method is capable of considering the effect of section sizes
explicitly and indeed such an effect may not be neglected as can be seen from the presented
numerical example.

Moreover, two strategies are proposed in this paper to calculate the axial flexibility approximately
so that the elastic-plastic flexibility matrix can be derived from only the moment-curvature-axial
force relationship without needing the centroidal axial strain-curvature-axial force relationship.
Numerical examples demonstrate that both strategies are very accurate. Finally, the proposed
method is capable of modeling the effect of spread of plasticity very accurately and is also very
efficient because only very few elements are needed to model a frame member.
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