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Stochastic finite element method homogenization
of heat conduction problem in fiber composites 

Marcin Kamióski†

Division of Mechanics of Materials, Technical University of Lódó, Al. Politechniki 6, 93-590 Lódó, Poland

Abstract. The main idea behind the paper is to present two alternative methods of homogenization of
the heat conduction problem in composite materials, where the heat conductivity coefficients are assumed
to be random variables. These two methods are the Monte-Carlo simulation (MCS) technique and the second
order perturbation second probabilistic moment method, with its computational implementation known as
the Stochastic Finite Element Method (SFEM). From the mathematical point of view, the deterministic
homogenization method, being extended to probabilistic spaces, is based on the effective modules approach.
Numerical results obtained in the paper allow to compare MCS against the SFEM and, on the other hand,
to verify the sensitivity of effective heat conductivity probabilistic moments to the reinforcement ratio. These
computational studies are provided in the range of up to fourth order probabilistic moments of effective
conductivity coefficient and compared with probabilistic characteristics of the Voigt-Reuss bounds.

Key words: homogenization method; stochastic second order perturbation; stochastic finite element method;
Monte-Carlo simulation; composites.

1. Introduction 

Major problem with computational analysis of multicomponent (composite) media by the use of
different discrete grid or non-grid methods is scale effect occurring in their structure (Christensen
1979, Furma ski 1997, Sanchez-Palencia 1987, Schellekens 1992). The problem simplifies when
composite considered appears to be periodic, which implies the existence of some geometrical cell
(periodicity cell or representative volume element) that, due to geometric translation, can cover the
whole structure. Considering the fact, that in most engineering problems the scale factor relating
periodicity cell to the entire structure is very small, the discretization process can be very complicated.
To solve this problem, the homogenization method is introduced, which makes it possible to replace
original multicomponent composite with an equivalent medium, that can be characterized by
homogeneous tensor of material properties. Thus, we can model composite structure without
differentiating the regions belonging to different materials, which simplifies the meshing procedure
significantly (Schellekens 1992). 

Another engineering problem is how to use experimental data, described by mean values and
standard deviations of material as well as physical parameters of the composite constituents, to
evaluate the effective parameters and their probabilistic characteristics for the whole composite.
Moreover, it is observed that in most composites microgeometry has generally a random character,
which can be decisive for their overall macroscopic behavior. Considering these facts, the homo-
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genization method should contain the randomness of a composite occurring in its most constitutive
parameters. The papers devoted to modern homogenization problems, especially in the context of
thermal analysis, are collected and discussed in (Furma ski 1997, Kami ski and Kleiber 2000).

The main goal of the paper is to formulate and solve the homogenization problem for heat
conduction in n-component composites, where the heat conductivity coefficients are input random
variables defined using the first two probabilistic moments. The micro as well as macro geometry of
the composite is treated here as deterministic. However, it should be noted that the model presented
allows generally to introduce some geometrical uncertainties, for instance in the form of randomly
located microvoids within the components (Kami ski and Kleiber 1996). To calculate effective
conductivity of the composite, the effective modules method is introduced. The temperature homo-
genization function, periodic on external boundary conditions of the periodicity cell, is applied
there. The natural boundary conditions in the homogenization problem are taken in the form of
differences between heat conductivity coefficients of neighboring components. To compute the
expected values, variances and higher order probabilistic moments of effective conductivity, Monte-
Carlo simulation technique (Hammersley and Handscomb 1964, Sab 1992, Hurtado and Barbat
1998) is used, consisting of random trials and statistical estimation procedure. The technique has
been used widely in other mechanical and physical problems, including probabilistic approaches to
the homogenization of elasticity tensor presented in Kami ski (1996). On the other hand, the second
order perturbation and second probabilistic moment approach, with its computational implementation
known as the stochastic finite element method, is used to compute the first two probabilistic
moments. These two alternative methods are used to provide some comparative studies and, further, to
eliminate their methodological and numerical disadvantages. The main computational problems that
should be eliminated are: the accuracy of Monte-Carlo simulation technique (with respect to the
random sample length) and, on the other hand, upper bounds on input random variables coefficients
of variation (in the stochastic finite element approach), which cannot be greater than 0.1-0.2
(Kleiber and Hien 1992, Hien and Kleiber 1997). It should be mentioned that another possibility is
to introduce the random uncertainty in the homogenization approach, using the stochastic spectral
methods (Ghanem and Spanos 1997) or the stochastic weighted integral approach (Choi and Noh 1996).

All these numerical capabilities are introduced in the homogenization-oriented and FEM-based
program MCCEFF (Kami ski 1996, 1999). Thanks to the implemented numerical algorithm,
probabilistic moments of the effective heat conductivity coefficient are computed for the fiber-
reinforced two-component composite. Moreover, the sensitivity of the probabilistic moments with
respect to reinforcement ratio as well as to the total number of random trials performed (so-called
numerical convergence verification) is verified numerically. Finally, it should be noticed that the
mathematical homogenization method, together with its simulation or perturbation based probabilistic
extensions, may be implemented numerically by the use of the Boundary Element Method (BEM)
as well. Such an implementation may be most efficient in case of the composites, where some part
of internal geometry (especially interfaces) of the RVE is defined probabilistically. 

2. Periodic composite structure model 

2.1 General remarks 

The main problem presented in the paper is to find the probabilistic distribution of the effective
heat conduction coefficient for the entire class of random composite structures, which are periodic
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and built of n components. For this purpose, let us assume that the composite structure is periodic
in the probabilistic sense, if for an additional ω belonging to a suitable probability space there exists
such a translation of Ω, that covers the entire composite region. Next, let us assume that the section

 of the composite with x3=0 plane is constant along the x3 axis. The section of the
composite considered in the plane orthogonal to the longitudinal direction is shown in Figs. 1 and 2. 

Further, let region Ω contain n perfectly bonded, coherent and disjoint subsets and let the scale
between respective geometrical diameters of Ω and Y be described by a small parameter δ > 0. Let
∂ Ω denote external boundary of the Ω, while Γ(a-1,a) is the interface boundary between Ωa-1 and Ωa

regions. Moreover, let Ωa for a=1, ..., n contain transversely isotropic material, where the heat
conduction coefficient is the cut-off Gaussian random variable defined as follows: 

0 < k(x; ω) < , (1)

E[ ] (2)

Var( ) (3)

where χa(x) is a characteristic function given as follows: 

(4)

where the expected values E[ ]  and the variances Var( ) are calculated by the use of
the following classical definitions: 

E[ ] ( )  dk , (5)

Y ℜ2⊂

∞

k x; ω( ) =χa x( )E k a( ) ω( ) ;  x Ωa∈ ,

k x; ω( ) =χa x( )Var k a( ) ω( ) ;  x Ωa∈ ,

χ a( ) x( )=
1;  x Ωa∈

0;  x Ωa,∉



k x; ω( ) k x; ω( )

k a( ) x; ω( ) =  
∞–

+∞∫ k a( ) x; ω( )p k a( ) x; ω( ) x; ω( )

Fig. 1 Periodic composite structure Y

Fig. 2 The Representative volume element (RVE)
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Var( )= ( [ ])
2

 p( ) dk . (6)

It should be underlined that the zeroing of the off-diagonal terms of the heat conductivity
covariance matrix follows the lack of experimental data describing probabilistic correlation of heat
conductivities in the composite components. In the context of above definitions, the periodicity of
the composite structure is in fact equivalent to the periodicity of probability density functions
(PDFs) of the heat conductivity coefficients (or generally of any physical properties). Moreover,
taking into account the assumption of Gaussian character of these variables, the periodicity of the
first two probabilistic moments of heat conductivity coefficients is obtained. 

Generally, the heat conduction problem consists in determining temperature field T by the use of
the following differential equation: 

(7)

where kij is the heat conductivity tensor, while g=g(T) is the rate of heat generated per unit volume
and variable T denotes temperature field values. This equation should fulfill the following boundary
conditions on the ∂ Ω: 

1) temperature (essential) boundary conditions

(8)

2) heat flux (natural) boundary conditions

(9)

where  and . Further, let Ω contain n perfectly bonded, coherent
and disjoint subregions Ωa, fulfilling the following conditions: 

. (10)

Considering the above, the formulation (7) may be rewritten as: 

(( ),i−g(a))=0; . (11)

Multiplying Eq. (11) by the test function δT and integrating over the region Ω it is obtained 

(( ) ,i −g(a))  δT dΩ=0; . (12)

Introducing the boundary conditions (cf. Eqs. 8-9) and integrating by parts there holds 

( −g(a) δT) dΩ− δ T d( )=0. (13)

Eq. (13) is a transient formulation of virtual temperatures principle and is discretized by the use of
a classical, deterministic (Pepper and Heinrich 1992, Krishnamoorthy 1994) as well as the stochastic
finite element approach (Kleiber and Hien 1992, Hien and Kleiber 1997). 

2.2 Second order second moment stochastic approach 

The stochastic variational principle for linear transient heat transfer problems is formulated on the
basis of Eq. (13) and is employed by the combination of the second-order perturbation technique

k a( ) x; ω( )  
∞–

+∞∫ k a( ) x; ω( )−E k a( ) x; ω( ) k a( ) x; ω( ) x; ω( )

kij T,j( ),i−g=0;  xi Ω∈ ,

T=T̂;  x ∂∈ ΩT,

∂T
∂n
------=q̂;  x ∂∈ Ωq,

∂ΩT ∂Ωq=∂Ω∪ ∂ΩT ∂Ωq= ∅{ }∩

Ω=  ∪
α=1

ν
Ωa;  Ωa Ω∩ b=∅;  a b≠ ;  1 a, b n≤ ≤

χa kij
a( )T,j x Ω∈

χa Ω

 ∫ kij
a( )T,j 1 a n≤ ≤ ;  x Ω∈

χa Ω

 ∫ kij
a( )T,jδT,i q̂ ∂Ωq

 ∫ ∂Ω
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and the stochastic second central moment analysis. To introduce the formulation, let us denote the
input random variables vector of the heat conductivity as { }  and the ordinary as well as
joint probability densities of its components by g(kr) and g(kr, ks), respectively. Indices r, s run here
over 1 to R, being the total number of input random vector components. The expected value of the
vector { }  can be evaluated using expression (5), while the covariance - from Eq. (6). If, for
example, the composite is built of two components, the vector of input random variables has two
uncorrelated components in the form of k1(ω) and k2(ω). 

Next, the Taylor series’ stochastic expansion is used to rewrite variational principle of Eq. (13).
Therefore 

(14)

where θ denotes given small perturbation, θ∆kr is the first order variation of ∆kr about its expected
value E[kr]  and  represents the n-order partial derivatives of the function considered with
respect to the input random variables evaluated for their expected values. Considering the
complexity of the model, the second order perturbation approach is used, where the random
function  is extended as follows: 

(15)

The first order variation of br about its expected value is equal to 

(16)

while the second variation is given as 

(17)

symbols (.)0, (.),r and (.),rs represent zeroth, first and second order partial derivatives with respect to
input random variables. 

Due to the second-order perturbation technique, Eq. (15) is now inserted in the formulation (13).
As the result, three sets of partial differential equations of 0th, 1st and 2nd order are obtained
(Kleiber and Hien 1992, Hien and Kleiber 1997). Hence, there holds 

· zeroth-order, one partial differential equation 

( ) dΩ= δT d( )+ g(a)0δT dΩ , (18)

· first-order, R partial differential equations 

( ) dΩ= δT d( )+ g(a),rδT dΩ− ( ) dΩ , (19)

· second-order, one partial differential equation 

( ) dΩ= δT d( )

+ g(a)(2)δT dΩ− ( )Srs δT,i  dΩ, (20)

kr x;ω( )

kr x;ω( )

F x;ω( )=F0 x;ω( )+  
n=1

N

∑ θn

n!
-----F n( ) x;ω( )  

n=1

n

∏ ∆kr ω( )
 
 
 

,

F n( ) x;ω( )

F x;ω( )

F x;ω( )=F
0 x;ω( )+θF

,r x;ω( )∆kr+
1
2
---θ2

F
,rs x;ω( )∆kr∆ks.

θ∆kr=δkr=θ kr kr
0–( ),

θ2∆kr∆ks=δkrδks=θ2 kr kr
0–( ) ks ks

0–( );

χa Ω
 ∫ kij

a( )0T,j
0δT,i q̂0 ∂Ωq

 ∫ ∂Ω χa Ω
 ∫

χa Ω

 
∫ kij

a( )0T,j
,rδT,i q̂,r  ∂Ωq

 
∫ ∂Ω χa Ω

 
∫ χa Ω

 
∫ kij

a( ),rT,j
0δT,i

χa Ω

 ∫ kij
a( )0

T,j
2( )δT,i q̂

2( ) ∂Ωq

 ∫ ∂Ω

χa Ω

 ∫  
Ω

 ∫ kij
a( ),rsT,j

0+2kij
a( ),rT,j

,s
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where symbols (.)(2) denote the product (.),rsSrs. Finally, the expected values and covariances of the
temperature field are derived as 

(21)

Cov(T(x(1)), T(x(2))=T,r(x(1))T,s(x(2))Srs, (22)

which completes the second order and second moment approach to the heat conduction problem. 

3. Homogenization problem

3.1 Deterministic formulation
 
To derive the effective conductivity coefficient k(eff), the Representative Volume Element (RVE) of

the composite structure is indicated first. The RVE has minimal geometric dimensions and is so
defined that, due to some homothety, can cover the entire composite structure (Sanchez-Palencia
1987, Rao et al. 1997). Next, it is assumed that the essential and natural boundary conditions on

 are periodic, which means that temperatures are equal on opposite boundaries, symmetrically to
the horizontal or vertical axes provided through the center of the RVE, respectively. Finally, a
periodic homogenization function χ is introduced, being some special temperature field. To
determine the mathematical description of the problem, the heat conductivity coefficient of the
composite is introduced as 

kδ(x)=k( y). (23)

The linear heat conduction problem can be formulated as follows: 

(24)

The homogenization of heat conduction problem consists in deriving of such temperature field T0,
that is a limit of solution Tδ with δ → 0. It should be underlined here that there are some approaches,
where δ is some small parameter different from 0 (Wo niak and Wo niak 1995), which enables
direct introduction of the interrelations between macro and micro scales. To solve this problem, the
following expansion is applied: 

(25)

(26)

where  and  are Ω-periodic functions. Introducing these expansions in governing
equations of the problem it is obtained that 

E T x( )[ ]=T
0 x( )+1

2
---T

2( ) x( ),

∂Ω

kδ x( )T,i
δ−qi

δ=0

qi ,i
δ +f=0

Tδ=T̂; x ∂ΩT∈

qδ=q̂; x ∂Ωq.∈







z′ z′

Tδ x( )=  
j=1

∞

∑ δ jT j( ) x,y( ),

qi
δ x( )=  

j= 1–

∞

∑ δ jq j( ) x,y( ),

T j( ) x,y( ) q j( ) x,y( )
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( ), (27)

( ). (28)

Therefore, the following pairs of equations are formed for the terms of the same order: 

,

(29)

(30)

and 

,

(31)

The solutions T (0), T (1) and T (2) are determined recurrently from above equations. The first result is 

(32)

Taking into account periodicity conditions on T (1) and q(0), the first order terms are obtained as 

,

(33)

Then, T (1) may be rewritten as 

. (34)

Hence, there holds 

 
j = 1–

∞

∑ δ jq j( )=
1
δ
--- k

∂T 0( )

∂yi

-----------+k  
j =0

∞

∑ δ j ∂T j( )

∂xi

----------- ∂T j +1( )

∂yi

--------------- +

1

δ2
-----

∂qi
1–

∂yi

----------+  
j =0

∞

∑ δ j−1 ∂qi
j −1

∂xi

------------
∂qi

j

∂yi

-------+

∂qi
−1

∂yi

----------=0

qi
1– x,y( )=k y ( )∂T 0( )

∂xi

-----------








∂qi
−1

∂xi

----------+
∂qi

0

∂yi

--------=0

qi
0 x,y( )=k y ( ) ∂T 0( )

∂xi

-----------+
∂T 1( )

∂yi

-----------  
 









∂qi
0

∂xi

--------+
∂qi

1

∂yi

--------=0

qi
1 x,y( )=k y ( ) ∂T 1( )

∂xi

-----------+
∂T 2( )

∂yi

-----------  
 









T
0( ) x,y( )=T x( ).

∂qi
0

∂yi

--------=0

qi
0 x,y( )=k y( ) ∂T 0( )

∂xi

-----------+
∂T 1( )

∂yi

-----------  
 









T
1( ) x,y( )=χ j y ( )∂T0

∂xj

--------



380 Marcin Kamióskin

, (35)

where  is a homogenization function being Ω-periodic and being a solution for the following
partial differential equation, known as a local problem 

. (36)

Applying averaging operator to the first expression of Eq. (24) one can obtain that 

. (37)

where 

 . (38)

Thus, the effective conductivity tensor can be defined as 

( ) . (39)

To derive the weak formulation of the homogenization problem, let us introduce the general
variational formulation of the heat conduction problem in the following form: 

,

(40)

where Y denotes the region occupied by the composite considered. Next, let us introduce the
following Sobolev space 

(41)

with the following norm: 

. (42)

Further, let us define bilinear and continuous form a(T, ξ) on  and the linear one L(ξ) as 

. (43)

qi
0 x,y( )=k y ( ) δ i j

∂χ j

∂yi
-------+ 

  ∂T 0( )

∂ xj
-----------

χ j y( )

∂
∂yi

------- k y( ) δ i j
∂χ j

∂yi
-------+ 

  =0;  x Ω∈

∂qi
0

∂xi

--------+f=0

qi
0=

1
Ω
-------  

Ω

 ∫ k y( ) δi j

∂χ j

∂yi

-------+ 
  dΩ ∂T 0( )

∂xj

-----------

kij
eff( )=

1
Ω
-------  

Ω

 ∫ k y( ) δi j

∂χj

∂yi

-------+ dΩ

 
Y

 ∫– qi
δ ∂ξ
∂xi

-------dx+  
Y

 ∫ fξds=0

 
Y

 ∫ kδ x( )∂Tε

∂xi

-------- ∂ξ
∂xi

-------dx=  
Y

 ∫ fξds








H0
1 Y( )= ξ L2∈ Y( ) ∂ξ

∂xi

------- L2 Y( ),  ξ 0∈ :  x ∂Y∈∈
 
 
 

ξ =  
Y

 ∫ ∂ξ
∂xi

------- 
  2 

 

dx

1/2

H0
1

Y( )

a T, ξ( )=  
Y

 ∫ kδ x( ) ∂T
∂xi

------- ∂ξ
∂xi

-------dx
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The weak formulation of heat conduction problem is to find , such that for any

. (45)

To solve this problem, the following periodic Sobolev space on the composite RVE is introduced: 

(46)

with the norm 

(47)

where the bilinear ay(χ, ζ ) and linear Lj(ζ ) forms are defined as follows 

(48)

(49)

By the analogy to the expression (46), the weak formulation of the heat conduction homo-
genization problem is introduced, which consists in determination of  such that for any

(50)

Due to the assumption about the piecewise constant character of coefficient k( y), the R.H.S. linear
operator can be rewritten as 

(51)

for fiber-like composite (see Fig. 2) and for general n-component composite with m interfaces
between its constituents as follows it can be expressed in the following form: 

(52)

where nj denotes the components of a vector normal to the considered interface, directed out of the
RVE. 

Having computed the effective heat conductivity coefficient, its value can be compared with the
upper and lower bounds in a well-known Voigt-Reuss form (Christensen 1979)

(53)

(54)

which completes deterministic characterization of the effective conductivity tensor. 

Tδ H0
1 Y( )∈

ξ H0
1 Y( )∈

a Tδ, ξ( )=L ξ( )

Hper
1

Y( )= ζ L
2 Ω( )∈ ∂ζ

∂xi

------- L
2 Ω( ), ζ  is  periodic∈

 
 
 

ζ =  
Y

 ∫ ζ2dy+  
Y

 ∫ ∂ζ
∂yi

------- 
  2 

 

dy

1/2

,

a χ,ξ( )=  
Ω

 ∫ k y( ) ∂χ
∂yi

------- ∂ζ
∂yi

-------dy,

Lj ζ( )=−  
Ω

 ∫ k y( ) ∂ζ
∂yj

-------dy.

χ Hper
1 Y( )∈

ζ Hper
1 Y( )∈

ay
χ

j , ζ( )=Lj ζ( ).

Lj ζ( )=−  
a=2

n

∑  Γ a−1,a( )

 ∫ k[ ]ζnjdy

Lj ζ( )=−  
r=1

n

∑  
Γr

 ∫ k[ ]ζnjdy,

sup k=
1
Ω
-------  

a=1

n

∑ Ωaka,

inf k=
1
Ω
-------  

a=1

n

∑ Ωa

ka

------

1–

,
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3.2 Stochastic second order second moment perturbation approach

Rewriting partial differential Eqs. (18-20) in a conjunction with Eqs. (50-51) one can obtain 
· zeroth-order term, one partial differential equation 

(55)

· first-order term, R partial differential equations (r =1,..., R) 

(56)

· second-order term, one partial differential equation 

[ ]

(57)

Considering the fact that the second partial derivatives of the first component of the R.H.S. with
respect to the input random variable are equal to 0, we can arrive at 

(58)

It is observed that to get the formulation for general composites, the R.H.S. summation should be
carried out over all interfaces in the RVE. Then, solving Eqs. (12-15) for , and 
successively, the expected values of the homogenization function can be derived as 

(59)

whereas the covariances are determined as 

(60)

where N denotes the total number of degrees of freedom introduced in the RVE. Next, the first two
probabilistic moments of the effective heat conductivity coefficient are determined. The expected
values is obtained as 

E[ ] [ ] [ ] (61)

The second component of Eq. (61) can be rewritten as 

E[ ] ( )

( ) . (62)

By observing that 

 
a=1

n

∑  Ωa

 ∫ kij
0 χ,j

0δT, jdΩ=  
a=2

n

∑ δT,i kij
0[ ] Γ a−1,a( )

njd ∂Ω( ),

 
a=1

n

∑  Ωa

 ∫ kij
0 χ, j

,rδT, jdΩ=  
a=2

n

∑ δT,i kij
,r[ ] Γ a−1,a( )

njd ∂Ω( )−  
a=1

n

∑  Ωa

 ∫ kij
,rχ,j

0δT,jdΩ,

 
a=1

n

∑  Ωa

 
∫ kij

0 χ,j
2( )δT,jdΩ=  

a=2

n

∑ δT,i kij
2( ) |Γ a−1,a( )

njd ∂Ω( )  

−  
a=1

n

∑  Ωa

 ∫ kij
,rsχ,j

0 
 

+2kij
,rχ,j

,r

 
  δT,jdΩ

 
 
 

Cov kr , ks( ).

 
a=1

n

∑  Ωa

 ∫ kij
0 χ,j

2( )δT, jdΩ=−2  
a=1

n

∑  Ωa

 ∫ kij
,rχ,j

,sδT,jdΩ Cov kr , ks( ).

χ,j
0 , χ,j

,r χ,j
,rs

E χ[ ]=χ,j
0+

1
2
---χ,j

,rsCov kr , ks( ),

Cov χ,i α( ), χ,j β( )( )=χ,i α( )
,r χ,j β( )

,s Cov kr , ks( ), α, β=1, …, N,

k eff( ) =
1
Ω
-------  

Ω
 ∫ E k y ( ) dΩ+

1
Ω
-------  

Ω
 ∫ E k y ( )χ,j njdΩ.

k y ( )χ,j =  
∞–

+∞∫ k
0 y ( )+∆krk

,r y ( )+1
2
---∆kr∆ksk

,rs y ( ) 
   pR k y ( ) dk 

  
∞–
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2
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( ) (63)

( ) (64)

and 

(65)

we finally arrive at 

. (66)

Further, the variances of effective conductivity coefficient Var(k(eff )) are determined. There holds 

Var(k(eff )) (Var( )+Var( ) ) (67)

It can be derived from the definition of the variance that 

Var(k(eff )) (68)

Therefore 

Var(k(eff)) ( )2
(69)

Observing that 

(70)

the variance of the effective heat conductivity coefficients is derived as 

Var(k(eff )) (( )2+( )2+( )2)

(71)

(no sum over repeated indices on the R.H.S.)
Alternatively to the presented perturbation approach, the probabilistic moments of effective heat

conductivity coefficient can be evaluated using the Monte-Carlo simulation technique from Eqs.
(55-58). Moreover, it can be observed that in case of randomly defined conductivity coefficients of
composite components, the expected values and variances of the upper bounds (as well as any
higher order probabilistic moments) can be derived as 
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[ ] (72)

and for the variance 

( ). (73)

4. Finite element implementation 

4.1 Deterministic problem discretization 

Let us assume that the region Ω is discretized by a set of E finite elements and the homo-
genization temperature field χ is described by the nodal temperatures vector Ψα as (Krishnamoorthy
1994, Bathe 1996) 

(74)

where N is the total number of degrees of freedom within the region Ω. It follows that: 

(75)

Then, the heat conductivity matrix Kαβ and the R.H.S. vector Pα can be expressed as follows: 

(76)

(77)

As a result it is obtained that 

(78)

Solving this equation for Ψβ we compute discretized values of the homogenization function and,
finally, the effective thermal conductivity coefficient given by Eq. (39). This expression can be
discretized as follows: 

(79)

4.2 Probabilistic approach

Analogously to the classical finite element approach (Pepper and Heinrich 1992, Krishnamoorthy
1994), the following systems of algebraic equations can be introduced, which is the second-order
stochastic perturbation formulation of the heat conduction problem: 

· zeroth-order, one system of N ordinary differential equations 

(80)

· first-order, R systems of N ordinary differential equations 
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(81)

· second-order, one system of N ordinary differential equations 

(82)

 and  denote here the heat conductivity matrix and the R.H.S. vector derivatives with
respect to input random variables. The expected values and covariances of homogenization function
are computed using the following equations: 

, (83)

. (84)

Having computed the second order probabilistic characterization of the homogenization function,
Eqs. (18, 34) are applied to describe the expected value of effective conductivity coefficient as 

(85)

Analogously, the stochastic finite element description of the effective conductivity variance can be
obtained. 

On the contrary, using the simulation technique, a large set of purely deterministic solutions is
obtained with the heat conductivity coefficients generated randomly (Boswell et al. 1991) due to the
input probability space. Defining necessary estimators (Bendat and Piersol 1971) of the effective
heat conductivity coefficient, the expected value of the effective conductivity coefficient is
approximated as 

E[ ] , (86)

where M is the total number of samples that should be optimized, taking into account the convergence
of estimators (see Figs. 7-12). Another probabilistic characteristics can be computed as follows: 

· variance and standard deviation 

Var( ) ( [ ] )
2

, σ ( ) , (87)

· ordinary probabilistic moment (OPM) of the n-th order estimator

, (88)

· central probabilistic moment (CPM) of the k-th order estimator 
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In case of Gaussian random variables, any central moments of the odd order are equal to 0, while
the first three of even order can be described as follows: 

(90)

Starting from these estimators the coefficients of variation, skewness and concentration can be
estimated as 

. (91)

Taking into account M → ∞ and following the Central Limit Theorem, there holds for Gaussian
variables 

(92)

Further, considering the fact that there is no way to verify whether the probability density function
computed is Gaussian or not, this fact can be verified numerically using up to 4th order
probabilistic moments. If Eqs. (92) are fulfilled, the tested PDF can be treated as Gaussian with a
relatively small error and the first two moments are necessary in further analysis. To arrive at this
conclusion the output PDF estimator can be estimated too, however such a possibility is very costly
from the point of view of the computational time. The conclusion on Gaussian character is
important, considering the fact that in case of homogenization procedure we cannot prove this fact
mathematically and, on the other hand, the second order perturbation second probabilistic moment
method can be used with any other further extension to compute the first two moments of the
effective conductivity for the composites. 

Moreover, it is essential to underline that, contrary to another probabilistic approaches, the
simulation technique assures existence and uniqueness of the effective conductivity coefficients
probabilistic characteristics, which follows deterministic results and the nature of the statistical
estimation methods. Further, it can be seen that the accuracy of the estimation results depends on
the total number of random trials performed, denoted in equations posed above by M while it does
not depend at all on the input random variables coefficients of variance. Finally, it can be
underlined that the applied technique is difficult to use to large scale systems considering an
increase of simulation time with a higher total number of degrees of freedom and technical
problems caused by data storage. 

5. Computational experiments 

The computational experiments are performed using the FEM-based homogenization-oriented
program MCCEFF (Kami ski 1996). This program enables computations of the composite materials
effective characteristics and their upper and lower bounds together with the respective probabilistic
moments for linear elastostatics and heat conduction problems. Generally, n-component composite
materials may be homogenized in elasticity problems, while at present two-component for heat
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conduction, however upper and lower bounds for effective tensors can be calculated automatically
for all cases. The two-component composite under consideration has rectangular RVE, centrally
located reinforcement with round section and is built at the fiber (k1=14.8) and matrix (k2=1.0). The
coefficients of variation are taken as equal to 0.1, while the reinforcement volume fraction is taken
from the interval (0.1, 0.6). 

First, the sensitivity of effective heat conductivity coefficient probabilistic moments is verified
with respect to the composite reinforcement ratio in comparison with the expected values and
standard deviations for the MCS and the SFEM implementations. The results of the analyses are
collected in Figs. 3-6 shown below as the functions of the fiber volume fraction within the RVE. 

The first figure (Fig. 3) presents the expected values of effective values and their bounds, the next
one (Fig. 4) shows the standard deviations of these characteristics. Fig. 5 illustrates the third-order
central moment in the function of the fiber volume fraction, while in Fig. 6 the fourth-order central

Fig. 3 Expected values of the effective heat
conductivity 

Fig. 4 Standard deviations of the effective heat
conductivity 

Fig. 5 3rd order CPM of the effective conductivity Fig. 6 4th order CPM of the effective conductivity
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probabilistic moments are presented. Generally, it is visible on all these figures that the moments of
effective conductivity upper and lower bounds bound the moments of effective heat conductivity
coefficient very well. Taking into account the interrelations between all these probabilistic
characteristics, the approximation of the effective composite conductivity moments by the respective
values of lower bound can be proposed. It is very important, considering shortening of
computational time, since lower bounds are obtained from simple algebraic equation simulation,
while the effective heat conductivity coefficient must be calculated by FEM solution of some heat
conduction boundary value problem. Observing the first two figures, it should be noted that
expected values and standard deviations of upper bounds change linearly, while the changes of the
first two moments of other effective parameters and their lower bounds have quite nonlinear
character. 

Considering the comparison between the expected values and standard deviations, resulting from
the MCS and SFEM analyses, it can be seen that the first probabilistic moments of effective
conductivity are generally greater for the stochastic perturbation approach than those obtained in
simulations. It may be caused by the fact that the SFEM expectations are calculated as the sum of
zeroth and second order terms respectively, while the MCS results usually tend to their deterministic
equivalents. The reverse observation may be done in case of standard deviations. The main reason
for such a relation is that the SFEM second probabilistic moments include the second order terms
only, while the higher order terms are neglected. To verify this fact precisely, the sensitivity of both
these methods with respect to input coefficients of variation is to be carried out. 

Fluctuations in 3rd and 4th order probabilistic moments have nonlinear character for all effective
characteristics, but the differences between the values of probabilistic moments increase, together
with increase of an order of the moment being analyzed and for data collected in Fig. 6 it is even
more than 10 times between upper and lower bounds for effective conductivity coefficient.
Considering these dependencies, lower bounds should be used for approximation of the effective
behavior of the composite, while for some reasons it is impossible to compute effective quantities

Fig. 7 Convergence of the upper bound expected
value 

Fig. 8 Convergence of the effective conductivity
expected value estimator
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due to the homogenization method introduced.
Next, convergence of probabilistic moments of effective conductivity coefficients has been

verified. The main purpose of these experiments was to establish an optimal number of random
trials for a probabilistic simulation, necessary to obtain the computed moments with a relatively
small numerical error. The results of the analysis have been presented in Figs. 7-12. The respective
estimators are marked on the vertical axes of the graphs, while the total number of random trials on
the horizontal ones. 

First, it should be noted that the convergence of the expected values estimators have analogical
character for upper and lower bounds as well as for effective conductivity coefficient, see Figs. 7-9.

Fig. 9 Convergence of the lower bound expected
value estimator 

Fig. 10 Convergence of the effective conductivity
coefficient of variation 

Fig. 11 Convergence of the effective conductivity
coefficient of skewness

Fig. 12 Convergence of the effective conductivity
coefficient of concentration
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The value of estimator decreases rapidly from maximum reached for 10 random trials to minimum
for about 50 iterations. Next, with inverse tendency, it increases to 100 trials and asymptotically
converges to be stable for about 104 iterations. The character of variation coefficient convergence
presented in Fig. 10 is quite similar to the one discussed above, however asymptotic changes are
smoother than for expected values shown on the previous figure. The coefficient of asymmetry
(which should be equal to 0 for Gaussian deviates) decreases from maximum reached at the 10
iterations to 0 for 104 samples without any asymptotic fluctuations (observed for effective elasticity
tensor components estimators, too). The coefficient of concentration (which should be equal to 3 for
Gaussian random variables) converges analogously as first and second order characteristics to 3 for
104 random iterations in simulation. Analyzing these figures, it is clear that the probability density
function of the effective conductivity and its bounds are very close, with a relatively small error, to
the corresponding Gaussian PDF. This remark makes it possible to define uniquely their PDFs using
the first two probabilistic moments only. 

6. Conclusions

The formulation presented and discussed above describes a homogenization method for the n-
component composite materials with randomly defined heat conductivity. The proposed model
makes it possible to compute expected values and variances of the effective conductivity by using
FEM-based Monte-Carlo simulation analysis or the Stochastic Finite Element approach. Numerical
implementations, which seem to be effective and easy to provide, appear to be efficient tools in
stochastic sensitivity studies of effective conductivity to the composite components volume fraction.
In the same time it should be noticed that Monte-Carlo simulation technique can be successfully
implemented in any commercial FEM (ABAQUS, for instance) or any other computational discrete
method based package. Usually there is no need to have direct access to the source code of the
program extended, contrary to the SFEM technique implementation. 

Computational experiments performed show that all probabilistic moments of k(eff) are well
bounded by the respective characteristics of their upper and especially lower bounds. Moreover, it
can be seen that the expected values and variances of lower bound give quite effective
approximation of effective conductivity moments, which can be useful in further computational
modeling of non-periodic composites where direct FEM-based homogenization is too complicated.
Taking into account simulational aspect of the method, the most recommended minimal number of
random trials has been determined as about 104. Considering the fact that homogenization presented
is in fact equivalent to the solution of a boundary value problem, this conclusion deals as well with
any Monte-Carlo simulated heat conduction problem, where heat conductivity coefficients are
treated as random variables. 

It should be noticed that the probabilistic homogenization procedure involved may be applied for
seepage, torsion, irrotational and imcompressible flow, film lubrication, acoustic vibration as well as
for the electric conduction, electrostatic field, electromagnetic waves and all field problems with
statistically defined physical characteristics. Next, using proposed homogenization procedure, the
sensitivity of probabilistic moments of k(eff) with respect to the expected values and higher order
probabilistic moments interrelations for composite components heat conductivities may be verified
in further computational tests. On the other hand, it is relatively easy to extend the presented model
on homogenization of n-component random composites as well as on the periodic heterogeneous
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media with stochastic structural defects introduced in (Kami ski and Kleiber 1996). Finally,
probabilistic (homogenization-based) reliability of the composite structures with parameter sensitivity
studies (probabilistic characteristics of material parameters) may be carried out on the basis of the
presented model.
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