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Abstract. In this paper, cantilevered tall structures are treated as cantilever bars with varying cross-
section for the analysis of their free longitudinal (or axial) vibrations. Using appropriate transformations,
exact analytical solutions to determine the longitudinal natural frequencies and mode shapes for a one step
non-uniform bar are derived by selecting suitable expressions, such as exponential functions, for the
distributions of mass and axial stiffness. The frequency equation of a multi-step bar is established using
the approach that combines the transfer matrix procedure or the recurrence formula and the closed-form
solutions of one step bars, leading to a single frequency equation for any number of steps. The Ritz
method is also applied to determine the natural frequencies and mode shapes in the vertical direction for
cantilevered tall structures with variably distributed stiffness and mass. The formulae proposed in this
paper are simple and convenient for engineering applications. Numerical example shows that the
fundamental longitudinal natural frequency and mode shape of a 27-storey building determined by the
proposed methods are in good agreement with the corresponding measured data. It is also shown that the
selected expressions are suitable for describing the distributions of axial stiffness and mass of typical tall
buildings.
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1. Introduction

It has been recognised that the magnitude of the vertical component of earthquake ground motion
is often about one-third of the horizontal component, and the vertical component of ground motions
has a significant effect on earthquake-induced responses of structures (e.g., Wang £973, Li
1994). Thus, it is required to determine the natural frequencies and mode shapes in the vertical
direction for high-rise structures in design stage for certain caset dLi1998). In analysing free
vibrations of high-rise structures, for the sake of simplicity, it is possible to regard such structures as
a cantilever bar (Wang 1978, kt al. 1994, 1996, 2000). However, in general, it is not possible or,
at least, very difficult to get the exact analytical solutions of differential equations for free vibrations
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of bars with variably distributed mass and stiffness. These exact bar solutions are available only for
certain bar shapes and boundary conditions. Tuma and Cheng (1983) found the analytical solutions
for the free longitudinal vibrations of a straight bar with uniformly distributed stiffness and mass.
Wang (1978) derived the closed form solutions for the free longitudinal vibration of a cantilever bar
with variably distributed stiffness and mass. Bapat (1995) obtained exact solutions for the free
longitudinal vibration of exponential and catenoidal rods. Abrate (1995) derived closed- form solutions
for the free longitudinal vibration of rods whose cross-section varles(aﬁ:Ao[l+a(x/L)]

Kumar et al (1997) found exact solutions for the free longitudinal vibration of non-uniform rods
whose cross-section varies A&)=(a+bx)" and A(x)=A, sirf(ax+b). The natural frequencies of such

rods for various end conditions were calculated, and their dependence on taper was discussed.

In the previous studies mentioned above, it is usually assumed that the mass of a bar (rod) is
proportional to its stiffness (e.g., Wang 1978, Abrate 1995, Bapat 1995, Kairahr1997). This
calculation model is reasonable for a part of high-rise structures such as chimney, T.V. tower etc,
but it is not suitable for tall buildings and many high-rise structures. This is because that the mass
of floors is 80% or even more of the total mass of a tall building and the variation of mass at
different floors is not significant, the mass distribution with height is almost constant for many
cases. This suggests that the value of mass of a tall building is not necessarily proportional to its
stiffness. This is confirmed by a series of shaking tests on buildings of various types in which the
mass and stiffness of individual buildings have been measured and reported (Jeary and Sparks 1977,
Ellis and Jeary 1980). In this paper, exact analytical solutions for free longitudinal vibrations of bars
with variably distributed mass and stiffness, in which the value of mass is not necessarily
proportional to its stiffness, are proposed.

The free longitudinal vibration of a multi-step bar with varying cross-section is a complex
problem, and the exact solution of this problem has not previously been obtained. Use of the exact
solution of a one-step bar together with a transfer matrix procedure and a recurrence formula is
presented in this paper in order to resolve this problem.

2. Free longitudinal vibrations of one-step cantilever bars

The differential equation for longitudinal (or axial) vibration of a bar with varying cross-section
(Fig. 1) is

ox a(xo"'xﬂ (1)

in whichy, K, and m, are the displacement in the longitudinal direction (vertical direction), axial
stiffness and mass per unit length, respectively, at section
Using the method of separation of variables

y(X, H)=X(X)e*

obtains the longitudinal vibration mode functioffx), as follows

‘; ddfj +M, " X=0 )
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wherew is the circular natural frequency.
As found by Liet al (1994, 1996) and Li (1999) that in many cases, the variations of mass and
stiffness of typical high-rise structures can be described by the following exponential functions:

X X

K,= ae L, m,=ae L (3)

The parametera, S, a, b can be determined by

a=Ko, B=Ln(Ke)-Ln(Ky.), a=mp, b=Ln(mg)-Ln(m) (4)

wherem, Ko, m, K. are the mass intensity and the axial stiffness, respectivelyQaandL. L is
the height of the structure considered (Fig. 1).
Substituting Eg. (3) into Eq. (2) and setting

X=£Z
(B-b)x
f:e 2L
V:—&
B-Db
2_ daw’L’

a(B-b)?

(5)

A

o

lead to

2
dz 1dzZ,
d& ¢dé

2
»-%\z=0 (6)

Eqg. (6) is a Bessel's equation of thkeh order. For a non-integral, the vibration mode shape
function can be expressed as

X=E"[CJ,(A&)+C,I_(A8)] (7)

wherel (A€) is the Bessel function of the first kind of order
The boundary conditions of a cantilever bar (Fig. 1) are as follows

x=0, X(0)=0 a
8
x=L, KL%EX:L:meX(L) % ®

Substituting the above boundary conditions into Eq. (7) obtains the following frequency equation
L0 B2, ) +Ac*3, .0 [0, L5220 (rm)-A€#3 (M) ©)

in which m is the lumped mass attached to the top of the cantilever bar with varying cross-section
(Fig. 1).
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B=b
A=e 2 (20)
If there is no lumped mass at the top of the bar, that=6, then the frequency equation for this
case is given by

J-0(A)dv-1(AA)==0,(A) I v-1y(AA) (11)

If vis an integral, the functiony, J,,-;) should be replaced bgndY,;, respectively, and
the negative signs in Egs. (9) and (11) should be changed to the positive signsywisetiee
Bessel function of the second kind of order

The procedure presented above for determining the longitudinal natural frequencies and mode
shapes in the vertical direction for a cantilever bar with variably distributed stiffness and mass is
called the analytical method in this paper.

3. Free longitudinal vibrations of multi-step cantilever bars

Although the general solutions derived above for one-step bars with varying cross-section can be
used to determine the longitudinal natural frequencies and mode shapes of many structures, there
are two problems to be solved. First, some structures consist of several steps (see Fig. 2). Second,
the distributions of stiffness and mass of some structures may not obey the assumed expressions
given in the previous section. Such structures can be treated as multi-step bars for free vibration
analysis. If the steps are divided appropriately, the distributions of stiffness and mass in each step
may match accurately or approximately the expressions described above. The exact solution of a
one-step bar with varying cross-section can be used to derive the general solution and the frequency
equation of a multi-step bar using the following method.

The general solution of the longitudinal vibration mode shape function oftlthstep of a multi-
step cantilever bar (Fig. 2) can be expressed as

Xi(X)=Ci1S1(X)+C;252(X) (i=1,2,3,..n) 12)

Xit Xio 2
A

Fig. 1 A Cantilever bar with varying cross-section Fig. 2 A multi-step cantilever bar
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If the axial stiffness and mass of thik step are described by the exponential functions, Eq. (3),
then S1(x) and Sx(xX) can be found from Eq. (7). If the stiffness and mass ofitthestep are
constants, thef;(X) andSx(x) can be expressed as

S1(x)=sinAix O

13
S,(x)=cosx f 49
in which
r_n.
A=w |—= 14
= (14)

m;, K; are the mass intensity and axial stiffness ofitlhestep, respectively.

A transfer matrix procedure is introduced herein to establish the mode shape equation and the
frequency equation of the multi-step bar as shown in Fig. 2.

The mode shap¥;(x) and the axial forcéi(X) of thei-th step can be expressed as a matrix as

follows
Xi(¥) |_ » Cis
[ Ni(x)}—[A.(X)] [ Cij (15)

in which
S1(x) Sa(x)
[ACOI=] dSi(9 | dS,(x) (16)

x1 dX x2 dX

The parameters;;; andCi,, can be found by

Cil _ Xl(X)
=[A)]™ (17)
Ciz N; (%)
The relationship between the paramet¥rs,N;;, at the end 1 anHo, Ni, at the end 0 of thieth
step (Fig. 2) can be obtained by using Eq. (17) as follows

Xi| T Xio 18
RN a3

[Ti]:[Ai(Xil)][Ai(XiO)]_l (19)

[Ti] is called the transfer matrix because it transfers the parameters at the end 0 to those at the end
1 of a step. According to Eq. (18), the paramet¥ss,Ni;, at the end 1 of theth step can be
represented by the parametefts; oNi-1 o at the end 0 of thé-{1)th step.

Xi1| TUT Xi-10 20
{Nij—[ i1l i-ll{Ni_lJ (20)

in which
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The relationship of the parametebs,, N,, at the end 1 of the top step (Fig. 2) and the
parametersXio, Nig at the end 0 of the first step can be established by using Eq. (18) repeatedly.

g X 1)
an ) |:N10:|
in which
[TI=[Tal[To-al -+ [Tl (22)
[T] is a matrix which can be expressed as
[T] - [ Tll TlZl (23)
T21 T22

The frequency equation can be established according to the boundary conditions. For example,
high-rise structures can be treated as a cantilever bar for free vibration analysis, the boundary
conditions are

x=0, X(xX)=0 E
x=L, N, =k 2| _g e XX _40 (24)
dx [x=L dX [y=L E

According to Egs. (21)-(24), we have
Xo [_| T Too { o} (25)
an TZl T22 NlO

Np1=T2N1=0 (26)

From Eq. (25),

Because olN,,Z20 , we have
T,,=0 27)

This is the frequency equation of a multi-step cantilever bar.
If there is a lumped massj}, attached to the end 1 of theh step, then, the transfer matrik][
should be replaced by fj as follows

m; @

[Tmi]{ v ﬂ[m (28)

The natural frequencieg)(j=1, 2,...) can be found by solving Eq. (27), then, the mode shape
functions can be determined by use of Eq. (18). First,XgetO, Nig can take any value. For
example, setting\;=1, then,

1 2
Xu=Ti2) Xu=Ti2, ooy Xu=T13 (29)

whereTfZ’ is the element of the mat{iX,][T;_;]---[T]
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The frequency equation of a multi-step cantilever bar can be also established by using the
recurrence formula to be presented below. First, the special case that each step has constant
parameters (mass and axial stiffness) is studied in order to explain the proposed procedure. The
mode shape function of theh step (Fig. 2) is expressed as follows

—D;oCosA L,
SinAL,

in which D, andD;; are the amplitude at end 0 and 1 of ithle step, respectively,; is the length
of thei-th step (Fig. 2).

The harmonious condition of the connecting section betweeitthstep and thei{1)th step is
as follows

D.
Xi(X)=DjoC08A; (X — X0) + =

SINA(X — %) (30)

dX 3 dXiq
Ki dx szll_KHl dx X=Xi+1,0 (31)
According to Eq. (31), we obtain the relationship ambrgD;; andD.; ; as follows
Di+1,1=Pi1Di1—QioDio, i=1,2,..n (32)
in which
_Pia g
Pil_Ri+1 E
Q.= Qio E
"R 0
O
A O
pi1=Kj3—cotam;L;+cotam;,1L.1 0 (33)
Ai+l O
_ O
Qo= -KI 0
SinAL; O
O
- Kir1 D
*17sinA Ly E

Eq. (32) is a recurrence formula. Becalgg=0 andD1; can take any value, we 4&t;=1, then,

D21=Py; E
D31=P51P1:=Qx E
D417P31P21P 1,7 P31Q50~Q30P 14 U (34)
Ds51=P41P31P21P117P41P31 Q20 P41 P13, Q30=P21P11Qa0~ Q20Q40 E
...... .
According to the following boundary condition
M =0 (35)

dx x=L
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we obtain the frequency equation as follows
DnO=DnlCOSAnLn (36)

Solving Eg. (36) obtaingy(j=1, 2, ...), and substitutingy into Eq. (34) obtains th@th mode
shape.

If each step of a multi-step cantilever bar has variably distributed mass and stiffness that are
described by Eq. (3), the recurrence formula which is similar to Eq. (33) can be established in terms
of the same procedure presented above

Di.1,:=Pi1Di1 =QioDio (37)
in which

i1 =Dj €1, D'jg=Doe %0, D'j,q 1=Djuyq (€ 1YN01s

BI | _ Bi
= 2%y Vi_ﬁi—bi

B, b; are the parameters in Eq. (3) for thl step, the origin of coordinate is set at the base of the
step.
0|+1 l+Q|0

a 9|+10 Q|1

0i+l,l:e |+1X|+1,1, 9i+1'0:ef|+1x|+1,0
Qi0=J_,,(Ai60)J;,-1(A6,1)+3,,(A610) I_1, -1y (A 61)
Qi1=3_,,(A611)3,,-1(A6,1)+3,,(Ai6,1) Iy, -1y (A 61)
e Aiafioa (B 0

KioAfi(62)""
D=3, (A60) 3, (A1 6.1) =3, (Ai6,0)3,, (A 6,1)

20 [a
i~ fi 01;

For the first step, it is easy to obtain the following equations

D'x=0

pP.=

A QI 1,0
= D
S-1= Q.o

| 1

u
0
) 38
1=3,(06,) - ((A))J_Vlu ) =

The parametersD’,, Dj, can be determined by using Eq. (37), and the frequency equation can
be established in terms of Eq. (35) as follows

Jy -1(An6h1) _ Dhidy (An6io) ~Dinody (An601)
—(v l)(A enl) DnOJ—v (A enl) -D! l‘]—v (A enO)

The formulas presented above are derivedvfera non-integer only. I¥ = an integer, thed.,
appeared in the above equations should be replac¥d laywd the positive signs in the expressions

(39)
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of Q;p andQ;; should be changed to the negative signs.

4. Use of the Ritz method for free longitudinal vibration analysis

A multi-step bar, in which each step has constant parameters (mass and stiffness) or variable
parameters, may be simplified as a one-step bar with continuously varying parameters for free
vibration analysis (Wang 1978, lat al 1994). Free longitudinal vibration analysis of cantilever
bars with variably distributed stiffness and mass as well as lumped masses will be presented herein
in terms of the Ritz method.

In general, the fundamental circular frequency of a cantilever bar with variably distributed
stiffness and mass as well as lumped masses (Fig. 3) can be determined in terms of the energy
method as follows

raxcf
; JLO KXEUXD dx
F=

L2 il 2
Jt mX (x)dx+zzl mX(x,)

(40)

whereK, and m, are the axial stiffness and mass per unit length, respectively, at gectipf
=1, 2, ... m) are the lumped masses at seckpn

Because the value ab obtained from Eq. (40), in general, is greater than the real one, it is
assumed that

X(0=Y. aw(x) (@1)

in which g;(x) (=1, 2, ...,n) is thei-th pre-chosen function called the coordinate function,aaisl
thei-th unknown parameter to be determineds the number of differenp;(x)  functions considered.

As indicated by Clough and Penzien (1993) among others, any assumedXét)aeads to a
calculated frequency which is higher than the true frequency, and so the best approximation of the

Fig. 3 A Cantilever bar with variable parameters and lumped masses
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shape, that is, the best choiceagfwill minimise the frequency. Thus differentiating the frequency
expression with respect to any oneapénd equating to zero gives

E JL K Eg—XDde E

90 o 4 0

a0 0 (42)
'gr m,X (x)dx+z mX*(x;) 5
0 .

A set of equations can be obtained from Eq. (42) as follows

(Upg— lel)al"'(Ulz lez)az"' +(Ugn— len)a OD

(Upg— WV21)31+(U22 WV22)3-2+ “+(Uzn— WVzn)a OD

O (43)
- O
2 2 2 —_ D
(unl_w an)al+(un2_w Vn2)a2+"' +(unn_w Vnn)an_o 0
in which
dy;dy
|k_uk| JL Kx dX ka (44)
Vik=Vyi= Vl(k)+V|(lf):V(k:|L)+V(k?) (45)
Vid=Vid = [y Miwdx (46)
Vi =vie = ;1 MeP; (X)) Wi(X7) (47)
The frequency equation can be found from Eg. (43) as follows:
E(ull_wzvll) (U12_w2V12) (Uln_szln) E
E(Uzl‘szzl) (Uzz‘wZsz) (UZn_wZVZn) EFO (48)
0 ...2 ...2 ...2 O
E (unl_w an) (Unz_w Vn2) (unn_w Vnn) E
If nis a large number, it is better to rewrite Eq. (43) as
([U]-&’[V]){a}=0 (49)
or ~
[VI{a}=A[U]{ a} (50)
= 1
where A== (51)
w

The elements ofJ] and V] are ux andvy, respectively. Becaus®] is a symmetric matrix and it
is also a positive definition matrix, it is possible to find a matixtp make [J] as the product:

[UI=[RI[R]" (52)
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in which [R] is a lower triangular matrix.
Substituting Eq. (52) into Eg. (50) gives
[DI{A}=A{A} (53)
in which
_ 1. T
[DI=[RIVI([R]™) (54)
BecauseV] is a symmetric matrix,j] is also a symmetric matrixX,— and}; can be found by

using the well-known QR method. Thwh circular natural frequency and the corresponding mode
shape are

‘*Ffj

-1

{a};=([R1") " {A};

As discussed above, in many cases, the variations of mass and stiffness of high-rise structures can
be described by Eq. (3), and if the coordinate funcfigix) i=1, @, ...,n) is selected as

(59)

I o

2i — 1) mx
W= eLsm oL (56)
then substituting Egs. (3) and (56) into Egs. (44)-(47), we obtain
i+kK
= (1) oE 57)
K
ukk=8—ﬁ[ff+(2k—1>2n2+4m (58)
1 1 i+k B b -1 i+keB—b_1
Wav=gmiL(p-b) —C v (59)
(B—b)*(i +k-1) m (B-b)+(i-k)"7t
v(ki) can be determined by settingk in Eq. (59).
O @ 18 bf (i-k)mx,  (i+k-1)mx
Vi =Vig —Z;e mz[cos i CoS— J (60)

v(ki’ can be determined by settirmek in Eq. (60).

5. Numerical example

The Guangzhou Hotel Building (27 stories) is a shear-wall structure with a variable cross-section.
Based on the full-scale measurement of free vibration of this buildingt @li 1994), the Guangzhou
Hotel Building can be treated as a cantilever bar with a variable cross-section (Fig. 1) for free
vibration analysis. The procedures for determining the dynamic characteristics of this tall building in
the vertical direction by using the methods proposed in this paper are as follows:
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5.1 Ritz method

(1) Determination of the mass per unit length (Fig. 4)

The axial stiffness and mass per unit length (Figs. 4 and 5) of the Guangzhou Hotel Building vary
with height. For simplicity, the building is treated as a variable cross-section cantilever bar, as
shown in Fig. 1. Because the variation of the mass per unit length and the lumped mass attached at
the top of the building are comparatively small, it is reasonable to assume that the mass is
uniformly distributed along the height of the building (Fig. 4).

The mass per unit lengtim , is found as: =38,014.2 kg/m. The evaluated distribution of mass
(dotted line) is plotted in Fig. 4.

(2) Evaluation of the axial stiffnesy, (Fig. 5)
The axial stiffnessK,, is assumed a&,=ae™L .
According to the following information for the axial stiffness of this building:
at x=0, EF;=133.1410° N
x=L, EF =69.2%10° N
The parametergy,  are determined as
a=EF=133.1410° N
B=Ln(Ko)-Ln(K.)=0.6534
The evaluated distribution of axial stiffness (dotted line) is shown in Fig. 5.

(3) Evaluation of the natural frequencies

The formulae derived based on the Ritz method are used to determine the longitudinal natural
frequencies of this tall building. Using Eqgs. (57)-(59) obtains

u;;=2.8270%10°

Ui o=Uo1= _57233108

U=2.0117%10"

V11=23063@106

Vip=Vo=—2.8966 %10

V2,=2.0694k10°
Substitutinguy andvi into Eq. (48) gives

«f-11072.147247+12059322.85=0
Solving the above equation obtains

w,=34.9887 rad/sed;=5.5686 Hz

,=99.2305 rad/sed,=15.7930 Hz
If the first four terms in Eg. (41) are considered, we obtain

w=34.9251 rad/sed;=5.5585 Hz

,=96.4763 rad/sed,=15.1346 Hz

The longitudinal fundamental frequency obtained by the full-scale measuremehia{L1994) is
5.47 Hz. It is clear that the computed value in terms of the proposed procedure corresponds closely
to the measured one.

If the lumped mass (M=30612.2 kg) attached to the top of the building is considerecui(&hen,
must be included iy, and the calculated longitudinal fundamental frequency is 5.5597 Hz which
is in good agreement with the measured data.
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n=30612.2
%/

32531 E 69.27x10°
6633 | | 7a42x10° |\
seess3 |, 82.32X10°
38117.L | 91.20X10°? .
39337.7 } 99.71x10° |
408776 ; | 110.31X10 % \\
4143838 ! 12368x10°%
35010.2 K 133.14%10 % \J
|e— 380142 —»]
Fig. 4 Mass distribution of the tall buidling Fig. 5 Stiffness distribution of the tall buidling

(4) Calculation of the longitudinal fundamental vibration mode shape
After computing the first natural frequenty the first mode shap&(x), can be determined from
Eq. (43). The calculated results are shown in Table 1 and Fig. 6.

5.2 The analytical method

When the distributions of mass intensity and axial stiffness are described by Eq. (3), the analytical
solutions can be expressed in terms of the Bessel functions.

According to the values of mass and axial stiffness obtained above, we have

a=m=38014.2 kg/mp=0, 3=0.6534,L=76m
In this case, the value ofis given by

vz%zl

and the frequency equation can be established from Eq. (11) as follows
Yl(A)JO(AA)?]l(A)YO(AA)

in which A=e2=1.3864
Solving the frequency equation obtains
A1=4.3417, A,=11.9333
The natural frequencies can be found from Eq. (5) as
w=34.9248 rad/sed;=5.5584 Hz
,=96.0014 rad/sed,=15.2791 Hz
It can be seen that the first two natural frequencies determined by the Ritz method are very close to
those calculated by the analytical method if the first four terms in Eq. (41) are considered.
If the lumped massM=30612.2 kg) attached to the top of the building is considered, then, the
frequency equation is Eg. (9), in which
v=1, m=30612.2
The calculated longitudinal fundamental natural frequency for this case is 5.55 Hz which is also in
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good agreement with the measured data. The corresponding mode shape can be determined from
Eq. (7), i.e.,
Ji(4)
X= [J 28—y () J

The values of the first mode shape are calculated and shown in Table 1 and Fig. 6. The natural
frequency of the second mode is found as 15.1937 Hz.

5.3 The transfer matrix procedure

This tall building can be simplified as an 8-step cantilever bar, each step has constant mass and
stiffness as shown in Fig. 4 and Fig. 5, respectively. The special sol&ifxisand S,(x), for the
ith step are given by Eq. (13). The transfer matrix is as follows

[TI=[To[To] - [Tel
in which

-1
[T]= SiNA; X1 COSA;Xi1 SinA;X;o COSA X
AiKicosAix; —AiK;sinA;Xi| | A;K;C0sA Xiqg —A;K;SiNA; X

Table 1 Longitudinal fundamental mode shape of Guangzhou hotel building
x(m) 0 5.35 15.25 21.25 33.85 43.15 52.45 61.75 76

X1(X) [0] [0.103]  [0.268]  [0.426]  [0.566]  [0.712]  [0.838]  [0.930]
computed O 00631 01922 03242 04613 05984 07375 08501 1
©) (0.102) (0.268)  (0.427) (0.567)  (0.712)  (0.842)  (0.935)

X1(X)

0 0.100 0.257 0.417 0.560 0.710 0.837 0.929 1
measured

Note: The values in parentheses and square brackets are those calculated by the analytical method and the
transfer matrix procedure, respectively.

X Ix]
1 2 I } 1 T
—— Transfer Matrix
1 T —-— Ritz W:fa
0.8 -7~ Analytical Method e el

——— Mecasured values /
e
o

0.6

0.4 /f‘/
02 —
0o 2

NEs

0 1

0 30 40 50 60 70 80
Fig. 6 The fundamental mode shape
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As mentioned above]] has the form as Eq. (22), and the frequency equation is Eq. (27), solving
the equation obtaing=5.5643 Hz. It is obvious that the difference between the result calculated by
use of the step varying distributions of stiffness and mass and that obtained based on the model of a
one-step cantilever bar with continuously varying stiffness and mass is so small that it can be
neglected. This suggests that it is reasonable to simplify a multi-step bar with step varying
distributions of stiffness and mass as a one-step bar with continuously distributed stiffness and mass
when the number of steps is large.

SettingN;¢=1 and using Eq. (29) obtain the values of the first mode shape which are almost the
same as those determined by the analytical method (see Table 1).

Because the transfer matrix procedure and the recurrence formula procedure are the exact
approaches, the results obtained by the two procedures should be the same. Thus, it is not necessary
to present the results by the recurrence formula procedure herein.

The fundamental mode shape measured bst lal (1994) is also presented in Table 1 and shown
in Fig. 6 for comparison purposes. The values of the fundamental mode shape calculated by the
proposed methods are in good agreement with the measured data. It should be noted that using the
aforementioned procedures, the higher mode shapes could be also determined.

The numerical results show that a multi-step bar may be simplified as a one-step bar with
continuously varying cross-section for free longitudinal vibration analysis when the number of steps
is large. The natural frequencies computed by the Ritz method are in good agreement with the
measured data and are very close to those calculated by the analytical method and the transfer
matrix procedure, but the fundamental mode shape computed by the Ritz method is not very close
to the measured one. In order to improve the calculation accuracy of the Ritz method, it is
necessary to take more terms in Eq. (41). For exampke4 iin Eq. (41), then the first mode shape
obtained by the Ritz method is very close to the measured one and the first two natural frequencies
are almost the same as those obtained by the analytical method. It is found in the present study that
in general, if the first mode shapes are required to be determined, it number of terms in
Eq. 41) should be greater thamn+8).

6. Conclusions

Several approaches to evaluate the natural frequencies and mode shapes in the vertical direction
for cantilevered tall structures which are treated as one-step cantilever bars or multi-step cantilever
bars with varying cross-section have been proposed in this paper. Using appropriate transformations,
exact analytical solutions to determine the longitudinal natural frequencies and mode shapes for a
one step non-uniform bar are derived by selecting suitable expressions, such as exponential
functions, for the distributions of mass and axial stiffness. The frequency equation of a multi-step
bar is established using the approach that combines the transfer matrix procedure or the recurrence
formula and the closed-form solutions of one step bars, leading to a single frequency equation for
any number of steps. The Ritz method is also applied to determine the natural frequencies and mode
shapes in the vertical direction for cantilevered tall structures with variably distributed stiffness and
mass. All formulae proposed in this paper for determining the free longitudinal vibrations of
cantilevered tall structures are simple and convenient for engineering applications. The numerical
example shows that the difference between the results calculated by use of the step varying
distributions of stiffness and mass and those obtained based on the model of a one-step cantilever
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bar with continuously varying stiffness and mass is so small that it can be neglected. This suggests
that it is reasonable to simplify a multi-step bar with step varying distributions of stiffness and mass
as a one-step bar with continuously distributed stiffness and mass when the number of steps is large.
It is shown that the calculated fundamental natural frequency and mode shape of the Guangzhou
Hotel Building are very close to the full scale measured data, suggesting that the calculation
methods proposed in this paper are applicable to engineering application and practice. The example
also demonstrates that the selected expressions are suitable for describing the distributions of mass
and axial stiffness of typical tall buildings, and the selected coordinate functions for the Ritz method
make the computing process to converge rapidly. It is found that if the Ritz method is used to
determine the first mode shapes, in general, the number of terms in Eq. (41) should be greater
than ¢+3). However, if only the first two natural frequencies are required to be calculated, taking
the first four terms in Eq. (41) could provide accurate results for practical applications.
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