
Structural Engineering and Mechanics, Vol. 11, No. 4 (2001) 357-372 357
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Abstract. In this paper, cantilevered tall structures are treated as cantilever bars with varying cross-
section for the analysis of their free longitudinal (or axial) vibrations. Using appropriate transformations,
exact analytical solutions to determine the longitudinal natural frequencies and mode shapes for a one step
non-uniform bar are derived by selecting suitable expressions, such as exponential functions, for the
distributions of mass and axial stiffness. The frequency equation of a multi-step bar is established using
the approach that combines the transfer matrix procedure or the recurrence formula and the closed-form
solutions of one step bars, leading to a single frequency equation for any number of steps. The Ritz
method is also applied to determine the natural frequencies and mode shapes in the vertical direction for
cantilevered tall structures with variably distributed stiffness and mass. The formulae proposed in this
paper are simple and convenient for engineering applications. Numerical example shows that the
fundamental longitudinal natural frequency and mode shape of a 27-storey building determined by the
proposed methods are in good agreement with the corresponding measured data. It is also shown that the
selected expressions are suitable for describing the distributions of axial stiffness and mass of typical tall
buildings.
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1. Introduction

It has been recognised that the magnitude of the vertical component of earthquake ground motion
is often about one-third of the horizontal component, and the vertical component of ground motions
has a significant effect on earthquake-induced responses of structures (e.g., Wang 1978, Li et al.
1994). Thus, it is required to determine the natural frequencies and mode shapes in the vertical
direction for high-rise structures in design stage for certain cases (Li et al. 1998). In analysing free
vibrations of high-rise structures, for the sake of simplicity, it is possible to regard such structures as
a cantilever bar (Wang 1978, Li et al. 1994, 1996, 2000). However, in general, it is not possible or,
at least, very difficult to get the exact analytical solutions of differential equations for free vibrations
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of bars with variably distributed mass and stiffness. These exact bar solutions are available only for
certain bar shapes and boundary conditions. Tuma and Cheng (1983) found the analytical solutions
for the free longitudinal vibrations of a straight bar with uniformly distributed stiffness and mass.
Wang (1978) derived the closed form solutions for the free longitudinal vibration of a cantilever bar
with variably distributed stiffness and mass. Bapat (1995) obtained exact solutions for the free
longitudinal vibration of exponential and catenoidal rods. Abrate (1995) derived closed-form solutions
for the free longitudinal vibration of rods whose cross-section varies as .
Kumar et al. (1997) found exact solutions for the free longitudinal vibration of non-uniform rods
whose cross-section varies as A(x)=(a+bx)n and A(x)=A0 sin2(ax+b). The natural frequencies of such
rods for various end conditions were calculated, and their dependence on taper was discussed. 

In the previous studies mentioned above, it is usually assumed that the mass of a bar (rod) is
proportional to its stiffness (e.g., Wang 1978, Abrate 1995, Bapat 1995, Kumar et al. 1997). This
calculation model is reasonable for a part of high-rise structures such as chimney, T.V. tower etc,
but it is not suitable for tall buildings and many high-rise structures. This is because that the mass
of floors is 80% or even more of the total mass of a tall building and the variation of mass at
different floors is not significant, the mass distribution with height is almost constant for many
cases. This suggests that the value of mass of a tall building is not necessarily proportional to its
stiffness. This is confirmed by a series of shaking tests on buildings of various types in which the
mass and stiffness of individual buildings have been measured and reported (Jeary and Sparks 1977,
Ellis and Jeary 1980). In this paper, exact analytical solutions for free longitudinal vibrations of bars
with variably distributed mass and stiffness, in which the value of mass is not necessarily
proportional to its stiffness, are proposed. 

The free longitudinal vibration of a multi-step bar with varying cross-section is a complex
problem, and the exact solution of this problem has not previously been obtained. Use of the exact
solution of a one-step bar together with a transfer matrix procedure and a recurrence formula is
presented in this paper in order to resolve this problem. 

2. Free longitudinal vibrations of one-step cantilever bars

The differential equation for longitudinal (or axial) vibration of a bar with varying cross-section
(Fig. 1) is 

 (1)

in which y, Kx and  are the displacement in the longitudinal direction (vertical direction), axial
stiffness and mass per unit length, respectively, at section x.

Using the method of separation of variables

y(x, t)=X(x)eiωt

obtains the longitudinal vibration mode function, X(x), as follows
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where ω is the circular natural frequency.
As found by Li et al. (1994, 1996) and Li (1999) that in many cases, the variations of mass and

stiffness of typical high-rise structures can be described by the following exponential functions:

(3)

The parameters α, β, a, b can be determined by

α=K0, β=Ln(K0)−Ln(KL), a=m0, b=Ln(m0)−Ln(mL)  (4)

where m0, K0, mL, KL are the mass intensity and the axial stiffness, respectively, at x=0 and L. L is
the height of the structure considered (Fig. 1). 

Substituting Eq. (3) into Eq. (2) and setting

 (5)

lead to

( )  (6)

Eq. (6) is a Bessel’s equation of the ν-th order. For a non-integral ν, the vibration mode shape
function can be expressed as

 (7)

where  is the Bessel function of the first kind of order ν.
The boundary conditions of a cantilever bar (Fig. 1) are as follows

 (8)

Substituting the above boundary conditions into Eq. (7) obtains the following frequency equation

 (9)

in which m is the lumped mass attached to the top of the cantilever bar with varying cross-section
(Fig. 1).
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 (10)

If there is no lumped mass at the top of the bar, that is, m=0, then the frequency equation for this
case is given by

 (11)

If ν is an integral, the functions ,  should be replaced by Yν and Yν−1, respectively, and
the negative signs in Eqs. (9) and (11) should be changed to the positive signs, where Yν is the
Bessel function of the second kind of order ν.

The procedure presented above for determining the longitudinal natural frequencies and mode
shapes in the vertical direction for a cantilever bar with variably distributed stiffness and mass is
called the analytical method in this paper.

3. Free longitudinal vibrations of multi-step cantilever bars

Although the general solutions derived above for one-step bars with varying cross-section can be
used to determine the longitudinal natural frequencies and mode shapes of many structures, there
are two problems to be solved. First, some structures consist of several steps (see Fig. 2). Second,
the distributions of stiffness and mass of some structures may not obey the assumed expressions
given in the previous section. Such structures can be treated as multi-step bars for free vibration
analysis. If the steps are divided appropriately, the distributions of stiffness and mass in each step
may match accurately or approximately the expressions described above. The exact solution of a
one-step bar with varying cross-section can be used to derive the general solution and the frequency
equation of a multi-step bar using the following method. 

The general solution of the longitudinal vibration mode shape function of the i-th step of a multi-
step cantilever bar (Fig. 2) can be expressed as

 (i=1, 2, 3, ..., n) (12)

A=e
β b–

2
------------

J ν– λ( )Jν−1 λA( )= Jν λ( )– J ν−1( )– λA( )

J ν– J ν−1( )–

Xi x( )=Ci 1Si 1 x( )+Ci2Si 2 x( )

Fig. 1 A Cantilever bar with varying cross-section Fig. 2 A multi-step cantilever bar
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If the axial stiffness and mass of the ith step are described by the exponential functions, Eq. (3),
then Si1(x) and Si2(x) can be found from Eq. (7). If the stiffness and mass of the ith step are
constants, then Si1(x) and Si2(x) can be expressed as

 (13)

in which

 (14)

 are the mass intensity and axial stiffness of the i-th step, respectively.
A transfer matrix procedure is introduced herein to establish the mode shape equation and the

frequency equation of the multi-step bar as shown in Fig. 2. 
The mode shape Xi(x) and the axial force Ni(x) of the i-th step can be expressed as a matrix as

follows

 (15)

in which

 (16)

The parameters, Ci1 and Ci2, can be found by

 (17)

The relationship between the parameters, Xi1, Ni1, at the end 1 and Xi0, Ni0, at the end 0 of the i-th
step (Fig. 2) can be obtained by using Eq. (17) as follows

 (18)

in which

 (19)

 is called the transfer matrix because it transfers the parameters at the end 0 to those at the end
1 of a step. According to Eq. (18), the parameters, Xi1, Ni1, at the end 1 of the i-th step can be
represented by the parameters, Xi−1,0,Ni−1,0 at the end 0 of the (i−1)th step.
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The relationship of the parameters, Xn1, Nn1, at the end 1 of the top step (Fig. 2) and the
parameters, X10, N10 at the end 0 of the first step can be established by using Eq. (18) repeatedly.

 (21)

in which

 (22)

[T] is a matrix which can be expressed as

 (23)

The frequency equation can be established according to the boundary conditions. For example,
high-rise structures can be treated as a cantilever bar for free vibration analysis, the boundary
conditions are

 (24)

According to Eqs. (21)-(24), we have

 (25)

From Eq. (25),
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 (27)

This is the frequency equation of a multi-step cantilever bar.
If there is a lumped mass, mi, attached to the end 1 of the i-th step, then, the transfer matrix [Ti]

should be replaced by [Tmi] as follows

(28)

The natural frequencies ωj( j=1, 2,...) can be found by solving Eq. (27), then, the mode shape
functions can be determined by use of Eq. (18). First, set X10=0, N10 can take any value. For
example, setting N10=1, then,

 (29)

where  is the element of the matrix 

 Xn1 
  

Nn1

= T[ ]
 X10 

 

N10

T[ ]= Tn[ ] Tn−1[ ]… T1[ ]

T[ ]=  T11 T12 

 T21 T22 

x=0,  X x( )=0

x=L, Nn1=K
dX x( )

dx
--------------

x=L
=0,  i.e.,  

dX x( )
dx

--------------
x=L

=0







 Xn1 

Nn1

=
 T11 T12 

 T21 T22 

0

 N10 

Nn1=T22N10=0

N10 0≠
T22=0

Tmi[ ]=
1 0 

 miω
2 1 

Ti[ ]

X11=T12
1( ),  X21=T12

2( ), …, Xn1=T12
n( )

T12
i( ) Ti[ ] Ti −1[ ]… T1[ ]



Evaluation of vertical dynamic characteristics of cantilevered tall structures 363

The frequency equation of a multi-step cantilever bar can be also established by using the
recurrence formula to be presented below. First, the special case that each step has constant
parameters (mass and axial stiffness) is studied in order to explain the proposed procedure. The
mode shape function of the i-th step (Fig. 2) is expressed as follows

 (30)

in which Di0 and Di1 are the amplitude at end 0 and 1 of the i-th step, respectively, Li is the length
of the i-th step (Fig. 2).

The harmonious condition of the connecting section between the i-th step and the (i+1)th step is
as follows

 (31)
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we obtain the frequency equation as follows

 (36)

Solving Eq. (36) obtains ωj( j=1, 2, ...), and substituting ωj into Eq. (34) obtains the j-th mode
shape.

If each step of a multi-step cantilever bar has variably distributed mass and stiffness that are
described by Eq. (3), the recurrence formula which is similar to Eq. (33) can be established in terms
of the same procedure presented above

 (37)

in which

 are the parameters in Eq. (3) for the i-th step, the origin of coordinate is set at the base of the
step.

 

For the first step, it is easy to obtain the following equations

 (38)

The parameters,  can be determined by using Eq. (37), and the frequency equation can
be established in terms of Eq. (35) as follows

 (39)
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of Ωi0 and Ωi1 should be changed to the negative signs.

4. Use of the Ritz method for free longitudinal vibration analysis

A multi-step bar, in which each step has constant parameters (mass and stiffness) or variable
parameters, may be simplified as a one-step bar with continuously varying parameters for free
vibration analysis (Wang 1978, Li et al. 1994). Free longitudinal vibration analysis of cantilever
bars with variably distributed stiffness and mass as well as lumped masses will be presented herein
in terms of the Ritz method.

In general, the fundamental circular frequency of a cantilever bar with variably distributed
stiffness and mass as well as lumped masses (Fig. 3) can be determined in terms of the energy
method as follows 

 (40)

where Kx and  are the axial stiffness and mass per unit length, respectively, at section x, (ζ
=1, 2, ..., m) are the lumped masses at section xζ.

Because the value of ω obtained from Eq. (40), in general, is greater than the real one, it is
assumed that

 (41)

in which (i=1, 2, ..., n) is the i-th pre-chosen function called the coordinate function, and ai is
the i-th unknown parameter to be determined. n is the number of different  functions considered.

As indicated by Clough and Penzien (1993) among others, any assumed shape X(x) leads to a
calculated frequency which is higher than the true frequency, and so the best approximation of the
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Fig. 3 A Cantilever bar with variable parameters and lumped masses
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shape, that is, the best choice of ai, will minimise the frequency. Thus differentiating the frequency
expression with respect to any one of ai and equating to zero gives

 (42)

A set of equations can be obtained from Eq. (42) as follows

 (43)

in which
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 (46)

 (47)
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in which [R] is a lower triangular matrix.
Substituting Eq. (52) into Eq. (50) gives

 (53)

in which

 (54)

Because [V] is a symmetric matrix, [D] is also a symmetric matrix.  and {A} j can be found by
using the well-known QR method. The j-th circular natural frequency and the corresponding mode
shape are

 (55)

As discussed above, in many cases, the variations of mass and stiffness of high-rise structures can
be described by Eq. (3), and if the coordinate function (i=1, 2, ..., n) is selected as

 (56)

then substituting Eqs. (3) and (56) into Eqs. (44)-(47), we obtain

 (57)

 (58)

 (59)

 can be determined by setting i=k in Eq. (59).

 (60)

 can be determined by setting i=k in Eq. (60).

5. Numerical example

The Guangzhou Hotel Building (27 stories) is a shear-wall structure with a variable cross-section.
Based on the full-scale measurement of free vibration of this building (Li et al. 1994), the Guangzhou
Hotel Building can be treated as a cantilever bar with a variable cross-section (Fig. 1) for free
vibration analysis. The procedures for determining the dynamic characteristics of this tall building in
the vertical direction by using the methods proposed in this paper are as follows:
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5.1 Ritz method

(1) Determination of the mass per unit length (Fig. 4)
The axial stiffness and mass per unit length (Figs. 4 and 5) of the Guangzhou Hotel Building vary

with height. For simplicity, the building is treated as a variable cross-section cantilever bar, as
shown in Fig. 1. Because the variation of the mass per unit length and the lumped mass attached at
the top of the building are comparatively small, it is reasonable to assume that the mass is
uniformly distributed along the height of the building (Fig. 4).

The mass per unit length, , is found as: =38,014.2 kg/m. The evaluated distribution of mass
(dotted line) is plotted in Fig. 4.

(2) Evaluation of the axial stiffness, Kx, (Fig. 5)
The axial stiffness, Kx, is assumed as: Kx= .

According to the following information for the axial stiffness of this building: 
at x=0, EF0=133.14×109 N
x=L, EFL=69.27×109 N

The parameters, α, β are determined as
α=EF0=133.14×109 N
β=Ln(K0)−Ln(KL)=0.6534

The evaluated distribution of axial stiffness (dotted line) is shown in Fig. 5.

(3) Evaluation of the natural frequencies
The formulae derived based on the Ritz method are used to determine the longitudinal natural

frequencies of this tall building. Using Eqs. (57)-(59) obtains
u11=2.82707×109

u12=u21=−5.7233×108

u22=2.01171×1010

v11=2.30636×106

v12=v21=−2.89667×105

v22=2.06941×105

Substituting ujk and vik into Eq. (48) gives
ω4−11072.14721ω2+12059322.85=0

Solving the above equation obtains
ω1=34.9887 rad/sec, f1=5.5686 Hz
ω2=99.2305 rad/sec, f2=15.7930 Hz

If the first four terms in Eq. (41) are considered, we obtain
ω1=34.9251 rad/sec, f1=5.5585 Hz
ω2=96.4763 rad/sec, f2=15.1346 Hz
The longitudinal fundamental frequency obtained by the full-scale measurement (Li et al. 1994) is

5.47 Hz. It is clear that the computed value in terms of the proposed procedure corresponds closely
to the measured one.

If the lumped mass (M=30612.2 kg) attached to the top of the building is considered, then, 
must be included in vik, and the calculated longitudinal fundamental frequency is 5.5597 Hz which
is in good agreement with the measured data.

m m

αe β–
x
L
---

vik
2( )
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(4) Calculation of the longitudinal fundamental vibration mode shape
After computing the first natural frequency f1, the first mode shape, X1(x), can be determined from

Eq. (43). The calculated results are shown in Table 1 and Fig. 6. 

5.2 The analytical method

When the distributions of mass intensity and axial stiffness are described by Eq. (3), the analytical
solutions can be expressed in terms of the Bessel functions.

According to the values of mass and axial stiffness obtained above, we have
a= =38014.2 kg/m, b=0, β=0.6534, L=76m

In this case, the value of ν is given by

and the frequency equation can be established from Eq. (11) as follows
Y1(λ)J0(λA)=J1(λ)Y0(λA)

in which A= =1.3864
Solving the frequency equation obtains

λ1=4.3417, λ2=11.9333
The natural frequencies can be found from Eq. (5) as

ω1=34.9248 rad/sec, f1=5.5584 Hz
ω2=96.0014 rad/sec, f2=15.2791 Hz

It can be seen that the first two natural frequencies determined by the Ritz method are very close to
those calculated by the analytical method if the first four terms in Eq. (41) are considered.

If the lumped mass (M=30612.2 kg) attached to the top of the building is considered, then, the
frequency equation is Eq. (9), in which 

ν=1, m=30612.2
The calculated longitudinal fundamental natural frequency for this case is 5.55 Hz which is also in

m

ν=
β b–

β
------------=1

e
β
2
---

Fig. 4 Mass distribution of the tall buidling Fig. 5 Stiffness distribution of the tall buidling
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good agreement with the measured data. The corresponding mode shape can be determined from
Eq. (7), i.e.,

The values of the first mode shape are calculated and shown in Table 1 and Fig. 6. The natural
frequency of the second mode is found as 15.1937 Hz.

5.3 The transfer matrix procedure

This tall building can be simplified as an 8-step cantilever bar, each step has constant mass and
stiffness as shown in Fig. 4 and Fig. 5, respectively. The special solutions, Si1(x) and Si2(x), for the
ith step are given by Eq. (13). The transfer matrix is as follows

in which

X=ξ J1 λξ( )−
J1 λ( )
Y1 λ( )
-------------Y1 λξ( )

T[ ]= T1[ ] T2[ ]… T8[ ]

Ti[ ]= sinλi xi 1 cosλ ixi1

λ iKicosλ ixi1 λ i– Kisinλ ixi 1

sinλ i xi 0 cosλ ixi 0

λ iKicosλi xi 0 λ i– Kisinλi xi 0

1–

Table 1 Longitudinal fundamental mode shape of Guangzhou hotel building

x(m) 0 5.35 15.25 21.25 33.85 43.15 52.45 61.75 76

X1(x)
computed

[0]
0

(0)

[0.103]
0.0631
(0.102)

[0.268]
0.1922
(0.268)

[0.426]
0.3242
(0.427)

[0.566]
0.4613
(0.567)

[0.712]
0.5984
(0.712)

[0.838]
0.7375
(0.842)

[0.930]
0.8501
(0.935)

1

X1(x)
measured

0 0.100 0.257 0.417 0.560 0.710 0.837 0.929 1

Note: The values in parentheses and square brackets are those calculated by the analytical method and the
transfer matrix procedure, respectively.

Fig. 6 The fundamental mode shape
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As mentioned above, [T] has the form as Eq. (22), and the frequency equation is Eq. (27), solving
the equation obtains f1=5.5643 Hz. It is obvious that the difference between the result calculated by
use of the step varying distributions of stiffness and mass and that obtained based on the model of a
one-step cantilever bar with continuously varying stiffness and mass is so small that it can be
neglected. This suggests that it is reasonable to simplify a multi-step bar with step varying
distributions of stiffness and mass as a one-step bar with continuously distributed stiffness and mass
when the number of steps is large.

Setting N10=1 and using Eq. (29) obtain the values of the first mode shape which are almost the
same as those determined by the analytical method (see Table 1).

Because the transfer matrix procedure and the recurrence formula procedure are the exact
approaches, the results obtained by the two procedures should be the same. Thus, it is not necessary
to present the results by the recurrence formula procedure herein.

The fundamental mode shape measured by Li et al. (1994) is also presented in Table 1 and shown
in Fig. 6 for comparison purposes. The values of the fundamental mode shape calculated by the
proposed methods are in good agreement with the measured data. It should be noted that using the
aforementioned procedures, the higher mode shapes could be also determined. 

The numerical results show that a multi-step bar may be simplified as a one-step bar with
continuously varying cross-section for free longitudinal vibration analysis when the number of steps
is large. The natural frequencies computed by the Ritz method are in good agreement with the
measured data and are very close to those calculated by the analytical method and the transfer
matrix procedure, but the fundamental mode shape computed by the Ritz method is not very close
to the measured one. In order to improve the calculation accuracy of the Ritz method, it is
necessary to take more terms in Eq. (41). For example, if i=4 in Eq. (41), then the first mode shape
obtained by the Ritz method is very close to the measured one and the first two natural frequencies
are almost the same as those obtained by the analytical method. It is found in the present study that
in general, if the first r mode shapes are required to be determined, then i (the number of terms in
Eq. 41) should be greater than (r +3). 

6. Conclusions

Several approaches to evaluate the natural frequencies and mode shapes in the vertical direction
for cantilevered tall structures which are treated as one-step cantilever bars or multi-step cantilever
bars with varying cross-section have been proposed in this paper. Using appropriate transformations,
exact analytical solutions to determine the longitudinal natural frequencies and mode shapes for a
one step non-uniform bar are derived by selecting suitable expressions, such as exponential
functions, for the distributions of mass and axial stiffness. The frequency equation of a multi-step
bar is established using the approach that combines the transfer matrix procedure or the recurrence
formula and the closed-form solutions of one step bars, leading to a single frequency equation for
any number of steps. The Ritz method is also applied to determine the natural frequencies and mode
shapes in the vertical direction for cantilevered tall structures with variably distributed stiffness and
mass. All formulae proposed in this paper for determining the free longitudinal vibrations of
cantilevered tall structures are simple and convenient for engineering applications. The numerical
example shows that the difference between the results calculated by use of the step varying
distributions of stiffness and mass and those obtained based on the model of a one-step cantilever
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bar with continuously varying stiffness and mass is so small that it can be neglected. This suggests
that it is reasonable to simplify a multi-step bar with step varying distributions of stiffness and mass
as a one-step bar with continuously distributed stiffness and mass when the number of steps is large.
It is shown that the calculated fundamental natural frequency and mode shape of the Guangzhou
Hotel Building are very close to the full scale measured data, suggesting that the calculation
methods proposed in this paper are applicable to engineering application and practice. The example
also demonstrates that the selected expressions are suitable for describing the distributions of mass
and axial stiffness of typical tall buildings, and the selected coordinate functions for the Ritz method
make the computing process to converge rapidly. It is found that if the Ritz method is used to
determine the first r mode shapes, in general, the number of terms in Eq. (41) should be greater
than (r +3). However, if only the first two natural frequencies are required to be calculated, taking
the first four terms in Eq. (41) could provide accurate results for practical applications.
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