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A local point interpolation method for stress analysis
of two-dimensional solids
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Abstract. A local point interpolation method (LPIM) is presented for the stress analysis of two-
dimensional solids. A local weak form is developed using the weighted residual method locally in two-
dimensional solids. The polynomial interpolation, which is based only on a group of arbitrarily distributed
nodes, is used to obtain shape functions. The LPIM equations are derived, based on the local weak form
and point interpolation. Since the shape functions possess the Kronecker delta function property, the
essential boundary condition can be implemented with ease as in the conventional finite element method
(FEM). The presented LPIM method is a truly meshless method, as it does not need any element or mesh
for both field interpolation and background integration. The implementation procedure is as simple as
strong form formulation methods. The LPIM has been coded in FORTRAN. The validity and efficiency
of the present LPIM formulation are demonstrated through example problems. It is found that the present
LPIM is very easy to implement, and very robust for obtaining displacements and stresses of desired
accuracy in solids.
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1. Introduction

In recent years, a new class of numerical methods, namely, the element-free method or meshless
method, has been developed. Meshless methods may be largely divided into two categories:
domain-type methods and boundary-type methods. In these two types of meshless methods, the
problem domain or only the boundary of the problem domain is discretized with properly scattered
points. Several domain-type meshless methods, such as, the diffuse element method (Nayroles et al.
1992), element-free Galerkin (EFG) method (Belytschko et al. 1994), reproducing kernel particle
method (Liu et al. 1995), point interpolation method (PIM) (Liu and Gu 1999), point assembly
method (PAM) (Liu 1999), have been proposed and have achieved remarkable progress in solving a
wide range of problems. The boundary-type meshless methods proposed include the boundary node
method (BNM) (Kothnur et al. 1999) and boundary point interpolation method (BPIM) (Gu and Liu
2000a). In addition, techniques for coupling meshless methods with other established numerical
methods have also been proposed, such as the coupled EFG/finite element method (FEM) (Belytschko
and Organ 1995, and Hegen 1996), EFG/boundary element method (BEM) (Gu and Liu 2000b, and
Liu and Gu 2000a), and EFG/BPIM (Liu and Gu 2000b).
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The difference in these domain-type meshless methods comes mainly from the interpolation
techniques used. In particular, the above-mentioned meshless methods are “meshless” only in terms
of the interpolation of the field variables, as compared to the usual FEM. Most of meshless methods
have to use background cells to integrate a weak form over the problem domain. The requirement
of background cells for integration makes the method not “truly” meshless.

A domain-type truly meshless method, called the meshless local Petrov-Galerkin (MLPG) method,
has been developed by Atluri and Zhu (1998, 2000), and Atluri et al. (1999). The MLPG method is
based on a local weak form and a moving least squares (MLS) approximation. In the MLPG, an
integration method in a regular-shaped local domain (such as spheres, rectangles, and ellipsoids) is
used. There are two characteristics of the MLPG method. First, it is a truly meshless method in
terms of not only non-element interpolation, but also non-mesh integration. Second, the
implementation procedure is as simple as numerical methods based on the strong form formulation,
such as the finite difference method (FDM).

However, there exist some inconveniences or disadvantages in using the MLPG. First, it is
difficult to implement essential boundary conditions in the MLPG because the shape functions,
constructed with the MLS approximation, lack the delta function property. Second, the MLPG is
computationally expensive due to, again, the use of the MLS approximation. In addition, when the
MLPG changes the integration domain from global to local, the problem related to local integrations
becomes a new issue.

Some special techniques have to be used to overcome the above-mentioned problems in using the
MLPG. For example, the Lagrange multiplier method, the penalty method (Atluri et al. 1999), the
constraint MLS method (Liu et al. 2000), and the direct interpolation method (Liu and Yan 2000)
have been used to deal with essential boundary conditions. The Lagrange multiplier method leads to
an unbanded non-positive definite stiffness matrix, which increases significantly the difficulty in
solving the discrete equations. The use of the penalty method requires a proper choice of the
penalty factor, which can be difficult for some practical problems. The constraint MLS method is
computationally very expensive. The direct interpolation method seems to be so far the simplest
way to impose the essential boundary condition in the MLPG method.

A local point interpolation method (LPIM) is presented in this paper for two-dimensional solids,
in which a set of points is used to represent the problem domain. A technique is proposed for
constructing polynomial interpolation functions with the delta function property. A weak form is
developed using the weighted residual method locally, based on the idea of MLPG (Atluri and Zhu
1998). The LPIM equations are then derived using the local weak form and the point interpolation
approximation. The present LPIM is a truly meshless method, which performs interpolation without
using elements and evaluates integrals without a background mesh. Moreover, since the shape
functions possess the delta function property, the imposition of essential boundary conditions in
LPIM is as easy as in the traditional FEM.

An LPIM program is coded in FORTRAN, and several numerical examples are presented to
demonstrate the convergence, validity and efficiency of the LPIM.

2. Basic equations of elastostatics

Consider the following two-dimensional problem of solid mechanics in a domain Ω bounded by Γ:
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σij,j+bi=0 in Ω (1)

where σij is the stress tensor, which corresponds to the displacement field ui, bi is the body force
tensor, and ( ),i denotes . The boundary conditions are given as follows:

 on the natural boundary Γt (2)

 on the essential boundary Γu (3)

in which the  and  denote the prescribed displacements and tractions, respectively, and nj is the
unit outward normal to domain Ω .

3. Point interpolation approximation

In general, a meshless method requires a local interpolation or approximation to represent the trial
function. The point interpolation approximation is used in the current work.

Consider a function u(x) defined in domain Ω discretized by a set of field nodes. The point
interpolates u(x) from the surrounding nodes of a point xQ using the polynomials

(4)

where pi(x) is a monomial in the space coordinates xT=[x, y], n is the number of nodes in the
neighborhood of xQ, ai(xQ) is the coefficient for pi(x) corresponding to the given point xQ. The pi(x)
in Eq. (4) is built utilizing Pascal’s triangle shown in Fig. 1, so that the basis is complete. A basis in
one dimension is provided by

pT(x)=[1, x, x2, x3, x4,.…] (5)

A basis in two dimensions is provided by

pT(x)=[1, x, y, xy, x2, y2, x2y, xy2, x2y2, ....] (6)

The coefficients ai in Eq. (4) can be determined by enforcing Eq. (4) at the n nodes surrounding
point xQ. At node i,

ui=pT(xi)a     i=1−n (7)

where ui is the nodal value of u at x=xi. Eq. (7) can be written in the following matrix form:

∂/∂xi( )

σi j nj= t i

ui=ui

ui  t i

u x, xQ( )=  
i=1

n

∑ pi x( )ai xQ( )=pT x( )a xQ( )

Fig. 1 Pascal’s triangle
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ue=PQ a (8)

where

Ue=[ u1, u2, u3, ......, un]
T (9)

PQ
T=[p(x1), p(x2), p(x3),......, p(xn)] (10)

From Eq. (8),

a=PQ
−1 ue (11)

Hence,

u(x)= φ(x) ue (12)

where the shape function φ(x) is defined by

φ(x)=pT(x)PQ
−1=[φ1(x), φ2(x), φ3(x),......, φn(x)] (13)

The shape function φ i(x) obtained through the above procedure satisfies

φi (xi)=1    i=1∼n (14a)

φj (xi)=0    j≠i (14b)

(14c)

Therefore, the shape functions possess the delta function property, and the essential boundary
conditions can be easily imposed in the LPIM.

It is possible that PQ
−1 in Eq. (13) does not exist in some situations. This arises, for example,

when there are too many nodes in the influence domain sitting on two parallel lines. The above
difficulty can be overcome if an appropriate basis is chosen according to the distribution of nodes.
Another more generally applicable method is to randomly move nodes by a small distance before
computing to avoid the singularity of PQ. This small distance dmi for node i is taken as

dmi =β ⋅ di (15)

where β is a random coefficient chosen as −0.2≤ β ≤ 0.2 here. Also, di is the shortest distance
between node i and its neighbouring nodes. After moving the nodes, the new matrix PQ is, in
general, not singular and PQ

−1 can be computed.
A circle of radius r can be used as the influence domain for a point xQ. The radius r can be

obtained according to the node density around the point xQ. The number of nodes n can be
determined by counting all the points in the influence domain. In this paper, the range n=9~25 is
used.

4. The local weak form of LPIM

Due to the point interpolation approximation, the essential boundary conditions in Eq. (3) can be
imposed directly as in the traditional FEM. A generalized local weak form of the differential Eq. (1),
over a local sub-domain Ωs bounded by Γs, can be obtained using the weighted residual method

 
i =1

n

∑ φi x( )=1
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(16)

where wi is the weight function. 
The first term on the left hand side of Eq. (16) can be integrated by parts to become

(17)

The support sub-domain Ωs of a node xi is a domain in which wi(x)≠0. An arbitrary shaped
support domain can be used (see Fig. 2). A circle or rectangular support domain is used in this
paper for convenience. It can be found that the boundary Γs for the support domain is usually
composed of three parts: the internal boundary Γsi, the boundaries Γsu and Γst, over which the
essential and natural boundary conditions are specified. Imposing the natural boundary condition
and noticing that  in Eq. (17), it is obtained that

(18)

For a support domain located entirely within the global domain, there is no intersection between
Γs and the global boundary Γ, Γsi=Γs, and the integrals over Γsu and Γst vanish.

With Eq. (18) for any node xi, instead of dealing with a global boundary value problem, the
problem becomes a localized boundary value problem over a support domain. In the present
formulation, the equilibrium equation and boundary conditions are satisfied in all local support
domains Ωs and on their boundary Γs. Although the support domains affect the solution, as long as
the union of all the local domains covers the global domain Ω , the equilibrium equation and the
boundary conditions will theoretically be satisfied in the global domain Ω and in its boundary Γ
(Atluri and Zhu 1998).

 Ωs

 ∫ wi σ i j ,j bi+( )dΩ=0

 Γs

 ∫ wiσi j njdΓ−  Ωs

 ∫ wi ,jσ i j wibi–( )dΩ=0

σ i j nj= ∂u/∂n( ) ti≡

 Γsi

 ∫ witidΓ+  Γsu

 ∫ witidΓ+  Γst

 ∫ wi  t idΓ−  Ωs

 ∫ wi ,jσ i j wibi–( )dΩ=0

Fig. 2 Support domain ΩS and integration domain ΩQ for node i, and the interpolation domain Ωi for Gauss
integration point xQ
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5. Discretization and numerical implementation for the LPIM

5.1 Discrete equations of LPIM

The problem domain Ω is represented by properly scattered nodes. The point interpolation
approximation (12) is used to approximate the value of a point xQ. Substituting Eq. (12) into the
local weak form (18) for all nodes leads to the following discrete system of equations:

Kue=f (19)

where the “stiffness” matrix K and nodal “load” f vector are defined by

(20a)

(20b)

with w being the value of the weight function matrix, corresponding to node i, evaluated at the
point x, and

(20c)

(20d)

(20e)

for plane stress (20f )

It can be easily seen that the system stiffness matrix K in the present method is banded but
asymmetric.

5.2 Weight function

As the LPIM is regarded as a weighted residual method, the weight function plays an important
role in the performance of the method. Theoretically, as long as the condition of continuity is
satisfied, any weight function is acceptable. However, the local weak form is based on the local
sub-domains of all the nodes in the problem domain. It can be shown that weight functions which
decrease in magnitude with increasing distance from the point xQ to the node xi yields better results.
Therefore, weight functions which only depend on the distance between the two points are
considered here. Both parabolic and spline weight functions are used.

K i j =  Ωs

 ∫ vi
TDB jdΩ−  Γsi

 ∫ wiNDBjdΓ−  Γsu

 ∫ wiNDBjdΓ

f i=  Γst

 ∫ wi ti dΓ+  Ωs

 ∫ wibidΩ

N=
nx 0 ny

0 ny nx

B j=
φj ,x 0

0 φj ,y

φj ,y φj ,x

vi=
wi ,x 0

0 wi ,y

wi ,y wi ,x

D=
1 υ 0

υ 1 0

0 0 1 υ–( )/2
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Weight function A: the 2-order parabolic function

(21a)

Weight function B: the spline function

(21b)

where di= | xQ−xi | is the distance from node xi to point xQ, and rw is the size of the support for the
weight function.

5.3. Numerical integration

Numerical integration is needed to evaluate the integrals in Eqs. (20a) and (20b). Gauss
quadrature is used in the LPIM. For a node xi, a local integration cell is needed to employ Gauss
quadrature. For each Gauss quadrature point xQ, point interpolation is performed to obtain the
integrand. Therefore, for a node xi, there exist three local domains: local integration domain ΩQ

(size rq), weight function domain Ωw (same as Ωs) for wi≠0 (size rw), and interpolation domain Ωi

for xQ (size ri). These three local domains are independent as long as the condition rq≤rw is satisfied.
It should be noted that the weight function w is zero along the boundary of the integration domain
if the integration and weight domains are the same (rq=rw). Hence, Eq. (20b) can be simplified
because the integration along the internal boundary Γsi vanishes.

There exist difficulties in obtaining exact numerical integration in meshless methods (Atluri et al.
1999, Dolbow and Belytschko 1999, and Liu and Yan 1999). Insufficiently accurate numerical
integration may cause a deterioration and a rank-deficiency in the numerical solution. The numerical
integration errors result from the complexity of the integrand. First, the shape functions constructed
using the point interpolation approximation have a complex feature. The shape functions have
different forms in each small integration region. The derivatives of the shape functions may have
oscillations. Second, the overlapping of interpolation domains makes the integrand in the
overlapping domain very complicated. In order to guarantee the accuracy of the numerical
integration, ΩQ should be divided into some regular small partitions. In each small partition, more
Gauss quadrature points should be used.

5.4 Imposition of essential boundary conditions

In the MLPG method, it is difficult to implement essential boundary conditions because the shape
functions constructed by the MLS approximation lack the delta function property. Strategies have
been developed for alleviating the above problem, such as using the Lagrange multiplier method,
the penalty method, and the direct interpolation method. In the LPIM, because the shape functions
possess the delta function property, the essential boundary conditions can be implemented with ease.
Since the system equations of the LPIM are assembled based on nodes as in the finite difference

wi x( )= 1
di

rw

----- 
 

2

– 0 di rw≤ ≤

0 di r i≥





wi x( )= 1 6
di

 

rw

------ 
 

2

+8
di

 

rw

------ 
 

3

−3
di

 

rw

------ 
 

4

 – 0 di rw≤ ≤

0 di rw≥




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method, the items of the row in the matrix K for the nodes on the essential boundary need not even
be computed. This reduces the computational cost, especially when the number of nodes on the
essential boundary is large.

6. Numerical examples

The LPIM is coded in FORTRAN. Cases are run in order to examine the LPIM in two-
dimensional elastostatics. Because the problem domains in the examples are rectangles, rectangular
sub-domains are used for establishing the weight function. The size of the sub-domain for node i is
defined as

ds=α di (22)

where α is a coefficient which lies in the range 0.5-3.0 in this paper, and di is the shortest distance
between node i and its neighbouring nodes.

6.1 Standard patch test

The first numerical example is the standard patch test. The two patches shown in Fig. 3 are tested.
Fig. 3(a) shows a patch with 9 nodes of which one is an interior node. Fig. 3(b) shows a patch of
25 nodes including 9 irregularly-placed interior nodes.

In these patch tests, the displacements are prescribed on all outside boundaries by a linear
function of x and y on the patches of dimensions Lx=2.0 by Ly=2.0. The parameters are taken as
E=1.0 and ν=0.3. The linear displacement functions are ux=0.6x and uy=0.6y. Satisfaction of the
patch test requires that the displacement of any interior node be given by the same linear functions
and that the strains and stresses be constant in the patch.

Six to nine nodes are used in the interpolation for a point xQ depend on the distances between the

Fig. 3 9-node and 25-node patches
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nodes and the point xQ. The computational results show that the LPIM passes the patch test exactly.
In Fig. 3(b), nodes 9 and 10 are deliberately placed close to each other. It is found that this does not
affect the computational results.

6.2 Higher-order patch test

The higher-order patches shown in Fig. 4 are used to study the effect of the weight functions and
the size of the support domain. In case 1, a uniform axial stress of unit intensity is applied on the
right end. The exact solution for this problem with E=1 and v=0.25 is: ux=x and uy= −y/4. In case 2,
a linearly varying normal stress is applied on the right end. The exact solution for this problem with
E=1 and v=0.25 is: ux=2xy/3 and uy= −(x2+y2/4)/3. Nine nodes are used in the interpolation. It can
be found that case 1 is passed exactly using both the parabolic and spline weight functions. The
computational results for case 2 are shown in Table 1. It can be found that case 2 is passed exactly
using the parabolic weight function for all support domain sizes. When the spline weight function is
used, case 2 is passed exactly for small support domains. If the size of the support domain is large,
the test fails.

The reason for the failure is the numerical integration errors of the complex integrands. The
parabolic weight function is simpler than the spline weight function. Hence, exact numerical
integration can be achieved more easily using the parabolic weight function. In order to study the
effect of numerical integration, several cases with different Gauss quadrature points and sub-
divisions for integration are computed. The results are shown in Table 1. It can be found that the
accuracy of the solution improves with the improvement of the numerical integration. However,
since the continuity order of the spline weight function is higher than that of the 2-order parabolic

Fig. 4 Nodes on a higher-order patch

Table 1 Relative errors (%) at point A for higher-order patch test case 2 (nd, number of sub-division; ng,
Gauss points in each sub-division)

α =1.0 α =1.5 α =2.0

nd=1,
ng=4

nd =1, 
ng=10

nd =2×2,
ng=4

nd =1, 
ng=4

nd =1,
ng=10

nd=2×2,
ng=4

nd =1,
ng=4

nd=1,
ng=10

nd=2×2,
ng=4

Function A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Function B 0.0 0.0 0.0 0.83 3.3×10−3 2×10−4 1.1 1×10−2 6×10−4
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weight function, the spline weight function can yield better results for many practical problems with
high gradients of stresses.

6.3 Cantilever beam

The cantilever beam shown in Fig. 5 is considered. The beam is of length L and height D
subjected to a parabolic traction at the free end. The beam has a unit thickness and a plane stress
problem is considered. The analytical solution is available and can be found in Timoshenko and
Goodier (1970). The displacements are given by

(23a)

(23b)

and the stress components are

(24a)

ux=− Py
6EI
---------[ 6L 3x–( )x+ 2 ν+( ) y

2 D2 

4
-------– 

 ]
uy=− Py

6EI
---------[ 3νy2 L x–( )+ 4 5ν+( )D

2
x

4
---------+ 3L x–( )x2]

σx x,y( )=−P L x–( )y
I

-----------------------

Fig. 5 Cantilever beam

Fig. 6 (a) Regular distribution of nodes for cantilever beam, (b) Irregular distribution of nodes for cantilever
beam
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(24b)

(24c)

The parameters are taken as E=3.0×107, ν = 0.3, D =12, L = 48, and P =1000. Both regular and
irregular distributions of nodes as shown in Fig. 6 are employed.

Fig. 7 shows a comparison of the analytical solution and the present numerical solution for the
beam deflection along the x-axis. The plot shows excellent agreement between the analytical and
numerical results. Fig. 8 illustrates the comparison between the shear stress at the section x=L/2
calculated analytically and using the LPIM. Again, very good agreement is observed for both
regular and irregular distributions of nodes.

For the error analysis, the energy norm is defined as the error indicator, as the accuracy in strain
or stress is much more critical than the displacements.

(25)

The convergence of LPIM is studied. The regular distribution of nodes is used for comparison. The

σy x,y( )=0

τxy x,y( )= P
2I
-----[ D2

4
------ y

2]–

ee=  
Ω

 ∫ (ε
LPIM

εEXACT)–
T

D(εLPIM εEXACT)– dΩ
 
 
 

1/2

Fig. 7 Deflection of beam

Fig. 8 Shear stress σ xy at section x=L/2 of beam
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investigation is done for α =1.0 and 2.0 using both the 2-order parabolic weight function and the
spline weight function. The convergence with mesh refinement is shown in Fig. 9. Here, h is
equivalent to the maximum element size in the FEM analysis. It is observed that the convergence of
LPIM is very good. Comparing the results obtained using different sub-domain sizes, it can be
found that a bigger-sized sub-domain gives better accuracy provided that the numerical integration
is accurate. From Fig. 9, it is found that using the parabolic weight function produces better results
than using the spline weight function. As discussed above, the reason is that the parabolic weight
function is easer for obtaining exact numerical integration than the spline weight function.

6.4 Hole in an infinite plate

Consider now a plate with a central circular hole: x2+y2≤ a2, subjected to a unidirectional tensile
load of 1.0 in the x-direction as shown in Fig. 10. Due to symmetry, only the upper right quadrant
of the plate is modeled. Plane strain conditions are assumed, and the material constants are
E=1.0×103, and ν =0.3. Symmetry conditions are imposed on the left and bottom edges, and the
inner boundary of the hole is traction free. The exact solution for the stresses in an infinite plate
with a central circular hole is

(26a)σx x,y( )=1−a2

r2
----- 3

2
---cos2θ cos4θ+

 
 
 

+
3a4

2r4
--------cos4θ

Fig. 9 Convergence in norm of error ee
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(26b)

(26c)

where (r, θ) are the polar coordinates and θ is measured counter-clockwise from the positive x axis.
Traction boundary conditions given by the exact solution (26) are imposed on the right (x=5) and
top (y = 5) edges.

The results are obtained using two kinds of nodal arrangements: 54 nodes and 165 nodes. The
nodal arrangement of 165 nodes is shown in Fig. 10. It is found that the results for the
displacements are identical. As the stresses are more critical, detailed results are presented here. The
stress σxx at x =0 obtained using the LPIM is shown in Fig. 11. It can be observed from Fig. 11 that
the LPIM yields satisfactory results for the problem considered. The convergence of the present
method is also demonstrated in this figure. As the number of nodes increases, the results obtained
approaches the analytical solution.

6.5 Stress distribution in a dam

The proposed LPIM is applied to the stress analysis of a dam subjected to hydrostatic pressure on
both sides of the dam, as shown in Fig. 12. The problem is solved for the plane strain case with
E=30 Gpa and v=0.15. The nodal arrangement is shown in Fig. 13. The problem is also analyzed
using the FEM software, ABAQUS.

σy x,y( )=−a
2

r2
----- 1

2
---cos2θ−cos4θ

 
 
 

−3a
4

2r4
--------cos4θ

σxy x,y( )=−a2

r2
----- 1

2
---sin2θ+sin4θ

 
 
 

+
3a4

2r4
--------sin4θ

Fig. 10 Nodes on plate with central hole subjected to unidirectional tensile load in x-direction
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The displacements at two corner nodes A and B are listed in Table 2. The results obtained by the
present LPIM are in very good agreement with those obtained using the FEM. The distribution of
the stress σyy in the domain obtained by FEM and PIM are shown in Fig. 14. It is seen that the

Fig. 11 Stress distribution in plate with central hole subjected to unidirectional tensile load (σ xx at x=0)

Fig. 12 Dam subjected to hydrostatic pressure Fig. 13 Arrangement of nodes on dam

Table 2 Displacements (×10−3) at points A and B of the dam

Nodes x y
LPIM FEM

ux uy ux uy

A 10.0 50.0 2.468 − 0.142 2.445 − 0.140
B 0.0 50.0 2.468 −0.382 2.445 −0.376
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LPIM gives satisfactory results for this problem.

7. Discussion and conclusions

A local point interpolation method (LPIM) has been presented. In the LPIM, a technique is
proposed to construct polynomial interpolation functions with the delta function property using a
group of arbitrarily distributed points. A local weak form, based on the point interpolation
approximation, is developed using the weighted residual method for two-dimensional solids.
Numerical examples have demonstrated the effectiveness for elastostatics of the present LPIM.
Compared to other meshless methods, the present LPIM is an improvement for the following
reasons:

(a) The LPIM is a truly meshless method based on non-element interpolation and non-mesh
integration.

(b) The imposition of essential boundary conditions is easy in LPIM due to the delta property of
the shape functions.

(c) The computational cost is much lower because of the simple interpolation and the reduction in
the computation of the stiffness matrix.

The present method is very easy to implement, and very flexible for calculating displacements and
stresses of desired accuracy in solids. As a truly meshless method, the present LPIM opens an
alternative avenue to develop adaptive analysis codes for stress analysis in solids and structures.

Fig. 14 Distribution of stress σ yy
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