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Folding analysis of reversal arch by the
tangent stiffness method
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Abstract. This paper presents the tangent stiffness method for 3-D geometrically nonlinear folding
analysis of a reversal arch. Experimental tests are conducted to verify the numerical analysis. The tangent
stiffness method can accurately evaluate the geometrical nonlinearity due to the element translating as a
rigid body, and the method can exactly handle the large rotation of the element in space. The arch in the
experiment is made from a thin flat bar, and it is found that the folding process of the arch may be
captured exactly by the numerical analysis with a model consisting of only 18 elements with the same
properties.
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1. Introduction

This paper presents the tangent stiffness method for the folding analysis of a reversal arch. The
proposed method, an extension of the displacement method, does not use nonlinear stiffness
equations but a simple iterative method. The iterative process has the same convergence as the
Newton-Raphson method. The method distinguishes the nonlinear displacement of an element as a
rigid body from other nonlinearities such as material nonlinearity. The method does not need a
special theory in order to consider finite rotations for the formulation of the element stiffness
equation of each element.

The finite rotations are included in the displacement as axial vectors and thus cannot be summed
algebraically. Even by using a highly accurate theory that introduces highly nonlinear terms in the
displacement field, the exact solution cannot be obtained by simply adding the finite rotations.
Therefore, the new displacement in the iterative process is obtained by using the coordinate
transformation matrix instead of simply summing the increment displacement (Goto, S. et al. 1998,
and Iguchi et al. 1997, 1999).
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The method does not use strains expressed by the nodal displacements, such as the Lagrange
strain (Goto, Y. et al. 1983), but by the element deformations defined by setting the element
coordinates (Goto, S. et al. 1991). The element coordinates are to support the element by a statically
determinate condition. The concept in the method is similar to the slope-deflection method.
Therefore, the element deformations in a line member become the elongation and the slope
deflections at both edges. From elementary statics of structures, the relationship between the
element deformations and the element edge forces is straightforward. The application of Pythagoras’
theorem allows the exact determination of the elongation, and the geometry of the finite rotation
expresses exactly the slope deflection without using the strain tensor.

Though there are many papers published on geometrically nonlinear analysis (Goto, Y. et al.
1991, 1996, and Pai and Plazotto 1996a, 1996b), there are relatively few papers furnishing
experimental results on large displacement phenomena that verify these theories. The experiment
conducted in this study involves folding a reversal arch by giving a torque at an edge. In the
experiment, the torque at the fixed edge, and the bending moment and the displacement at the
crown were measured. The model in the analysis is composed of 18 elements with the same
properties as those of the bar in the experiment. The comparison between the experimental and
analytical results shows that the proposed method can accommodate geometrical nonlinearity
accurately without dividing the model into very small elements.

2. Tangent stiffness method

The tangent stiffness equation is simply and clearly derived by considering the equilibrium
relation given by 

D=JS  (1)

The differential of Eq. (1) is given by

δD=JδS+δJS  (2)

δD=[K0+KG]δd=KT(JS)δd  (3)

where

D, d : external force vector and displacement vector
J : coordinate transformation matrix from element coordinate to global coordinate
S : element edge force vector
K0=JkJT : stiffness related to the element stiffness
k : element stiffness matrix
KT : tangent stiffness matrix

: geometrical stiffness matrix

The tangent stiffness equation of the method is derived from the differential of the equilibrium
equation. Eq. (3) shows that the method can clearly divide the tangent stiffness into the stiffness
related to the element stiffness and the stiffness related to the changing of the direction of the
element edge force. Thus, the element stiffness and the element edge forces make up the tangent

KG=
∂ δJS( )T

∂δd
--------------------
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stiffness matrix, and the displacement does not appear in the tangent stiffness matrix.

3. Element coordinates

The right diagram in Fig. 1 shows the element coordinates defined in this method, while the left
one shows the nodal forces in the global coordinate system. In the element coordinates, the element
has the same support condition as a simple beam, and the element edge forces are independent of
each other. The element deformation is complementary to the element edge forces in the work term.
More specifically, the elongation is the counterpart of N as derived from Pythagoras’ theorem. The
slope deflections are the counterparts of the edge moments at both edges, which can be derived
from the geometry of finite rotation. This allows the evaluation of the exact displacements of the
element as a rigid body, which is crucial for obtaining the solution to large displacement
phenomena, such as arch folding.

4. Managing finite rotations

For the updated displacement in the iterative process, the nodal translation can be expressed by
the polar vector. Then,

(4)

On the other hand, since the nodal rotation is the axial vector, the updated rotation is,

(5)

where

r : iterative indicator

∆ur+1=∆ur+δur

∆xr+1=∆xr δxr=Φ 1– Φ δxr( )Φ ∆xr( ){ }⊕

Fig. 1 Definition of element coordinate system and variables
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∆ur, δur : nodal translation vector and its increment
∆xr, δxr : nodal rotational vector and its increment

The matrix Φ(x) is shown in Eq. (6) below. When a position vector is multiplied by the matrix, the
product is the position vector after rotating around the axial vector x. The matrix can express the
finite rotation exactly. The first order in the power series of the matrix by the rotation vector x
agrees with the transformation matrix derived by Oran (1973). The new rotation in the iterative
process is given by the reversal transformation after multiplying the two transformation matrices
together, which correspond to the nodal rotation vector and its increment.

(6)

where x2=xTx, e is a 3×3 unit matrix and × is the vector product sign.

5. Reversal arch folding

5.1 Experiment

Fig. 2 shows the outline of the experiment, the details of the cross section of the steel member
and the primary state of the reversal arch. The primary shape is a state of buckling from the flat bar
of steel, so that the arch already has the bending moment. One end is fixed at the post, and the
other end is rotated around the u-axis. The rotation angle is 2π from the primary state. As a result
of the rotation, the shape changes from the reversal arch to a ring of one and a half revolutions. Fig. 3
shows the folding process. The stress in the member is within the elastic state, while the
deformation of the reversal arch is very large. When the rotation at the end reaches 5.934 radians,

Φ x( )=xxT

x2
-------- 1 cosx–( )+ecosx−x

x
--- e sinx×

Fig. 2 Outline of experiment
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two points in the member touch each other. However, the present analysis does not consider the
contact forces.

The torque given at one end was measured during the deformation of the arch. Simultaneously,
the bending moment was measured using four strain gages, and the displacement by the transit

Fig. 3 Experimental results of folding process

Fig. 4 Strain gages, terminals and codes
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Fig. 5 Analysis of folding process
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theodolite. Fig. 4 shows how the bending moments on the experimental model were measured. The
experiment was conducted several times, and the measured bending moment values were found to
scatter slightly because of dangling of the codes from the strain gages. The deformation is, however,
stable during the process.

5.2 Analysis

Fig. 5 shows the analytical model that was used to simulate the experiment and the shapes in the
folding process. The model in the analysis is composed of 18 elements with the same properties as
the bar in the experiment. The rotational state at each node can be found from the short segments at
right angle to the real members in Fig. 5. The analysis is carried out beginning from the half arch
with its primary bending stress and dead load. When one end of the arch is displaced 2/3 of the
diameter in the −u direction, the arch is deformed to the primary state of the experiment. Then the
other end is rotated around the u axis. As shown in Fig. 3, the dead load affects the deformation.
The influence of the dead load becomes evident in the solution for the rotation of 2π radians.

The analysis defines the element forces as forces which act at both ends of the element, and they
are independent of each other. The element forces and the element deformations make a pair in the
work term. The analysis assumes that the relationship between the element forces and the element
deformations is linear. Therefore, the nonlinear effect appears only in the translation of the elements
as a rigid body.

5.3 Results and discussion

Figs. 6 to 8 show the comparison of the results obtained from the experiment and the numerical
analysis. Fig. 6 shows the relationship between the rotation and the torque at the one end. The
experimental values are slightly scattered because of dangling of the cables connected to the strain
gages and/or rattling of the torque meter. However, the results from the numerical analysis are in
good agreement with the experimental results. When the angle of rotation is over 1.33 radians, the
torque decreases rapidly. This is why the torque becomes the bending moment in the process of
deforming to the ring shape. The reason for the torque remaining after folding is that the ring is not

Fig. 6 Rotation vs torque at the end of bar
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folded perfectly by the dead load.
Fig. 7 shows the moment at the crown of the reversal arch in the deformation process. There are

small differences between the analysis and the experiment. The experimental values may have
errors because the actual stiffness was not used in the analysis. Instead, a Young’s modulus of
205.8 Gpa was assumed for the steel. Fig. 7 shows the experimental values corresponding to the
rotation angle at the edge from 0 radian to 2π radians and also in the reverse manner from 2π
radians to 0 radian. The final state coincides with the primary state, and the bending moment at the
final state becomes zero. Therefore, the elastic state of the material was maintained during the
experiment.

Fig. 8 shows the displacement at the crown of the arch. Except for the case after contact of the
bar, the numerical analysis agrees well with the experiment during the process of the deformation.
In addition, the shapes of the deformation coincide with the shapes obtained in the experiment.

These figures show that the model composed of only 18 elements in the analysis can simulate the
experiment very well. Furthermore, by assuming just linear material behaviour, the analysis can
simulate the large displacement phenomena with finite rotation.

6. Conclusions

The paper shows that the tangent stiffness method may be used to handle finite rotation in the
folding analysis of a reversal arch. In addition, the definition of the element coordinate system is
essential for evaluating the element deformation in an exact manner. Even if the increment of
rotation is very small, the rotation must be computed as an axial vector. One method for computing
the rotation is to use the coordinate transformation matrix.

The analysis, which considers the finite rotation exactly, can simulate large displacement
phenomena of frame structures in space without the need to divide the structure into very fine
elements. If the strains in the structure are within the elastic regime, the analysis does not need to
consider the geometrical nonlinearity in the element.

Large deformation experiments with the model described in this paper have been achieved. These
have never been done before. The measured torque at the end of arch and the moment and the

Fig. 7 Bending moment at the crown of arch Fig. 8 Displacement at the crown of arch
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displacement at the crown obtained in the experiments are sufficient for comparison with the
analytical results. However, there is still room for improvement in the measurement technique.
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