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Abstract. A direct discrete formulation suitable for the nonlinear analysis of masonry structures is
presented. The numerical approach requires a pair of dual meshes, one for describing displacement fields,
one for imposing equilibrium. Forces and displacements are directly used (instead of having to resort to a
model derived from a set of differential equations). Associated and nonassociated flow laws are dealt with
within a complementarity framework. The main features of the method and of the relevant computer code
are discussed. Numerical examples are presented, showing that the numerical approach is able to describe
plastic strains, damage effects and crack patterns in masonry structures.
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1. Introduction

During the last decades masonry has been the object of large scale research activities. After initial
descriptions based on the concept of no-tension material (Panzeca and Polizzotto 1988, Maier and
Nappi 1985), models were developed by introducing adequate strength criteria (Page 1978,
Benedetti and Benzoni 1984, Dhanasekar et al. 1985, Lofti and Shing 1991, Tomazevic and Weiss
1994, Gambarotta and Lagomarsino 1997, Nappi et al. 1997, Lourenço et al. 1998, Molins and
Roca 1998). Homogenisation techniques were also applied, in spite of some limitations (Pande et al.
1989, Maier, Nappi and Papa 1991, Papa 1996). General overviews are given by Maier, Papa and
Nappi 1991 and Lourenço 1996.

Numerical techniques applied to masonry structures and presented in the literature are mostly
concerned with finite element discretisations. In this paper, we follow a non-traditional discrete
formulation that is applicable to a wide range of physical theories (Tonti 2000A and 2000B), is
based on two dual meshes, allows one to derive governing equations in a simple form and takes
into account the intrinsic features of the measurable physical quantities (such as displacements and
forces in solid mechanics) keeping their roles strictly separate. The discrete formulation is combined
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with a numerical material model specifically developed for masonry. It is suitable for describing
some essential features of brick masonry and only requires a few parameters, whose values may be
estimated even in the case of ancient buildings. Indeed, it takes into account joint slip and brick
fracture, limited to the description of vertical cracks.

Slips and/or cracks are assumed to take place along horizontal and/or vertical interfaces along
which internal forces are mutually exchanged. Horizontal interfaces are representative of mortar
beds, while vertical interfaces are related to vertical joints and/or surfaces along which brick cracks
may develop. Inelastic phenomena require the introduction of one surface (quite analogous to the
yield surface in plasticity) that bounds the elastic domain. When loads along interfaces attain
convenient values, cracks are allowed to develop. In this case, a softening behaviour is enforced. By
introducing piecewise linear approximations of the critical surface and of the softening rule, a linear
complementarity problem is derived. When cracks start to open, tensile stresses along crack surfaces
tend to decrease (owing to development of the so called process zone) till they eventually become
zero. In this case, deformations associated to fractures are to be assumed as reversible, since crack
closure may occur. This fact essentially implies a nonlinear elastic behaviour, that is easily
described through a proper formulation of the linear complementarity problem.

In the following sections the general theoretical background will be discussed and some details
will be given on computational aspects. Finally, numerical tests will be presented to illustrate the
main features of the results to be expected in terms of crack patterns.

2. A discrete formulation

A numerical approach is outlined, by using a discrete formulation and by maintaining a clear
distinction between configuration variables (displacements) and source variables (external tractions,
body forces and loads exchanged along internal interfaces). To this aim, a double mesh is required,
as schematically shown in Fig. 1 with reference to plane problems. The first mesh, assumed as
primal and shown by thick lines, consists of rectangles, such as ABCD, fully analogous to four-node
finite elements. Inside each rectangle, a displacement field can be introduced that depends upon the
vertex displacements. The second, dual mesh (thin lines) also consists of rectangles. Three of them
are pointed out by means of shaded areas. When they are inside the given domain (such as EFGH),
their vertices coincide with the centres of gravity of the primal rectangles. Otherwise, one or more
vertices are at the middle of boundary sides of the primal mesh. Typical examples are given by
JKLF and MNPQ. Rectangles of the dual mesh are used for balance (equilibrium) equations, which
are written by including body forces, internal tractions exchanged along interfaces and external
tractions. For instance, body forces and internal tractions are required for rectangles such as EFGH,
while JKLF and MNPQ require also external tractions (whose values are obviously zero if boundary
sides are not loaded).

It is worth noting that different geometrical elements are considered for the primal and the dual
mesh. This is consistent with the intrinsic nature of the state variables utilised with each mesh. It
also reflects a basic feature of physical quantities, which are always related to appropriate
geometrical quantities. Typical examples are given by temperature and point, heat flow and surface,
mass and volume. In the specific (mechanical) case we are discussing, displacements are associated
to vertices or other points of the primal mesh, while forces are related to volumes or surfaces
(interfaces) of the dual mesh. It is well known that a clear distinction of this kind is often ignored
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(e.g., equivalent nodal loads are fictitious forces applied at significant points of finite element
models). It is obviously true that concentrated loads have been traditionally used for a long time and
that forces are often associated to an application point, but this is a rather crude approximation,
quite useful when particles are discussed. However, both particles and concentrated forces represent
abstract concepts. This statement is simply proved, in the case of loads, by the fact that forces are
measurable quantitities and there is no way, in practice, of measuring loads concentrated at points.

For each rectangle of the primal mesh (e.g., ABCD in Fig. 1) a bilinear displacement field is
assumed, that depends upon vertex displacements. The displacement gradient and, hence, the strain
distribution must be considered inside each primal cell.

Next, we start to consider the dual mesh in order to impose equilibrium. Although it is not strictly
necessary at this stage, we may subdivide each primal rectangle into four triangles (cf. Fig. 2). As
discussed later, these triangles will be utilised as subregions where inelastic strains may be smeared.
In any case, for each dual rectangle without boundary sides, such as EFGH in Fig. 1, it is now
possible to identifiy eight portions of the interfaces that belong to eight different triangles. The eight
portions are obviously shown by segments in Fig. 2. It is understood, however, that they represent
interfaces characterised by their own surfaces Am (m=1, ..., 8). In view of the bilinear displacement
field, a linear distribution of strains occurs along each segment. Consequently, if the material
behaviour is elastic, along each segment there exists a linear stress field. By assuming the usual pair

Fig. 1 Primal and dual mesh 

Fig. 2 Dual cell and relevant triangles
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of Cartesian orthogonal axes x (horizontal) and y (vertical), the stress components σyy and σxy along
any horizontal segment represent the normal and shear forces per unit surface exchanged through a
certain interface. Similarly, in the case of vertical segments, such forces correspond to the stress
components σxx and σxy. Since the stress distribution is linear along each segment, products such as
{RmsmAm} immediately provide the resultant forces (no summation implied). Here, Rm is a rotation
matrix and sm is the stress vector that collects the three stress components σxx, σyy, σxy at the middle
of the m-th segment. It is quite obvious that Rm is a 2× 3 matrix, since we need to transform the
stress components into the normal and shear forces per unit surface exchanged through an interface.

It is now possible to write one balance (equilibrium) equation for each dual rectangle by setting

Σm=1,...,8 RmsmAm+FB=0 (1)

where FB denotes the body force acting on the current rectangle.
When dual rectangles are along the boundary (for instance, JKLF and MNPQ in Fig. 1) a lower

number of triangles, say T, will be used (e.g., T=2 and T=4 for JKLF and MNPQ). In addition,
proper surface forces FS shall be introduced into the equilibrium equation to account for given
external loads along the boundary. Thus, Eq. (1) becomes

Σm=1,...,T RmsmAm+FB+FS=0 (2)

Stresses can be expressed as functions of strains, and strains, in turn, as functions of four primal
displacement vectors (those concerned with the nodes of the primal cell to which the current
segment interface belongs). If the material is assumed to be linear elastic, this operation is carried
out quite easily and a linear system of equations is derived. This system is formally analogous to
the one found with finite elements (e.g., Ku=Q, if u collects displacement components of the nodes
of the primal mesh, while Q is related to body and surface forces acting upon dual cells).

Inelastic problems, however, can also be considered. To this aim, we may introduce linear
distributions of inelastic strains along the interfaces of the dual cells. Alternatively, constant inelastic
strains may be assumed within each triangle that represents one subdivision of a primal cell. An
example is given by the cell in Fig. 2 subdivided into the triangles 1, 8, 9, 10. We shall follow this
approach and will enforce the constitutive law at the mid point of each segment. Thus, by
introducing the inelastic strain vector em

I at each triangle (m=1, ..., T*, with T*
ú 8), the stress vector

in Eq. (1) or (2) becomes sm=Dm(em− ), where Dm is the material stiffness matrix and em the
vector of total strains. In view of this relationship, by expressing strains as functions of primal
displacements the equilibrium Eqs. (1) and (2) lead to

 Ku + Lw = Q (3)

Here, w collects all the inelastic strain vectors . By combining Eq. (3) with appropriate constitutive
laws, step-by-step solutions of incremental problems can be found.

3. A numerical model for masonry

The discrete formulation discussed in the previous Section has been applied to the numerical
analysis of masonry, described as a macroscopically homogeneous material (without considering the
mechanical properties of mortar and bricks or stones separately). Let us focus, for instance, on the
masonry assembly of Fig. 3 subjected to the uniform tractions Nx, Ny and S. It may be represented
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by a macroscopically homogeneous discrete model (such as the simple one represented in Fig. 2).
Then, joint slips can be described by assuming that they may occur along the interfaces of the
primal cells (e.g., segments 1-8 in Fig. 2). This can be done by introducing an adequate criterion
(such as Mohr-Coulomb’s condition) and by defining a convenient yield surface in the space Nx-Ny-
S. So far, we have considered piecewise linear approximations of the surface. An example is given
in Fig. 4, that shows the intersections of seven yield planes with the plane Ny-S (which is of interest
for horizontal interfaces). Similar intersections may be considered in the plane Nx-S for vertical
joints. The circle in Fig. 4 corresponds to the limit stress state for joints subjected to tensile loads.

Similarly, fracture processes in bricks may be assumed along vertical interfaces (e.g., segments 3,
4, 7, 8 in Fig. 2). Thus, further inelastic strains (corresponding to cracks in bricks) are allowed to
develop along these interfaces, when brick elongations (i.e., tractions Nx and Ny) attain critical
values. Consequently, the relevant yield surface consists of one additional plane, whose projection
on the Nx-Ny plane is shown in Fig. 5 with a thick line. The thin line has no interest in this context,
since it refers to values of Nx and Ny for which horizontal cracks might occur. Obviously, an
approximation is introduced, since brick cracks, in principle, may have any orientation. It is true,
however, that vertical or nearly vertical cracks are usually dominant in bricks, so that significant
errors are not introduced by this assumption. On the other hand, a numerical model has been
obtained, that is able to describe the main features of masonry by considering a small number of
possible failure modes (slips or cracks at joints and vertical cracks in bricks). This choice seems to
represent a reasonable compromise between the advantages of a simple description and a satisfactory

Fig. 3 Typical brickwork

Fig. 4 Yield planes 1-7 Fig. 5 Yield plane 8
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level of accuracy. Indeed, the model appears suitable for practical applications, since limited
experimental information is required: joint strength and critical brick elongation. It is worth noting
that such parameters can be estimated, at least to some extent, even in the case of old historical
buildings.

4. Some computational aspects

The model discussed here implies crack effects smeared throughout a certain volume element.
Displacement discontinuities are not explicitly considered. Consequently, when the relative displacement
d between two points is partially due to crack opening, the portion of d related to inelastic effects is
given by ε*L*, where ε* denotes one inelastic strain component and L* is a characteristic length.
Therefore, mechanical properties are derived from experimental data in terms of forces and
displacements measured in masonry units (subject to macroscopically homogeneous stress states).
Next, critical values of interface loads are found by considering the dimensions of primal cells.

Let us consider, for instance, a shear test that implies a relative horizontal displacement between
the upper and the lower edge of one masonry unit. The inelastic part (say η) of the displacement
can be associated to an inelastic strain  such that η=2h , where h is the height of the test
specimen.

If we consider uniaxial tension, we may focus on the fracture energy EF required to develop a
major crack, such as a horizontal crack through a whole masonry unit. In this case, at the end of the
crack propagation process, no tensile strength is available along the vertical direction. A softening
law can be defined so that the same energy EF be found when ε* attains the value at which the
normal stress becomes zero. In this way, mesh dependent results (quite typical with softening) may
be avoided (cf. Bazant and Cedolin 1979). For instance, if h is again the height of the masonry unit
and δ* represents the crack opening at the end of the process (exactly when the softening branch is
over and the tensile strength becomes zero), the critical value ε* shall correspond to the ratio δ*/h. 

The approach described so far, may give non-desired effects owing to inelastic strains that are
uniform throughout triangular regions. Let us consider, for instance, one rectangular wall subject to
uniform downwards displacements at the top, while zero vertical displacements are imposed at the
bottom and horizontal displacemens are not constrained anywhere. When the compression stress is
sufficiently high, vertical cracks should develop (for instance along the vertical interfaces of the
dual cells that make up the discrete model of Fig. 2). Since the effects of these cracks are described
by means of smeared inelastic strains , such strains should be uniform. However, on the basis of
the yield surfaces introduced in the previous Section, only triangles such as 3, 4, 7, 8, 9 in Fig. 2
may be subjected to inelastic strains, since a critical value of the force Ny (cf. Fig. 5) can only occur
along the vertical interfaces. On the other hand, triangles such as 1, 2, 5, 6 and 10 remain in the
elastic range. Consequently, horizontal stresses σxx (not consistent with the real behaviour) are
generated in these triangles. The problem is removed by imposing that an inelastic strain vector 
in the k-th triangle enforce an inelastic strain vector equal to { } in the adjacent triangles that
belong to the same primal cell. Thus, inelastic strains  in triangles such as 8 and/or 9 imply
inelastic strains (  ) in 1 and 10. In this way, the total additional inelastic strain in 1 and 10
equals  if both 8 and 9 are affected by the inelastic strain .

By following this approach, inelastic strains  were correctly computed for one rectangular wall,
whose primal mesh is shown in Fig. 6 by thin lines. As pointed out above, a uniform stress field
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was obtained by constraining vertical displacements along the bottom edge and imposing equal
downward displacements on top. As the stress attained a critical value, the eighth mode (cf. Fig. 5)
became active and uniform inelastic strains  started to develop. Such strains may be interpreted
as smeared strains that actually correspond to displacement discontinuities along the vertical
interfaces located between dual cells. At this stage the crack pattern is easily identified: for instance,
thick lines (cf. Fig. 6) may be used to represent interfaces subjected to inelastic strains which are
associated to the eighth plastic mode.

Since the elastic domain is bounded by seven or eight planes at each interface, the inelastic strains
of each primal cell are found through an equation such as eI=mz, where z contains thirty plastic
multipliers (one for each plane). The vector eI collects four subvectors  (k=1, ..., 4) that consist of
the entries , , . The matrix m is so defined that any inelastic strain ε I in the k-th triangle
(e.g., 1 in Fig. 2) implies a strain (  ε I ) in the contiguous triangles (e.g., 8 and 9). At this stage, we
can introduce the vector S that collects the subvectors Sk=DkAk(ek− ). Here, Dk is the stiffness
matrix of the k-th triangle (k=1, ..., 4) and ek is the strain vector at the mid point of the interface
portion inside the same triangle. The term Ak denotes a diagonal matrix whose non-zero entries are
Ak=tklk, where (tk lk) represents the product between the thickness and the length of the interface
portion inside the k-th triangle (i.e., the area of such portion). The vector S can also be expressed in
incremental terms. By introducing the vector So that denotes the stresses at the beginning of the
current time-step, we obtain S=So+D{ ∆e-m∆ z}, where D is the block diagonal matrix diag[DkAk],
with no summation implied. Thus, for each primal cell we obtain

y=nTSo+nT D{ ∆e−m ∆ z} −r ú 0S ∆ zû 0S yT∆ z=0 (4a-c)

Here, the vector r collects the distances of the yield planes from the origins of the spaces in which
they are defined. Of course, thirty distances are required for each primal cell (e.g., seven planes for
the triangles 1 and 10 in Fig. 2, eight planes for the triangles 8 and 9). The matrix n, instead, is
made of outward unit vectors which are normal to the yield planes and project the stress vectors
along the directions which are normal to the yield planes. The complementarity constraint (4c)
implies non-zero inelastic strains whenever at least one yield plane is violated. The above
relationships, to be satisfied for each cell, allow us to perform a nonlinear step-by-step analysis of
masonry. To this aim, such relationships must be combined with Eq. (4) or its counterpart written in
incremental terms: K ∆u+L∆w =∆Q (Maier 1970 and Cottle et al. 1992).

For a proper description of masonry behaviour, a hardening/softening rule is needed for the yield
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Fig. 6 Brickwork subjected to uniform compression and relevant crack pattern
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planes by introducing a convenient function r = r (∆ z). For the sake of simplicity, single softening
branches have been considered (cf. Fig. 7). Therefore, a piecewise-linear approximation has been
adopted for each entry, say r = r(∆λ), of the vector r. The relatively simple plot of Fig. 7, is
characterised either by the softening branch (a) or by the horizontal branch (b). Branches such as (a)
are assumed at the beginning of the load history. Later, if the distance of one plane from the origin
becomes zero, the branch (b) is utilised for that plane.

It is worth noting that more complex relationships (involving multi-branch softening curves) may
be taken into account.

Some examples of such softening laws, albeit not necessarily related to fracture but still entirely
applicable, have been proposed recently by Tin-Loi and Ferris (1997) and Tin-Loi and Xia (2000).
It should be noted that, in the present stepwise approach where each step is assumed to be fully
reversible (or holonomic), proper descriptions of such holonomic softening laws are not entirely
straightforward. The seminal work in this direction was carried out by Bolzon et al. (1994) who
derived their two-branch piecewise linear softening model on the basis of mechanical considerations
of contact and spring devices. It may be possible, within the present context, to assume simpler,
quite acceptable but approximate laws involving an essentially diagonal softening matrix. This
aspect, however, requires further investigation.

The linear r-∆λ plot of Fig. 7 implies r = ro+H∆ z, with H constant, and makes Eqs. (4) define a
linear complementarity problem. When H is given, the structural problem can be solved by an
iterative prediction/correction process for each increment ∆Q:

(i) at the beginning of each step, we set ∆w = 0 and ∆u is found such that K∆u+L∆w=∆Q;
(ii) for each primal cell, increments ∆e are computed and the problem (4) is solved;
(iii) the vector ∆w is updated, a new increment ∆u is found such that K∆u+L∆w=∆Q and the

process continues from point (ii) until the difference between the norms of ∆w (or any other
significant vector) at two subsequent iterations does not exceed a given tolerance;

(iv) The vector r is updated and the subsequent increment ∆Q is considered.
So far, numerical tests have been carried out by assuming a partial interaction between yield

planes. To this aim, block diagonal H matrices have been assumed. More specifically, 2× 2 blocks
have been used for symmetric yield planes (2 and 3, 4 and 5, 6 and 7 in Fig. 4). Single diagonal
entries have been used for planes 1 (cf. Fig. 4) and 8 (cf. Fig. 5), excluding any interaction with
other planes. Equal entries have been assumed for 2× 2 blocks. Thus, during a given time step, the
same translation is imposed to the planes that belong to a certain pair. At the end of each time step
the entries of r are updated even when the relevant inelastic modes have not been activated during
the load increment. In other words, it is assumed that any reduction of strength (implied by the
translation of one plane) also affects other inelastic modes. Consequently, at the end of each step,
the minimum ratio r/ro is considered for each triangle (cf. Fig. 2) and is usually imposed to all the

Fig. 7 r vs ∆ λ plot
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other planes concerned with the same triangle. Exceptions are found when that ratio would enforce
a translation of one plane which is not consistent with the stress level determined at the end of the
last time step. In this case the largest translation is enforced which is consistent with the current
stress.

Thus, damage is taken into account by imposing a progressive decrease of the strength. The
model may be enhanced by considering some loss of stiffness related to inelastic strains. Indeed, the
material compliance matrix (and, hence, the stiffness matrix) can be updated as inelastic strains
increase (Nappi et al. 1997, Papa and Nappi 1997). So far, this option has not been implemented in
the framework of the formulation discussed in the paper. However the stiffness of the system is
affected by crack opening, as pointed out in what follows. This fact will also be evident when
numerical tests will be discussed in the next Section.

The model has been implemented with the objective of considering possible effects due to crack
closure. To this aim, we introduce a new vector, say ∆ zo, for every primal cell characterised by one
or more interfaces that have fully lost their tensile strength (zero distance of one or more planes
from the origin). The only non-zero entries of that vector are the terms which denote plastic
multipliers associated to the planes passing through the origin. Such terms are given the values
attained by the multipliers at the end of the previous time step. Next, we consider the nI interfaces
where no plane passes through the origin and where at least one normal (positive) inelastic strain

 combined with a positive normal stress  has been found at least once (k=1, ..., 4). Thus, we
can define a vector qo made of nI entries qj (qj=  if  and qj=0 if <0). We also introduce
the nI by nI diagonal matrix h*. Its j-th non-zero entry is ( ), if  denotes the largest value
ever attained by . Eventually, instead of (4), we may consider the problem

y=nTSo+nTD{ ∆e+Cqo+m∆ zo−Cq−m∆ z} −r ú 0,   ∆ zû 0,   yT∆ z=0 (5a-c)

v=BSo+BD¢∆e+Cqo+m∆ zo−Cq−m∆ z¤−h*q ú 0,   q û 0,   vTq=0 (5d-f)

where C selects the entries of qo in such a way that the effects of inelastic strains related to a certain
interface be taken into account also in adjacent triangles (as discussed above). The matrix B selects
those entries of the stress vector, which provide the nI normal forces associated to the strain
components . Obviously, both the constraints (5d-f) and the vector ¢Cqo¤ in the inequality (5a)
will not be considered if qo is empty. When conditions (5) are satisfied, the normal inelastic strains
are progressively recovered if the corresponding total strains decrease. On the other hand, if normal
total strains increase, the increments of the inelastic strains at the end of the current time step are
given by ¢Cq+m∆ z−Cqo−m∆ zo¤.

The problem (5) combined with the linear system K∆u+L∆w=∆Q generalises the governing
equations

σo+k(∆ε+ξo−∆λ−ξ)=σ, σ −h ∆λ−σ*=y ú 0, ∆λ û 0, y∆λ=0 (6a-d)

σ −gξ=v ú 0, ξ û 0, vξ=0 (6e-g)

These equations govern the response of the mechanical system of Fig. 8a. The parameters ξ and g
play the role of q and h* in the problem (5). The mechanical model consists of three linear elastic
springs (whose stiffness parameters are k, h<0, g), one rigid, perfectly plastic slip (with yield limit
equal to σ*) and one no-tension element characterised by reversible strains ξ (Nappi et al. 1997).
The relevant σ −ε plot is given in Fig. 8b. The dashed path in Fig. 8b, in principle, may be
followed in view of conditions (6), but is avoided by setting h=0 when σ =0.
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The meaning of Eqs. (6) may be easily understood by observing that the inequality (6e)
practically enforces a linear hardening branch for σ û 0 (path in Fig. 8b characterised by positive
stresses and positive slope). On the other hand, the inequality (6b) enforces a change of stiffness
when the critical stress σ* is attained. Obviously, for h<0, softening occurs.

5. Numerical tests

In order to test the numerical approach presented in the paper, some problems were solved using a
simple implementation of Lemke’s method (Cottle et al. 1992).

First, we paid some attention to the problem concerned with crack opening and closure. To this
aim we considered the same brickwork discussed in the previous Section when we dealt with the
crack pattern induced by compressive stresses. The wall was 1.5 m wide and a critical tensile stress
equal to 1 MPa was assumed for mortar beds. A uniform stress field was imposed by enforcing
vertical cyclic displacements to the top edge (path O-A-B-C-B-D-E-D-F-O-G in Fig. 9).

Top vertical forces per unit thickness (1 mm) are reported as functions of the vertical
displacements (cf. Fig.9). It is quite clear that crack closure is taken into account, since the inelastic
strains associated to the softening behaviour are reversible and tend to be recovered during
unloading phases. Note that the global stiffness of the system highly depends on possible crack
opening, as shown by the slopes of the paths B-C, D-E and F-O. When crack closure occurs, the
initial stiffness is completely recovered (path O-G).

Fig. 8 (a) Mechanical model and (b) relevant σ − ε plot 

Fig. 9 Vertical force [N] vs displacement [mm] in the presence of uniform tensile stresses
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A further example is given in Fig. 10. A shear wall was discretised by 20 primal cells (length: 1.5 m,
height 1.7 m, Young’s modulus 104 MPa; Poisson’s ratio: 0.15; brick tensile strength: 3 MPa;
mortar tensile strength: 1 MPa). The wall was fully constrained at the bottom edge. The top edge
was loaded by enforcing uniform compressive stresses (1 MPa). Next, cyclic horizontal displacements
were imposed. As shown in Fig. 10, the computer code easily shows the crack pattern: thick,
horizontal segments refer to cracks along mortar beds, while vertical lines are concerned with
vertical joints. The length of segments is proportional to inelastic displacements and, hence, to crack
opening. It is also possible to understand the type of crack by considering the plastic multipliers that
are involved. For instance, Fig. 10a shows inelastic strains associated to planes 1-3 in Fig. 4. Thus,
tensile stresses appear to be the main cause. On the other hand, cracks depicted in Fig. 10b are
referred to modes 4-7 and are essentially due to shear loads, as suggested by their location. Since
this numerical example involves one brickwork whose top edge is free to rotate, cracks due to
tensile stresses are subjected to significant opening and closure effects. This is quite evident by
considering the plot in Fig. 11, that gives the reaction shear force per unit thickness (1 mm) as a

Fig. 10 Cracks due to (a) modes 1-3 and (b) modes 4-7 

Fig. 11 Horizontal force [N] vs displacement [mm] for clamped wall with free top edge
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function of the horizontal displacement at the top. Several changes of slopes can be noted in the
elastic range during unloading phases. They are clearly related to crack closure.

The last example is concerned with one brickwork discretised by sixty primal cells (length: 1.5 m;
height: 2 m). The mechanical properties of the previous problem were considered. In this case the
wall was clamped at the bottom and rotations were not allowed at the top. As before, a uniform
compressive stress (1 MPa) was followed by cyclic horizontal displacements imposed along the top
edge. A progressive reduction of strength can be noted, as typical of brickworks subjected to this
kind of loads (cf. Fig. 12). Again, the reaction force is reported in the plot and is referred to a unit
thickness (1 mm).

As already pointed out, a progressive decrease of stiffness should be introduced in order to
enhance the model and to describe the actual masonry behaviour. However, the main features of
masonry such as crack opening and closure, softening effects, progressive decrease of strength
(cycle after cycle) appear to be properly described by the non traditional approch presented in the
paper even in the present, simplified form.

6. Conclusions

A numerical approach to the analysis of masonry structures has been presented. It is based upon a
discrete formulation that requires a dual mesh (one for configuration variables, one for source
variables). The dual mesh spontaneously suggests the possibility of taking into account inelastic
effects at joints and cracks in bricks by assuming that interfaces between dual cells may be
interpreted as surfaces along which slips and/or detachments may occur. These effects are described
by means of smeared inelastic strains fully analogous to the ones encountered in the framework of
plasticity. The constitutive law has been enforced by solving linear complementarity problems since
piecewise-linear yield surfaces and softening rules have been considered.

The approach is able to describe the essential features of masonry, including crack opening and
closure (with consequent recovery of the initial stiffness when cracks are completely closed). A
limited number of experimental parameters is required, so that the technique discussed in the paper
does appear to be suitable for a significant range of practical applications.

Fig. 12 Horizontal force [N] vs displacement [mm] for clamped-clamped brickwork
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