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Nonlinear vibration of Timoshenko beam due to moving
loads including the effects of weight and longitudinal
inertia of beam

Rong-Tyai Wangt

Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan, China

Abstract. The effects of weight and axial inertia of a beam are taken into account for studying the
nonlinear vibration of the Timoshenko beam due to external loads. The combination of Galerkins method
and Runge-Kutta method are employed to obtain the dynamic responses of the beam. A concentrated
force and a two-axle vehicle traversing on the beam are taken as two examples to investigate the response
characteristics of the beam. Results show that the effect of axial inertia of the beam increases the
fundamental period of the beam. Further, both the dynamic deflection and the dynamic moment of the
beam obtained with including the effect of axial inertia of the beam are greater than those of the beam
without including that effect of the beam.
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1. Introduction

The responses of a beam due to external loads are normally obtained via the small deflection
theory. Neglecting the effects of weight and longitudinal inertia of the beam, the small deflection
theory implies that both the maximum deflections as well as the maximum moment of the structure
induced by a moving load are greater than those induced by the load in a static situation (Wang
1997). The responses of the beam caused by a large load may, however, be too large via the small
deflection theory. Employing the large deflection theory can correct these overestimated results.

The large deflection theory for beams indicates that the coupling effect between longitudinal force
and transverse deflection of a beam stiffens the structure. The effects of initial imperfections (ITanko
1990, Kim and Dickinson 1986, Plaut and Johnson 1981), large amplitudes (Mei 1973, Reddy and
Singh 1981) and longitudinal extension (Bhashyam and Prathap 1980) of the beam, consequently,
increase the fundamental frequency of the structure. Using the large deflection theory and neglecting
the effect of weight of a beam, Hino, et al. (1986) have demonstrated that the fundamental
frequency of the beam increases as the magnitude of the load traversing on the structure increases.
Neglecting the effect of weight of beam, Xu, er al. (1997) have demonstrated that the effect of the
friction force between the moving mass and beam is significant on the longitudinal motion of the
Bernoulli-Euler beam.

Sometimes, the weight of the beam is heavier than the magnitude of the external load acting on
the structure. Therefore, the effect of the weight of the beam cannot be neglected while studying the
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dynamics of the beam. The transverse deflection is normally greater than the longitudinal
displacement. Moreover, the inertia of transverse motion is more dominant on the transverse
vibration of beam than the longitudinal inertia is. Therefore, the effect of longitudinal inertia of
beam is neglected in most case studies of nonlinear vibration of beam (Ozkaya er al. 1997).
Neglecting the longitudinal inertia of beam, Wang and Chou (1998) have put the weight effect of
the beam into the study of nonlinear vibration of the Timoshenko beam due to a set of two moving
forces. Their results indicated (1) a force with a large magnitude traversing on the beam at a high
velocity will cause the Timoshenko beam to exhibit a small fundamental period and (2) the effects
of weight on the dynamic responses of the beam is not important for a short and thick beam.

Neglecting the longitudinal inertia adds a constrained condition on the vibration of beam.
Therefore, the effect of neglecting the longitudinal inertia stiffens the beam. In such a situation, the
responses of the beam will, however, be underestimated. The large deflection theory and the effects
of weight and axial inertia of the beam should be, therefore, taken into account simultaneously in
order to obtain accurate results.

The large deflection theory will be adopted to derive the equations of motion of the Timoshenko
beam caused by external loads. The static responses of the beam due to its own weight are
obtained. Due to the coupling effect of longitudinal force with the transverse deflection, the
equations of motion of the beam cannot be solved analytically. Therefore, a set of mode shape
functions obtained from the small deflection theory for the beam is incorporated in the Galerkins
method to solve the nonlinear problems. A concentrated force and a two-axle vehicle traversing on
the beam are taken as two examples. The dynamic responses of a beam obtained via the large
deflection theory, including the effects of weight and axial inertia of the beam, are discussed.
Further, the dynamic responses of the vehicle are also investigated.

2. Governing equations of beam

An external force F(x,?) acts on a simply supported Timoshenko beam is depicted in Fig. 1.
Both ends of the beam are immovable. The beam is considered to be homogeneous and isotropic
with Young’s modulus E, Poissons ratio v, shear modulus G, mass density p, length L, thickness 4
and width b. The co-ordinate of the neutral axial of the beam is denoted as x. The static
deformations of longitudinal displacement, transverse deflection and bending slope of the beam
caused by its own weight are denoted as u,(x),w,(x), and W, (x), respectively. Further, the
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Fig. 1 A distributed load F(x, f) on a simply supported Timoshenko beam
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corresponding longitudinal strain, shearing strain, longitudinal force, shear force and bending
moment of the beam are denoted as &,(x), y,(x), n,(x), g,(x) and m,(x), respectively. The
corresponding dynamic components of the beam induced by the external force are denoted as
us(x, 1), wa(x, £), Wi(x, 1) as &(x, 1), Ve(x, 1), ns(x, £), g«(x, t) and m.(x, 1), respectively.

The displacement fields # and w of the beam due to the combined action of its own weight and
the external force are

u(x,z,t) = u,(x) +us(x, 1) —z¥,(x) —zWu(x, 1), (1a)
w(x,z,t) = wy(x) +w.i(x, 1) (1b)
According to the large deflection theory for beams, the strain fields of the beam are
E=gt&—zW, -z, Y=V, + Vi (2a, b)
in which
g, = u,+0.5(w,), v, = w, -, (3a, b)
£ = ul + wiw, +0.5(wi)’ i = Wi — 4, (4a, b)

where ()" denotes differentiation with respect to the spatial x. The longitudinal force », shear force
g and bending moment m of the beam are

n=n,+n.,q=q,tq«,m=m,+ ms, (5a, b, ¢)
where,

(no’ n*) = EA(go’ E*)’ (qo’ q*) = KGA(yo’ y*)’ (mo’ m*) = _E[(L,UL,, W*), (6a9 ba C)

in which « is the shear coefficient, 4(= bh) is the cross-sectional area and I(= bh3/12) is the
second moment of area about the y-axis of the beam.
The strain energy Vand kinetic energy KE of the beam are

2
moy 4 + +
V= IDE'A EI prey x/2,KE = J’p(Au AW’ I‘-IJ )dx/?2 (7a, b)

in which (.) denotes differentiation with respect to time . The work P done on the beam by the
combination of its own weight and the distributed force is
L

P = J’(pgAw + Fw.)dx (7¢)
0
Substituting ¥, KE and P into Hamilton’s principle yields the equations of static equilibrium as
ny=0, —-my+q,=0,n,w,+q,+pgd =0, (8a, b, ¢)
and the equations of motion as
v — PAit. =0, mi—gq. + pIPe =0, (9a, b)
— W' = (W, + Wh) = e + pAIP. = F(x, 1) (9¢)
The boundary conditions at both simply supported and immovable ends of the beam are

Wo=ws =0,u,=u:=0,m,=m:« =0 (10a, b, ¢)
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3. Static responses

The solution of Eq. (8a) that satisfies the boundary conditions at immovable ends is

L
n, = EAIWO dx/?2 (1
0
Eliminating ¥, between Eqs. (8b) and (8c) and simplifying the result yield
w —cwl = f (12)
where,
a=to 2 "o = pgA

“xGA'¢ TEa+ 1) TEl(a+ 1)

The solution w, of Eq. (12) and the corresponding moment that satisfy the boundary conditions
at both simply supported ends are

fE}al[cish(cx) +

czﬂ

x xcosh(el)

Wo = L 13

)

1} + az[sinh(c)c) _XSin(cL)} x(x=L) 0

0 (13a)
L 2 g

m, = —Elf[(az + aca,)sinh(cx) + (a, + aca,) cosh(cx) — %J (13b)

c
where,

a, =

1O [l—cosh(cL)JDa __ 1 Ua, l-cosh(cL)
1 _GZCZEL_Z sinh(cL) 2 piSn O

0 g2l ¢ sinh(cL)
Further, the shear force obtained from Eq. (8b) is
q, = —EI¢f[(a, + aca,)cosh(cx) + (a, + dca,)sinh(cx)] (13¢)

Substituting Eq. (13a) into Eq. (11) yields the nonlinear equation in terms of n, as the symbolic
form

n, = N(n,, pgd, L) (14)

The solution 7, of Eq. (14) can be obtained by the numerical method.

4. Dynamic responses

Solutions of the set of nonlinear partial differential Eqs. (9a)-(9¢) cannot be obtained exactly.
Therefore, Galerkin’s method is adopted here to find the approximate solutions of Egs. (9a)-(9c).
Any two distinct sets of mode shape functions of the Timoshenko beam, obtained from the small
deformation theory, have shown to be orthogonal (Wang 1997), i.c.,

L

[UU, U)dx = (0,0), [[¥(M, — 0) - W,0]ds = 0,
0 0
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L

Zr(AW,-W_/-+[‘P,-W/-)dx=O, i£j (15a, b, ¢)

0
in which U, is the jth mode shape function of the longitudinal displacement, and W), ¥, O, and
M, are the ith mode shape functions of transverse deflection, bending slope, shear force and
bending moment of the beam, respectively. Therefore, the dynamic responses of transverse
deflection, bending slope, shear force and bending moment of the beam can be expressed in the
following form for Galerkin’s method

{W*! l»U*v g m*} (x! t) = Z'Bl(t){ Wiv L’Uiv in MI} (X) (163)

N
u(t) = Z C(0) Uy(x) (16b)
=1
in which B, and C; are needed to be determined. Moreover, the dynamic longitudinal force listed
in Eq. (5a) is expressed as

N N N
n.(f) = EA (DU + S B()w,wE+0.5 B,()B()W W (16¢)
|:,'Zl %/‘ iZ\ ,'Zl_/Z] ! !
Substituting Eqs. (16a)~(16¢) into Eqs. (9a)~ (9¢), respectively, yields

N N
pAY UCi=n: =0, S {B(-0,+M)+pI¥B} =0 (17a,b)

i=1 i=1

1\" ’ as

z{—B, Q,+ pAW,B;} —(n, + na)wi —naw), = F(x, t) (17¢)

i=1

Multiplying Eq. (17a) by U, and integrating the result from x=0 to x=L yield the nonlinear
differentiation equation in the symbolic form

m,C;—g(C, B, B)=0, j=1,2,... (18)
in which
L L ,
m, = J’pAU?dx, g/(C, B, B)) = [Un.dx (19a, b)
0 0

Further, multiplying Eq. (17b) by ¥, Eq. (17¢c) by W, and integrating the summation from x=0

to x=L yield the nonlinear differentiation equation in the symbolic form
S_/'Bj +QJ‘B_/’_pj(Ci! Bi! Bkv Bl) :F}'(t)! ] = 1!2! (20)

in which
L

s = gp(AVV? #19)ds, g, = [[ W~ 0) + W, (-0l (21a, b)
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L L

p(Cy B, B, B)) = J’Wj[(no +n)ws + nawpldx, Fi(t) = J’F(x, HWdx. (2le, d)
0 0

The set of nonlinear differential Eqs. (18) and (20) can be solved by the Runge-Kutta method.

5. Moving loads
In this section, two types of moving loads are considered: concentrated load and two-axle vehicle.
5.1. Concentrated Force
A concentrated force traversing at a constant velocity v on the beam is depicted in Fig. 2. The
form of the force is
Flx,t) =F,0(x—vt), 0<¢t<T(=L/v) 22)

where T is the duration of the force traversing on the beam and is the impulse function. The
equations of motion of the beam are
1.0<¢t<T

mféj -g(Cp B, B) =0 (23a)
s;B; +q,B,—p,(C,, B, B,, B)) = F,W,(vt) (23b)

m,C;—g/(C,,B,B) =0

R

vt —r—
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Z

Fig. 2 A concentrated force traversing on the Timoshenko beam at a constant velocity v

Fig. 3 A two-axle vehicle traversing on the Timoshenko beam at a constant velocity v
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s;B;+q,B,—p,(C, B, B;,B)) = 0 (24b)

The initial conditions of the beam are set at zeros.
5.2. Two-axle vehicle

A two-axle vehicle travelling on the Timoshenko beam at a constant velocity v is depicted in Fig.
3. The vehicle has the mass M and the polar moment of inertia J. Each axle has a suspension with
the spring constant K and the damper coefficient D. The distance from the mass center to both axles
is e. The vertical displacement and the pitch angle about the mass center of the vehicle are,
respectively, denoted as H and 6. The transverse displacement at the contact point between the front
(or rear) wheel and the beam is denoted as w,; (or w,,). The frictional forces between the vehicle
and the beam are neglected in the following analysis. The contact force acting on the beam due to
the vehicle’s movement is

1.0t (= 2e/v)

F(x, 1) = [K(H=-eB-w) + D(H—eB—,)3(x —vi)], (25)
where
we (1) = (wo+w)| _ o wa(t) = [v(w, +wh) +i], -, (26a, b)
2.4, <t<T
F(x, 1) = [K(H=-eO-w,,) + D(H—e0—1,)]0(x —vi) + K(H—eO—w,,)]
ox—v(t—1)], 27
where
weat) = (wo+we)| 0 W) = [v(w, +we) +9b] g (28a, b)
3. T<t<t +1
F(x, 1) = [K(H+eB—w_,,) + D(F+eB—.,)]d[x —v(r—1,)], (29)
4. T+t <t
F(x,t) =0, 30)
The equations of motion of the whole system are
1.0t
MH +2(KH + DH) —(Kw_, + Dw,,) = Mg (3la)
JO+26*(KO+DB)—e(Kw,, + D) = 0 (31b)
m,C;—g,(C,, B, B) = 0, (31c)
s;B;+q,B,—p,(C,, B, B,, B)) = F(1), (31d)
where

Fi(t) = W,(vt)K(H —eO8—w,) + D(H —eB—1,,) (32)
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2. 4,<t<T
MH+2(KH+ DH) —[K(w,, + w,) + D(w,, +W,)] = Mg, (33a)
JO+26°(KO+DB) + e[K(w, ~w.,) + D(w,~we)] = 0, (33b)
m,C;—g,(C,,B,B) = 0, (33c¢)
SJBJ +q,B; _pj(Ci! B, By, B)) = Fj(f)a (33d)
where

Fi(t) = W,(vt)[K(H-eO0-w,) +D(H—eO—,)] +

W lv(t—t)][K(H +e0—w,,) + D(H+eO—,,)] (34)
3. T<t< T+t
MH+2DH+2KH - DV, —Kw,; = Mg (35a)
JO+2¢* (KO + DB)—e(Kw ,+Dvv,,) = 0 (35b)
m,Ci—g(C, B, B) = 0 (35¢)
s,B;+q,B,—p,(C,, B, B, B)) = F(1) (35d)
where

F(t) = Wv(t—1)[K(H+eO—w,,) + D(H+eB—1i,,)] (36)

4. T+t <t
MH+2DH+2KH = Mg, (37a)
JO+2°(DO+KO) = 0, (37b)
m,C;—g,(C,, B, B) = 0, (37¢)
s;B;+q,B,—p,(C,, B, By, B)) = 0, (37d)

The initial conditions of the beam are set at zeros. Further, the initial conditions of the vehicle are
set as H(0)=Mg/2K, 6(0)=0, H(0)=0 and 6(0)=0.

S o LWAI
PRI —— LWAN

o 1 2 3 4 5
t(sec)

Fig. 4 Comparison of two deflection theories on the history of deflection at the mid-point of the Timoshenko
beam (L=20 m, 5#=0.5 m, #=0.34 m) due to a moving concentrated force (P,=3000 kg, v=50 km/hr)
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6. Examples and discussion

The material properties v=0.2, E=30 Gpa, p=2400 kg/m> and k=0.85 (Dym and Shames 1973) of
the beam are considered in the numerical computation. Based on the small deflection theory, the
dynamic responses of beam obtained by the method of modal analysis converge rapidly. Therefore,
it is sufficient to employ the number N=10 in the numerical computation. The velocity range
considered here is from 0 to 200 km/hr. The following nomenclature and parameters are defined to
illustrate the numerical results: large deflection theory excluding both effects of weight and axial
inertia of the beam, LDTN (Wang and Chou 1998); large deflection theory including only the effect
of weight of the beam, LWAN; large deflection theory including the effects of weight and axial
inertia of the beam, LWAI;, maximum dynamic deflection of the beam during motion of the force or
vehicle, W.,,.; maximum dynamic moment of the beam during motion of the force or vehicle,
My s Vertical acceleration of the vehicle, A, maximum of the absolute value of vertical
acceleration of vehicle, ]:[|max; angular acceleration of the vehicle, 0; maximum of the absolute
value of angular acceleration of vehicle, |6 pay .

6.1. Concentrated force

A comparison of the results obtained by two theories of deflection for the history of w-« at the
mid-span of the Timoshenko beam (L=20 m, »=0.5 m, #=0.34 m) due to a moving concentrated
force (v=50 km/hr, P, =3000 kg) is presented in Fig. 4. The coupling effect of n, with w. and that
of w, with n. stiffen the beam. However, the effect of axial inertia softens the beam. Due to this
reason, w. at the mid-span of the Timoshenko beam predicated by LWAI is always greater than
that by LWAN as indicated in the figure. The period of w. of the beam during free vibration after
the force has left the beam is called the fundamental period of the beam. In Table 1 it is indicated
that a thick beam (L=20 m, »=0.5 m) has a small value of the fundamental period due to the
moving force (v=50 km/hr, P,=3000 kg). The effects of two different velocities of the moving
force concentrated force (P,=3000 kg) and three theories of deflection for the beam on the
fundamental period of the beam (L=20 m, »=0.5 m, #=0.34 m) are listed in Table 2. A rapidly

Table 1 Both effects of the value of 4 and the deflection theory on the fundamental period of the Timoshenko
beam (L=20 m, 5=0.5 m) due to a moving concentrated force (P,=3000 kg, v=50 km/hr)

Theories /=0.34 m h=0.5m
LDTN 0.751 sec. 0.515 sec.
LWAN 0.472 sec. 0.442 sec.
LWAI 0.545 sec. 0.463 sec.

Table 2 Both effects of the velocity of the moving concentrated force (P,=3000 kg) and the deflection theory
on the fundamental period of the Timoshenko beam (L=20 m, $=0.5 m, #=0.34 m)

Theories =50 km/hr =100 km/hr
LDTN 0.751 sec. 0.721 sec.
LWAN 0.472 sec. 0.460 sec.

LWAI 0.545 sec. 0.463 sec.
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Table 3 Both effects of the magnitude of the moving concentrated force (v=50 km/hr) and the deflection
theory on the fundamental period of the Timoshenko beam (L=20 m, 5#=0.5 m, 4/=0.34 m)

Theories P,=1500 kg P,=3000 kg
LDTN 0.753 sec. 0.751 sec.
LWAN 0.489 sec. 0.472 sec.
LWAI 0.551 sec. 0.545 sec.

moving force excites a larger number of modes of the beam than a slowly moving force does. The
coupling between high frequency modes and low frequency modes causes the magnitude of the
fundamental period of the beam to be small for a rapidly moving force. A moving force with a
larger magnitude will cause a strong coupling of low frequency modes with high frequency modes
of the beam. Consequently, as can be seen from Table 3, the beam (L=20 m, 5=0.5 m, #=0.34 m)
exhibits a smaller value of the fundamental period due to a larger moving force (v=50 km/hr).

In the Tables 1~3 it is shown that LDTN leads to the largest value of the fundamental period of
the beam, however, LWAN leads to the smallest value of the fundamental period of the beam.
These results indicate that the effect of the weight of the beam stiffens the beam; however, the
effect of the axial inertia of the beam softens the beam.

The effects of two different magnitudes of thickness and two different deflection theories (LWAL,
LWAN) on wuy,—v and m.,, —v distributions of the Timoshenko beam due to a moving

6 - __ 10
Tt £ T
o 4 L =z 8
* X
© _ o LWAI (h=0.34m)
E i P - 6 — — — — LWAN (h=0.34m)
A P - A _ RN VAN
L * - >
O I | L | L | 1 E 2 i I | 1 | I | 1
0 50 100 150 200 0 50 100 150 200
(a) V(km/hr) (b) V(km/hr)

Fig. 5 Comparisons of two 4 values on (a) Wy, —v distribution and (b) #m«,—v distribution of the beam
(L=20 m, 5=0.5 m) due to a moving concentrated force (P,=1500 kg)

. 6 8
gl |
% 4 - E 6 — LWAI (L=20m)
= | J—— = S [ LWAN (L=20m)
* - - | < _-—— 1 LWAI (L=12m)
2 2l - —~ % ———————— LWAN (L=12m)
- *E
0 | 1 | I | L E
0 50 100 150 200 0 50 100 150 200
(@) V(km/hr) (b) V(km/hr)

Fig. 6 Comparisons of two L values on (a) wepma—v distribution and (b) mun—v distribution of the beam
(6=0.5 m, A=0.34 m) due to a moving concentrated force (P,=1500 kg)
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concentrated force (P,=1500 kg) are displayed in Figs. 5(a) and 5(b), respectively. A thicker beam
exhibits a larger bending rigidity. Therefore, a thicker beam leads to a smaller w.,, , however, a
larger m.,, . The effect of axial inertia causes the beam to have large transverse deflection and
bending slope. Consequently, in Figs. 5(a) and 5(b) it is shown that both w.,, and m.,, of the
beam based on LWAI are greater than those based on LWAN. In Fig. 5(a) it is also shown that the
difference between the magnitude of w.,, as obtained by LWAI and LWAN decreases as the
thickness increases. However, the difference between the magnitude of m.,,, as obtained by LWAI
and LWAN increases as the thickness decreases as displayed in Fig. 5(b). These results indicate that
LWAN can be adopted to approximately obtain w.,,, of a thick beam, however, m.,, of a thin
beam due to a moving concentrated force.

The effects of two different magnitudes of length and two different deflection theories (LWAL,
LWAN) on Wy, —v and #is,, —v distributions of the Timoshenko beam due to a moving
concentrated force (P,=1500kg) are displayed in Figs. 6(a) and 6(b), respectively. A longer beam
leads to both larger w.,,,, and m.,,. . In Figs. 6(a) and 6(b) it is shown that both w.,, and m.,,,
of the beam based on LWAI are greater than those based on LWAN. In Fig. 6(a) it is also shown
that the difference between the magnitude of m.,,, as obtained by LWAI and LWAN decreases as
the length decreases. Moreover, the difference between the magnitude of as obtained by LWAI and
LWAN decreases as the length decreases as displayed in Fig. 6(b). These results indicate that
LWAN can be adopted to approximately obtain both w.,, and m.,, of a short beam due to a
moving concentrated force.

6.2. Two-axle vehicle

The data L=20 m, $=0.5 m and #=0.34 m, and LWAI of the beam are considered in the following
discussions. The vehicle has the mass AM=1500 kg and the moment of inertia /=507.8 kg-m>.

The effects of two different velocities of the moving two-axle vehicle on the histories of vertical
acceleration and angular acceleration of the vehicle (K=20 kN/m, D=800 N-s/m, e=1 m) during the
motion of the vehicle are displayed in Figs. 7(a) and 7(b), respectively. Both figures show that the
vehicle gets large vertical acceleration and angular acceleration while the vehicle is traversing on
the beam. Moreover, the larger velocity is, the larger maximum vertical accelerations and the
angular acceleration are. The angular acceleration of the vehicle changes abruptly when the front

0.1

V=80(km/hr)
— — — V=50(km/hr)

H (m/s®)
6 (m/s®)

(a) t(sec) (b) t(sec)

Fig. 7 Comparisons of two values on the histories of (a)]:I and (b)é of a two-axle vehicle (M=1500kg,
J=507.8 kg-m?, k=20 kN/m, D=800 N-s/m, e=1 m) traversing on the beam (L=20 m, 5=0.5 m, /=0.34 m)
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Fig. 8 Comparisons of two K values on (a) ‘]’:[|max —v distribution and (b) dmax —v distribution of a two-
axle vehicle (M=1500 kg, J=507.8 kg-m? D=800 Ns/m, e=1 m) traversing on the beam (L=20 m,
b=0.5 m , #=0.34 m)

5 . 7
—_ i Zg 6
g 4 % concentrated force
BT A S S two-axle vehicle
E3L %
3 E 4
. & i
2 I I | | L | 3 ! | | L | |
0 50 100 150 200 0 50 100 150 200
(a) V(km/hr) (b) V(km/hr)

Fig. 9 Comparisons of two load types on (a) Wy, distribution and (b)#1+,,, distribution of the beam
(L=20 m, #=0.5 m, A=0.34 m) due to a concentrated force and a two-axle vehicle (M=1500 kg,
J=507.8 kg-m?, D=800N-s/m, e=1 m)

wheel of the vehicle is leaving the beam.

The effects of two different magnitudes of spring constants of suspension (D=800 N-s/m, e=1 m)
on \H|max—v and ‘é(max_v distributions of the vehicle are displayed in Figs. 8(a) and 8(b),
respectively. A stiffer suspension leads to both larger |ﬁ‘max—v and ‘ max —V . Two different
magnitudes of critical velocities of the vehicle exist at which |I?‘max and amax become ab-
solute maximum, respectively. Moreover, a stiffer suspension leads to more obvious critical
velocities of the vehicle.

The comparisons of a concentrated moving force (£,=1500 kg) and a moving two-axle vehicle
(K=20 kN, D=800 N-s/m, e=1 m) on W, —Vv and m.,, —v distributions of the Timoshenko
beam are displayed in Figs. 9(a) and 9(b), respectively. Usually, the interaction between the moving
vehicle and the beam causes both w.,,, —v and m.,, —v of the beam to be less than those by a
moving concentrated force. However, the resonance of vehicle and beam at a specific velocity will
cause Wiy, and m.,,, of the beam to be greater than those by a moving concentrated force. Both
figures show that the system of beam and two-axle vehicle is in the state of resonance at the
velocity approximates 50 km/hr.
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7. Conclusions

Based on the present analysis for the nonlinear vibration of the Timoshenko beam due to moving
loads, the following conclusions can be made: (1) the effect of weight stiffens the beam; (2) the
effect of axial inertia softens the beam; (3) a rapidly moving force of large magnitude induces a
small value of fundamental period of the beam; (4) the effect of axial inertia on the deflection is
slight for a thick and short beam; (5) the effect of axial inertia on the moment cannot be neglected
for a long and thin beam; (6) a critical velocity exists at which the vertical acceleration of vehicle
becomes absolutely large and; (7) another critical velocity exists at which the angular acceleration
of vehicle becomes absolutely large.
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