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Abstract. Critical loads and load-carrying capacities for steel scaffolds used as shoring systems were
compared using computational and experimental methods in Part I of this paper. In that paper, a simple
2-D model was established for use in evaluating the structural behavior of scaffold-shoring systems. This
2-D model was derived using an incremental finite element analysis (FEA) of a typical complete scaffold-
shoring system. Although the simplified model is only two-dimensional, it predicts the critical loads and
failure modes of the complete system. The objective of this paper is to present a closed-form solution to
the 2-D model. To simplify the analysis, a simpler model was first established to replace the 2-D model.
Then, a closed-form solution for the critical loads and failure modes based on this simplified model were
derived using a bifurcation (eigenvalue) approach to the elastic-buckling problem. In this closed-form
equation, the critical loads are shown to be function of the number of stories, material properties, and
section properties of the scaffolds. The critical loads and failure modes obtained from the analytical
(closed-form) solution were compared with the results from the 2-D model. The comparisons show that
the critical loads from the analytical solution (simplified model) closely match the results from the more
complex model, and that the predicted failure modes are nearly identical.
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1. Introduction

Steel scaffold shoring systems are a common type of falsework. The collapse of a shoring system
can have disastrous consequences on a construction project. During recent years, the load-carrying
capacity of scaffold shoring systems has been the subject of both computational and experimental
research. Experimental studies such as those reported by Yen ez al. (1997) and Huang et al. (1999)
have considered full-scale tests of scaffold systems up to five stories in height. Jan (1987), Peng et
al. (1996), and Huang et al. (1999) have developed analytical procedures for determining the critical
loads of scaffold systems, often using finite element analysis (FEA). In recent studies, simple design
guidelines have been suggested for determining the load-carrying capacity of a scaffold shoring
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Fig. 1 2-D model

system. So far, however, little is known about the relationship between the critical load and the
number of stories, material properties, and section properties of the scaffold shores. In Part I of this
paper, a 2-D model (shown in Fig. 1) was developed by simplifying a typical complete scaffold-
shoring system through a stepwise analysis. In that study, it was shown that the relatively simple
2-D model was capable of predicting critical loads and failure modes for the entire scaffold system.
Part I of this paper also recommended the 2-D model for use in further computational analysis of
complete scaffold-shoring systems.

The objective of this paper is to develop the theoretical basis for the 2-D model. This is
accomplished through the derivation of a closed-form solution for this model. To simplify the
analysis, the 2-D model is first simplified even further. The analytical model is validated using
computational methods (FEA) to ensure that it predicts the same structural behavior, i.e., critical
loads and failure modes, as the 2-D model. Then, a closed-form solution to the analytical model is
derived using a bifurcation approach (eigenvalue method) to the elastic-buckling problem.

2. Analytical model

In deriving a closed-form solution to the 2-D model, an even simpler analytical model is first
established in order to simplify the analysis procedure. The sizes and material properties of the
scaffolds in this paper are the same as those in Part I of this paper (Huang et al. 1999). They are
shown in Fig. 2 and are as follows:

section area 4 =2.73 cm®
moment of inertia I, =5.43 cm*
E =204 GPa

F,=515 MPa

F,=645 MPa

In this paper, the analytical model consists of only one horizontal and two vertical bars. In the
2-D model (see Fig. 1), the horizontal bar was connected by two oblique braces, increasing the
strength of the horizontal bar considerably. Thus, the horizontal bar with the two oblique braces in
the 2-D model was modeled as a single rigid horizontal bar in the analytical model. Since the
oblique braces can also increase the stiffness of the vertical bars, the moment of inertia of the
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Section | Dy(mm) | Dy(mm) |Area(mm?®)
A 42.01 37.65 273.1
B 42.01 37.65 273.1
C 26.37 22.5 148.5

Fig. 2 Shape and sizes of scaffold used in this study

vertical bars in the analytical model must be greater than in the 2-D model (/). The moment of
inertia of the vertical bar in the analytical model was assumed to be of (in which o> 1) to reflect
the presence of the oblique braces. Therefore, the initial analytical model can be described
schematically as shown in Fig. 3. The value for the constant o will be determined by comparing the

computational results obtained from the 2-D and analytical models.
Since the oblique braces serve to increase the stiffness of the vertical bars, the value of o should
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Fig. 3 Initial analytical model
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Table 1 Computational critical loads from analytical model (with or=1) and 2-D model

1 2
No. of stories P, of thé zzmalytical P, of the( 2)-D model 3)=2)1)
model with a=1 (N) (N)
2 46500 66530 1.431
3 37020 54860 1.482
4 32170 48180 1.498
5 29180 43930 1.505
6 27140 40990 1.510
7 25650 38880 1.516
8 24520 37300 1.521
9 23630 36110 1.528
10 22930 35200 1.535
11 22360 34490 1.542
12 21900 33930 1.549
13 21520 33490 1.556
14 21200 33140 1.563
15 20940 32860 1.569
16 20720 32640 1.575
17 20540 32460 1.580
18 20390 32310 1.585
19 20260 32190 1.589
20 20150 32090 1.593

In column (3), n = 19, mean = 1.538, ¢,= 0.041, o,.; = 0.042

be greater than 1. To determine the value of ¢, first assume that o is equal to 1 and then determine
the critical loads for scaffold systems of 2-20 in height, using both the 2-D and analytical models.
These two families of critical loads are listed in Table 1 and are shown graphically in Fig. 4. From
this figure and table, it can be seen that all of the critical loads obtained using the 2-D model are
greater than those obtained using the analytical model. The ratios of the former to the latter, which
are also listed in Table 1, range from 1.43 to 1.59 with an average of 1.54 and a coefficient of
variation (COV) of 0.04. The very small COV suggests relatively little variability; i.e., the ratios are
all very near to the same value. In Part I of this paper, it was shown that the critical loads are
almost linearly proportional to the moment of inertia of the vertical bar. Therefore, a=1.54 was
adopted to account for the effect of the oblique braces. The analytical model with or=1.54 was
again used to calculate the critical loads. These critical loads are listed in Table 2, together with the
critical loads obtained from the 2-D model. From this table, it can be seen that the computational
critical loads from the analytical model with = 1.54 are now very similar to those from the 2-D
model. Therefore, a vertical bar with an oblique brace in the 2-D model can be replaced by a single
vertical bar whose moment of inertia is 1.54 times as large as the original moment inertia. The final
analytical model is shown in Fig. 5.
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Fig. 4 Computational critical loads from 2-D model and the temporary analytical model (with a=1)

Table 2 Computational critical loads from analytical model (with 0:=1.54) and 2-D model

Critical loads (N)
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1 2
No. of stories P, of thg ;nalytical P, of the( 2)-D model BG)>=2)/(1)
model with @=1.54 (N) N)
2 71610 66530 1.076
3 57010 54860 1.039
4 49540 48180 1.028
5 44940 43930 1.023
6 41800 40990 1.020
7 39500 38880 1.016
8 37760 37300 1.012
9 36390 36110 1.008
10 35310 35200 1.003
11 34430 34490 0.998
12 33730 33930 0.994
13 33140 33490 0.990
14 32650 33140 0.985
15 32250 32860 0.981
16 31910 32640 0.978
17 31630 32460 0.974
18 31400 32310 0.972
19 31200 32190 0.969
20 31030 32090 0.967
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3. Derivation of the closed-form solution for critical load

The following assumptions are made for the bifurcation approach to derive the closed-form
solution for the critical loads:

(1) All members are in the elastic range.

(2) The analytical model buckles in the in-plane direction.

(3) The analytical model buckles at the lowest (first) story.

(4) According to assumption (3), sidesway of the lowest story is given by A, and sidesway of any
other story is A/(n—1), as shown in Fig. 6.

An-1) 1.541

\ =

1.541

(n-1)L

Fig. 6 Assumption of sidesway for analytical model
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Fig. 7 Free-body diagram of columns AB and BC

Using the slope-deflection method (refer to Chen et al. 1987) and according to the free-body
diagram shown in Fig. 7, the moments at both ends of columns 4B and BC (see Fig. 6) are:

Column AB:
M= ZF S84~ (5, +5,)F |0 M
TN CTORpREE N O 1 R
Column BC:
)
M) E2L)| (5. 45 )
ey, L )]
Moo~ 22| (5, 48, [~My)., @

in which
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o=1.45
g _kLsinkL - (kL)"coskL )
"2 -2coskL — kLsinkL
__ (kL)’—kLsinkL ®)
¥ 2 ~2coskL — kLsinkL
where
P
kL=m |[— 7
X .
and
2
PR ®)
For joint equilibrium at B
A
(My),, + PA_(MB)Cz + (Mc)cz—P]v:—l
L L
N
(Mp), = 2(My) +PA—=0 ©)
From Egs. (7) and (8)
Ea 2A
PA( T J(kD)S (10)
Substituting Egs. (2), (3) and (10) into Eq. (9) results in:
Eol Szzj S; +:Sy N 2 1A
== |-ls -t ==
(5 s g ot emme 3o
+ At bifurcation, we have
s
[(N— 1)(5’1 - S,.)—2(Si +iS,.J.)+N(kL)2}=O (11)
Eq. (11) can be simplified (as shown in the Appendix) to:
2(N-1)(1-sec kL)+NkL tan kL—tan’kL=0 (12)

Eq. (12) is now the analytical (closed-form) solution for the critical load based on the analytical
model. In this closed-form equation, critical load is a function of the number of stories, material
properties and section properties. The critical loads calculated using Eq. (12) are listed in Table 3.

4. Comparisons of the analytical solutions and computational solutions

Analytical (closed-form) solutions were obtained using the bifurcation analysis described in the
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Table 3 Critical loads based on closed-form equation using analytical model

No of stories kL from Eq. 12 P, from Eq. 12 (V)
2 2470 72030
3 2212 57770
4 2.071 50640
5 1.981 46330
6 1.919 43470
7 1.873 41410
8 1.838 39890
9 1.811 38710
10 1.788 37750
11 1.770 ' 36990
12 1.754 36310
13 1.741 35790
14 1.729 35290
15 1.719 34880
16 1.710 34530
17 1.702 34200
18 1.695 33910
19 1.689 33680
20 1.683 33430

previous section. The computational solutions were obtained using FEA of the 2-D model. The
analytical and computational critical loads and failure modes are compared in the following
sections.

4.1. Comparison of critical loads

Critical loads obtained from the closed-form solution of the analytical model, the computational
solution obtained using FEA of the same analytical model, and the computational solution from the
2-D model are listed together in Table 4, and are graphed in Fig. 8. From the table and figure, it can
be seen that the three families of critical loads are very close to one another. The decreasing trend
with number of stories is also similar for the three curves; the maximum difference in the
magnitudes of the critical loads does not exceed 8%. The closed-form critical loads are slightly
higher than the computational critical loads, most likely due to differences in the sidesway
assumptions between the analytical and the computational models. Since these differences are very
small, the closed-form solution of the analytical model given by Eq. (12) is accepted as the closed-
form solution to the 2-D model.

4.2. Comparison of failure modes
Consider a 5-story high scaffold system as an example. The failure modes from the computational

and analytical models are shown in Fig. 9. In both cases, buckling occurred in the first (lowest)
story in the in-plane direction, and the largest displacements occurred at the top of the first (lowest)
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Table 4 Critical loads based on closed-form equation using analytical mode; FEA method using analytical
model; and FEA method using 2-D model

0 @) 3) @ )
No. of P, based on Eq. 12 P, based on FEA method P, based on FEA _ Z
stories Using the analytical using the analytical model method using the 2-D 1Y) 1Y3)

model (V) ()] model (N)
2 72030 71610 66530 1.01 1.08
3 57770 57010 54860 1.01 1.05
4 50640 49540 48180 1.02 1.05
5 46330 44940 43930 103 1.06
6 43470 41800 40990 1.04 1.06
7 41410 39500 38880 1.06 1.07
8 39890 37760 37300 1.06 1.07
9 38710 36390 36110 1.06 1.07
10 37750 35310 35200 1.07 1.07
11 36990 34430 34490 1.07 1.07
12 36310 33730 33930 1.08 1.07
13 35790 33140 33490 1.08 1.07
14 35290 32650 33140 1.08 1.07
15 34880 32250 32860 1.08 1.06
16 34530 31910 32640 1.08 1.06
17 34200 31630 32460 1.08 1.05
18 33910 31400 32310 1.08 1.05
19 33680 31200 32190 1.08 1.05
20 33430 31030 32090 1.08 1.04

—@— Closed-form equation using analytical modet
. —&— FEAmethod using analyticat model
—— FEAmethod using 2-D model
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Fig. 8 Ciritical loads based on closed-form equation using analytical model; FEA method using analytical
model; and FEA method using 2-D model
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<l

Analytical model 2-D model
Fig. 9 Failure modes of analytical and 2-D models

Table 5 Computational sidesway of each floor in a 5-story system based on FEA method using analytical

model
No. of stories, Sidesway Inter-story drift Inter-story drift ratio
i X; P P2 l/pei =gl
0 0 1 1
1 1 0.2312 0.2312
2 0.7688 0.2472 0.2472
3 0.5216 0.2577 0.2577
4 0.2639 0.2639 0.2639
5 0
pei—xol=1

story. The sidesways at the top of each story obtained from the computational model are listed in
Table 5. This table indicates that the sidesway of the top of the lowest story is nearly four times the
sidesway of any other story. This serves to validate the previous sidesway assumption made in the
analytical model.

The comparisons of both failure modes and critical loads obtained using the analytical and
computational models suggest that the 2-D model developed in Part I of this paper can be replaced
by the simpler analytical model proposed here. The closed-form solutions to this analytical model
can then be accepted as the theoretical solution to the 2-D model.

5. Conclusions

In Part I of this paper, the relationship between the load-carrying capacity and number of stories
of a scaffold shoring system was examined, and a simple 2-D model was developed. It is
convenient to analyze or design a scaffold-shoring system using such a simplified structural model.
In this paper, a closed-form solution to the 2-D model was obtained. To simplify analysis, a model
consisting of a rigid horizontal bar and two vertical bars, with a moment of inertia o (where I is
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the moment of inertia of the original vertical bars), was used to replace the 2-D model. It was
shown using FEA that the analytical model exhibited the same structural behavior as the 2-D model
when o was equal to 1.54,

Under the assumption that the analytical model buckles at the lowest story, a closed-form solution
for the critical loads was derived using a bifurcation approach to the elastic-buckling problem. In
this closed-form solution, critical loads are function of the number of stories, material properties,
and section properties of the scaffolds. Critical loads and failure modes were compared for scaffold
systems from 2 to 20 stories in height obtained using the closed-form solution and the
computational solution of the same analytical model. Values obtained using these two different
approaches were very close (within 8%). Therefore, Eq. (12) is accepted as a closed-form solution
to the analytical model.
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Appendix
Simplification of Eq. (11) to the form shown in Eq. (12):

[(N— 1)(&’ ) 2(8y + ;) +N(kL) J

(N_ 1)(S S”) 2Sll(SlI + S )+NS”(kL) =0

g _kLsinkL — (kL)*coskL
¥ 2 —2coskL - kLsinkL

5= (kL)’—kLsinkL
Y 2 _2coskL — kLsinkL

& _ g2 2(kL)’sinkL+2(kL)’sinkLcoskL+(kL)"sin’ kL
v (2 -2coskL - kLsinkL)2
)= (kL) sinkL— (kL) sinkLcoskL—(kL)*coskL+(kL)"cos kL
(2 - 2coskL - kLsinkL)’

SII(S”+S
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2_(KL)’sinkL—(kL)*coskL

Su(kL) 2 —2coskL — kLsinkL

_2(kL)’sinkL—2(kL)’sinkLcoskL~(kL)*sin’kL
(2 - 2coskL — kLsinkL)’
_2(kL)"coskL—2(kL)*cos’kL—(kL)’coskLsinkL
(2 - 2coskL — kLsinkL)’
(N = 1)(S; = Si)=25:(Si + S,) +NS,(kL)*=0

(N = 1)[-2(kL)’sinkL+2(kL)*sinkLcoskL+(kL)*sin’kL ]
~2[(kL)’sinkL~(kL)’sinkLcoskL—(kL)*coskL+(kL)"cos’kL]
+N{[2(kL)’sinkL—2(kL)’sinkLcoskL—(kL)"sin*kL]
~[2(kL)"coskL—2(kL)"cos’kL—(kL)’ coskLsinkL]}=0

~(kL)*sin’kL+2(kL) coskL—-2(kL)*cos’kL-2N(kL)* coskL
+2N(kL)*cos’kL+N(kL)’ coskLsinkL=0

—2(N = 1)(kL)*coskL+2(N — 1)(kL)*cos*kL
+N(kL)’ coskLsinkL—(kL)*sin*kL=0

2(N - 1)(cos’kL—coskL)+N(kL)coskLsinkL—sin’kL=0

2(N - 1)(1-seckL)+NkLtankL—tan’kL=0
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