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The eigensolutions of wave propagation
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Abstract. The eigen-equation of a wave travelling over repetitive structure is derived directly from the stiff-
ness matrix formulation, in a form which can be used for the case of the cross stiffness submatrix K ,, being
singular. The weighted adjoint symplectic orthonormality relation is proved first. Then the general method of
solution is derived, which can be used either to find all the eigensolutions, or to find the main eigensolutions
for large scale problems.
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1. Introduction

Wave propagation along repetitive structure has attracted much attention in recent years
(Mead 1973, 1975, Yong and Lin 1989, 1990, Von Flotow 1986, Signorelli and Von Flotow
1988, Miller and Von Flotow 1989, Miller et al. 1990). Based on the analogy theory between
structural mechanics and optimal control (Zhong and Zhong 1990, 1992a, 1993, Zhong et al.
1992), it can be anticipated that the Hamiltonian system theory and the corresponding
symplectic mathematics can play an important role for wave propagation problems (Zhong
and Williams 1991, 1992, Zhong and Yang 1992). However, the corresponding matrix expres-
sions and their numerical compuctation requires very efficient formulations and methods. The
problem of wave propagation along repetitive structure belongs to structural dynamics, for
which the displacement formulation is natural and leads to the dynamic stiffness matrix.
Therefore, the eigensolution, the adjoint symplectic orthogonality, the adjoint symplectic
subspace iteration, and the eigenvector expansion method of symplectic mathematics are bet-
ter formulated in the dynamic stiffness matrix representation directly, rather than in the trans-
fer matrix or other representations. This dynamic stiffness representation avoids the unneces-
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sary numerical problems which otherwise arise from the inversion of the cross substiffness ma-
trix K ,, needed to obtain the transfer matrix for the repetitive structure. The formulation and

algorithm are now given for general repetitive structures, rather than just for some simplified
models.

2. The fundamental equations

A typical multi-connected substructural chain is shown schematically in Fig. 1. Let the in-
ternal and left-hand and right-hand external displacements of a typical substructure be denot-
ed by u;, usand u,respectively. The g, will match the u,when the substructure is moved
one bay to the right, so that u, and u, share the same dimension, » say. The internal vector
u; can be eliminated beforehand (Zhong and Yang 1992), giving the external dynamic stiff-
ness matrix of the typical substructure as

K =[5 g win u=[4] M

Substruc-

#0 L T O D e #(k -1)
ture #k f

k=0 1 2 k k+1 k -1 k

Fig. 1 The substructural chain

The cost of this simplification is that the submatrices K ,,, K ,, and K,, are now transcenden-
tal functions of the circular frequency w, but K(w) is still symmetric for a nondissipative

system, i.e. K Z{I:K aas K Zb=K pp and K Zb=K »as The stiffness matrix corresponds to using the

displacement method in structural analysis, which in turn corresponds to the Lagrangian for-
mulation for a dynamical system. The dynamic potential energy for the typical substructure
can be introduced (Zhong and Williams 1991) as

o=z lu) * ) @

The inter-substructural force vectors n, and n, can be introduced as follows. The principle of
virtual work gives n =0l /du. Therefore n, and n, follow from Eq.(2) as

n, = gl[l] - Kaaua+Kabub
n,= _gllljb = —Kpuo— Ky u, 3)

where the minus signs follow from the action and reaction rule. The whole state vector v is de-
fined as the combination of displacement and internal force vectors, such that



The eigensolutions of wave propagation 49

o= () 0)

n

Thus Eq. (3) can be expressed in transfer matrix form, which relates the whole state vector at
boundaries @ and & by

u,

v,=8Sv or {
b as nb

} =S { ZZ }, (a=k, b=Fk+1 junctions) (5)

where S is the transfer matrix. It can be shown (Zhong and Williams 1991) that

so=[s2 s ®

where

Sea= —K,, Ko, Sw=K,,
Spe=—Kpot Koy K, Kag,  Sop = —Kun K, , } (7
It has also been verified (Yong and Lin 1990) that S is a symplectic matrix, i. e.

ST=J8SJ"', or STJS=1J (8)

where
7= _Oln Io] =g =, 9)

and I, is an #-dimensional unit matrix. For a symplectic matrix, it is known that: its determi-
nant is 1; if ¢ is an eigenvalue then so is 1// the symplectic orthonormality relationship exists
between its eigenvectors; and an arbitrary whole state vector can be expanded in terms of the
eigenvectors (Yong and Lin 1990, Zhong 1992)

Direct derivation of the symplectic matrix S requires the inversion of the matrix K.,
which is not always possible, e.g. it is not possible for the periodical structure shown in Fig. 2.
However, even if the matrix K, is invertible the computation of the matrix § is likely to in-
volve numerical ill-conditioning problems.

To avoid such problems, representation by the displacement vector directly is preferable. It
is easily seen from Egs. (3) and (4) that

o B e A e B L I 0 2 [l N £ o

where L and N are invertible if K, is invertible, and it can be verified by using Egs. (6) and
(7) that S=NL~'. Because u, for substructure 2+ 1 of Fig. 1 is equal to u, for substructure
k, it is possible to write the transfer equation in terms of displacement vectors as

Lxw,,, = Nxw,, where w, = {uz, u:}i (11)

where the subscripts £ and £+ 1 represent the substructure number, and the subscripts ¢ and b
refer to the left-hand and right-hand boundaries respectively. Obviously, Eq. (11) does not re-
quire K, to be invertible. Although Eq. (11) is expressed in terms of displacements, it is not
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the displacement method, because the displacement continuity condition {u .}, ={us}s is
not satisfied beforehand but is instead treated as an equation in the formulation.

Instead of solving the eigenequation with the symplectic matrix S directly, the generalized
eigenequation

uxXLxw = NXw (12)

can be solved, where  is the eigenvalue and w is the eigenvector of the typical substructure.
Now the identity

0 Kab]

T _— T —
LJL—NJN_[_KM s

(13)

is easily verified by substituting from Egs. (9) and (10) and using the facts that K ZG=K aa K Zb
=K,, and K Zb=K »a- Hence left multiplying Eq. (12) by N”J and using Eq. (13) gives

uNT(JLw) = L"(JLw) (14)

Transposing Eq. (14) gives (JLw)" (N— ¢ 'L)=0, which means that (JLw) is the left eigenvec-
tor, so that ! is also an eigenvalue. Therefore, the 2% eigenvalues of Eq. (12), when ordered
appropriately, can be subdivided into the two groups of

@ w @=1,2,-,n), with |pg[=<] (15)

which corresponds to those waves that are travelling to the right, and
-1 .
(b) Un+i :lul' (lzl, 2’ " n)s |#n+il = 1 (16)

which corresponds to the waves travelling to the left. For most problems the eigenvalues are
single roots, and this is assumed in the following derivation. Therefore for each eigenvalue
there will be a single eigenvector.

3. Weighted adjoint symplectic orthogonality between the eigenvectors

When all the eigensolutions of Eq. (12) are found, a very important application is the
eigenvector expansion of an arbitrary vector. Noting the adjoint symplectic orthogonality rela-
tion between the eigenvectors of the symplectic matrix S (Zhong 1992), there must be a
weighted adjoint symplectic orthonormality relation between the eigenvectors of Eq. (12). Pro-
vided that there are two eigensolutions 7 and j of Eq. (12)

Nxw; = g xLxw;, NXw; =, XLXw;, 1,7 <2n (17a, b)

Transforming Eq. (17a) to the form of Eq. (14), left multiplying by wJT and then taking the
transpose gives wlT L’ JNw,; =y, '(wz.T LTJij). However, left multiplying Eq. (17b) by wl.TLT

J, gives wl.TLTJNw,:;zj X wl.TLTJLwJ-. Subtracting these two equations gives

(15— 117 )x (w, L' JLaw, ) =0 (18)
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which leads to the weighted adjoint symplectic orthogonality as
w! (L' JL)w; =0, when s, —1/p; 0, [i. e.;+mody,(n+i)] (19)

where L JL is the weighting matrix, see Eq. (13). Therefore an eigenvector is symplectic or-
thogonal to all other eigenvectors, including itself but excluding its adjoint. The :-th
eigenvector has only one adjoint eigenvector, the (# +17)-th, which is given by Egs. (15) and
(16).

An adjoint symplectic normalization relationship can be introduced for the adjoint
eigenvectors, i.e.

w, L'JLw,.,=1, or w,, L'JLw,=—1, (i<n) (20)

Because the adjoint eigenvectors have two arbitrary constant factors and Eq. (20) supplies only
one condition, another condition can be supplied, which can be taken as
wl.Twi = wlnw”n 2n
Let y; = Lw,(7<2n). Then it can be seen from Egs. (5) and (10) that the y; are the
eigenvectors of the symplectic matrix S. Eqgs. (19) and (20) then become the usual symplectic
orthonormality relationships. The derivation above has bypassed the problem of K, possibly
not being invertible. However, in such cases the weighting matrix L’JL is not of full rank.

Hence further investigation follows, to ensure the completeness of the eigenvector set used for
the expansion solution.

4. The case of K ,, not being of full rank

In the case of K,, being singular, the matrices L and N of Eq. (10) are also singular, be-
cause of the way that K, appears in them. The singular eigenvectors w, corresponding to the
infinite eigenvalue can be found, by using Eqs. (10) and (12), as the solution of

Lw.=0, w.=1{0,u, }, where Kgtpu=0 (22)

Because K, is singular, there exist #. linearly independent vectors u,.. and hence .. linearly
independent w... On the other hand, corresponding to the eigenvalue «=0, the singular eigen-
vectors w, are given as the solutions of

Nw, =0, wg = {uZO,O }, where biuaozo (23)
The number of linearly independent solutions of Eq. (23) i1s also #.. Obviously these 2.
solutions for w.. and w, are linearly independent and the subspace which they span is orthog-
onal to the weighting matrix operator L' JL. According to Eq. (13), the rank of the weighting
matrix is 2(# —#.,), which means that the effective subspace of the weighting matrix L™JL
complements the subspace spanned by the 2#x. vectors w, and w, , such that their direct sum
composes the complete space.
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5. Expansion in terms of the eigenvectors

Any 2n dimensional external displacement vector of the typical substructure can be ex-
pressed as a linear combination of the eigenvectors. However, the eigenvectors in section 3
must be supplemented by the w., and w,, so that the adjoint symplectic orthonormality rela-
tionship should also be given for these special eigenvectors. For these eigenvectors, the
eigenequation (12) can be considered as a set of linear simultaneous equations with the coeffi-
cient matrix N or L see Egs. (23) and (22). The solvability condition for a singular matrix
should tend to look like the solution of homogeneous linear equations with its transpose ma-
trix. By using Eqgs. (10), (22) and (23), it is easy to verify that

N {(Kpptto)", u,, )7 =0, and LT {(=Kaqlia)", g} =0 (24)

Now the solvability condition for the eigenequation (12) becomes
{(Kpptpe), u;, Yw; =0, 1.e.

u:oo |: (Kaa+Kbb)s Kabj|wi = 09 (l: 15 29 N TRy n+1, Tt 2n_n°°) (253)
Similarly
uny| Koy Kot Ko [00=0, =12, n=nas nt1, -, 2n—n.) (25b)

The above equations can be regarded as the orthogonal relationships between the normal and
singular eigenvectors. Combining gives

K..+K,, Kab] (25)

T — —
(wo or wo) JK+w; =0, where Ky= |:Kba Ko,+K.,

The adjoint orthogonal relationship between the singular eigenvectors can be derived as fol-
lows. Obviously, by using Eqgs. (22), (23) and (25),

w. JKw. =0, wyJKw,=0, (26)
and an appropriate linear combination gives
Wy, JK sWe; = U (Kaat Kop)Upws = 015 (i) < 1) 27)

Egs. (25)-(27) supply the required adjoint symplectic orthogonality relationships. However,
the special case that

(Kaa+Kbb) (U g0 OF Upw) = 0 (28)

for some 1,49 OF Uy should be mentioned. In such a case, Eq. (27) does not hold and the Jor-
dan canonical form for the singular eigenvalue (0 or o) will happen, so that special treatment
is required.

Excluding such special cases and assuming that Eq. (27) holds, then the eigenvector expan-
sion for an arbitrary external vector w holds, giving



The eigensolutions of wave propagation 53

n-n Mo

w = Z:l (di w; + biwn-\}-i) + Zl (an+i——nw Wo; + bn+i—-nu0 wooi) (29)

Based on the orthogonal and normalized relationships of Egs. (19) and (20), the singular solu-
tions of Egs. (22) and (23) and the weighting matrix Eq. (13), one can derive

a; = —w, L'JLw, b;=-w,L'JLw (i <n—nx) (30)
Based on the orthogonality relationships of Egs. (25)-(27), the other coefficients can be

anti-ng, = —wo JKstd, bneion, = Wy JLsw (i < 1) (1)

6. Solving the eigenproblem

According to the description above, the eigensolutions can be classified as singular (coming
from Egs. (22) and (23)) and normal solutions. It is easy to find the singular eigensolutions
from the matrix K ,,, by using the Gauss elimination process.

For the non-singular eigensolutions, left multiplying Eq. (12) by L’J and by N”J in turn
gives, after using Eq. (13)

(L"INyw; = 4 L"JLw;, and (N"JL)w;=y, 'LTJLw; (32)
Adding these together gives
(LTJN + N'JL)w; = (u; +1 ') (L*JL)w; (33)

Because the weighting matrix L’JL has rank 2(# —#.), only the eigensolutions within the
subspace spanned by the weighting matrix L'JL are considered. Among these eigensolutions
the adjoint pair 7 and (» +17), ({ <n —#.) corresponds to a single eigenvalue of Eq. (33), i. e.

A=t =t i (34

Hence, every eigenvalue of Eq. (33) is duplicated, and so has two corresponding linearly inde-
pendent eigenvectors w; and w, ;. It should be noted that the eigenvectors obtained by solv-
ing Eq. (33) can be linear combinations of the eigenvectors w, and w,.; of Eq. (12), and so
are not necessarily identically the eigenvectors of Eq. (12). However, the eigenvectors w; and
Wn+; can be found via the linear combinations of the eigenvectors of Eq. (33), and the corre-
sponding eigenvalues found via Eq. (34). Therefore the solution of Eq. (33) is a critical step.
Substituting the L and N of Eq. (10) into Eq. (33) gives

KoK, —(KoutK,) 0 K,
w; = A Jw (35)

T

(Koot Kps) Kab_Kab

Here both matrices are anti-symmetric, with the left-hand one depending on (K,,+K,,), but
not on K,, or K,, individually. Hence for the eigenvalue problem the two diagonal stiffness
submatrices of K(w) can be mutually shifted, such as both K,, and K., can be substituted by
(Kaa+K,)/2, as is done when dealing with singular control problems (Zhong and Cheng
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1991)

Because K, is not of full rank, there are 2x. singular eigenvectors corresponding to the ei-
genvalue A=oo. Therefore, Eq. (35) should be reduced to the order of 2m =2(n —n.). Based
on the adjoint symplectic subspace iteration method for Hamiltonian or symplectic matrices
(Zhong 1992, Zhong and Zhong 1991), combined with the orthonormality relationships of
Egs. (19) and (20), one can use the weighted adjoint symplectic orthonormality basis with the
weighting matrix L JL. The 2m basis vectors are not necessarily the eigenvectors of Eq. (35),
but one can generate such basis vectors from 2m roughly selected vectors by the adjoint
symplectic weighted orthonormality algorithm given in the next section.

7. The adjoint symplectic weighted orthonormality algorithm(ASWONA)

It is well known that from » arbitrarily selected linearly independent vectors, the Gram-
Schmidt orthonormality algorithm can be used to generate a set of » orthonormalized basis
vectors. Similarly, from 2m (m =# — #..) linearly independent under the weighting matrix L'
JL vectors, a set of 2m adjoint symplectic weighted orthonormalized basis vectors ¢, (i <2m)
can be generated, such that

¢ L"JLy, = 0 when i+mod, (m+j) (36)

L' ILY,, =1, or &, L'JLp,=—1, (<m) (37)

i+m~

Note that the vectors ¢¢ in this section are not necessarily eigenvectors. Similarly to the adjo-
int symplectic orthonormality algorithm given in (Zhong 1992, Zhong and Zhong 1991), an
ASWONA can be proposed here. The weighted symplectic orthogonalization equation for a
given vector ¢, to a pair of adjoint vectors ¢, and ¢, is given first as

¢ = b~ @, L ILG,/ b, L ILG),. j =modsm(m+j), G,j<2m) (38)

and the normalization equation is similar to Eq. (20). Then the ASWONA can be described as

For ;:=1 to m do begin comment: to orthonormalize ¢, and ¢,
{read in ¢, and ¢, , from the database}
For j:=1 to 7—1 do begin comment the j-th had been orthonormalized
{read in ¢, and ¢, from the database}
{orthogonalize ¢, and ¢,, with the ¢ and ¢, by Eq. (38)}
End;
{symplectic normalization Eq. (20); then write to the database}
End; (39)

Before the execution of the above ASWONA, the initial ¢ and ¢, , are considered to be avail-
able, and should be linearly independent with respect to the weighting matrix I/ JL. After the
execution of the ASWONA, all the adjoint vector pairs ¢ and ¢, ,(=1, 2, ---, m) compose a
2m dimensional adjoint symplectic orthonormalized complete basis under the weighting ma-
trix LTJL. When the .. pairs of singular vectors w, and w.. are also included, they compose
the complete set of basis vectors for the 2% dimensional space. However, w, and w.. are easily

+m
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found, so that the m =#» —n.. pairs of eigensolutions are of concern, which gives the eigenpro-
blem in the adjoint symplectic weighted subspace.

8. The eigenproblem in the adjoint symplectic subspace

The right-hand side matrix of Eq. (35) is singular, so that the 2 dimensional subspace is
extracted for the eigensolution. The adjoint symplectic weighted basis vectors ¢ and ¢, (7 =
1, 2, ---, m) have been obtained via the ASWONA, Eq. (39). Now the 2» X 2m matrix ¥ can
be composed from these basis vectors, giving

w: [(ply EPY ¢In) ¢7n+1a Tt ¢‘2m] (40)

The eigensolution of Egs. (33) or (35) can be expanded in terms of these basis vectors as
m
w= Zl (@bt aiimbiim =T Xa 41)

Substituting Eq. (41) into Eq. (33), then left multiplying by ¥ and using the weighted adjoint
symplectic orthonormality relationships of Eqs. (36) and (37) gives

Axa=ipxa, or —JnAXa=ia, J,,,=[21 I”’O] (42)
Eq. (42) has been reduced to a 2m dimensional subspace, and
A=U"<(L"IN + N'JL)x¥ (43)
By using Eq. (9), it is easily verified that A is an anti-symmetric matrix. Hence the matrix
— . Maa Mab
W= —dud =y | (44)

which enables Eq. (42) to be written as
MxXa= Aa’ (45)

has the characteristics of a square Hamiltonian matrix (Van Loan 1984, Lin 1987), i.e.

Mbb:%raa Mab:“Mai’ Mba:*%z (46)
There are efficient methods for the eigensolution of Eq. (45) (Van Loan 1984, Lin 1987).
When the dimension s is large, the main eigensolutions can be found via the adjoint
symplectic subspace iteration method (Zhong 1992, Zhong and Zhong 1991). However, the
eigenproblem of Eq. (42), with the anti-symmetric matrix A of Eq (43), can also be solved di-
rectly (Zhong and Zhong 1992b).

Combining all the above factors gives a good numerical method for solving the
eigenequation of the wave propagation problem for substructural chain type structures.
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9. Numerical examples

For the simple substructural chain type structure of Fig. 2(a), whose typical substructure is
given in Fig. 2(b), it is required to solve the static problem, i.e. =0, as a demonstration. The
number of external displacements for each end is » =3, and

1 0 0 2 —1 0 -1 0 0
Kaa: 0 1 -1 > Kbb: —1 1 0 ) Kab: 0 0 0 s
0 —1 2 0 0 2 1 -1 0
Obviously, the rank of K4, is m =2 and #.=1. It is easy to find from Eqs. (22) and (23) that

wo={0 1000 0), wo={000 0 0—1},

and then Egs. (25) and (13) give

-1 0 1 3 -1 0 0O 0 0 -1 0 O
$ 8y EEEEE
_ 0 0 -1 T _ 1 -1 0
JEK«=1_3 1 o 1 0 o/ LJL=1|1 5_1 o o o
1 -2 1 0 0 O 0 0 1 0O 0 0
0 1 -4 -1 1 0 0O 0 0 0O 0 O
After the ASWONA in the subspace of L”JL, the matrix composed of the the basis vectors is
—1 1 0 0
0 4 1 1 0 1 3 1
0 1 0 0 -1 0 0 5
r= 0 0 1 ol and from Eq. (43), A = -3 0 0 1
0 0 0 -1 -1 -5 -1 0
0 -1 —1 =2

Then the eigenproblem of Eq. (45) must be solved. The eigenvalue must be duplicated. How-
ever the Jordan form will not happen for twofold eigenvalues. The present example has m =2
so the eigenvalue of Eq. (45) can be solved by expanding the determinant equation (Zhong
and Zhong 1991). The matrix M, obtained from Eq. (44) and its corresponding eigenvalues
and eigenvector matrix A, are
A=4-J2 4+/2 4-J2 4+J2
J2+1 1-J2 0 0
-1 -1 J2-1 J2+1
1

0 0 -1
1 1 0 0

where the columns of A, are eigenvectors. Now substituting A, and & into Eq. (41) gives the
matrix composed of the four column eigenvectors of Eq. (35) as

3 0 0—(1)
1 1
M=|§ 7 ) 7|, ad A=
-1 0 0 5§

A = 4—J/2 4+/2 4-—/2 4+J2
—-2+42) —(Q2+J2) V2 —1 V2 +1
-3 -3 4/2 -5 4/2 +5
-1 —1 Jy2 -1 J2+1
0 0 -1 1
—1 -1 0 0

—1 -1 2-J2 —(2+/2)
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The column vectors are not necessarily the eigenvectors of Eq. (12). However, the eigenvectors
of Eq. (12) can be linearly composed from the two corresponding column vectors, and their
eigenvalues can be solved from

utpt =4,

ie. p=[AtJ/XT—41]/2

so that the eigensolutions of Eq. (12) are

u = 04734

2.1124
1.5631
0.3258
1

0.7400
0.1542

0.1915 2.1124

5.2227 0.4734
25.040 0.1231
7.2087 —0.1542
1 1
4.7945 0.2600
1.3803 0.3258

5.2227

0.1915
—~0.7265
—1.3802

1
—3.7945
—7.2087

In the above equation there are only the eigensolutions with finite non-zero eigenvalues. If the
two singular eigensolutions w, and w. are included, the six eigenvectors compose the com-

plete set.

Table 1 Eigenvalues for second example.

1 2 3 4 5 6
real —724448. —1/724448. 1/800.202 800.202 0.613 0.613
imag. 0.000 0.000 0.000 0.000 0.790 —0.790

7 8 9 10 11 12
real 1.218 0.783 1.218 0.783 1.00 1.00
imag. 0.271 -0.174 —0.271 0.174 0.030 —0.030

Fig. 2 The truss substructural chain.

a b
(b) a typical substructure
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Hence, the complete eigensolution for the substructural chain of Fig. 2(a) has been found.

The above example is solved by hand, to give more insight into the problem. However, it
is very small and also artificial. As a second more realistic example the repetitive structure
shown in Fig. 3 is analysed. The frequency is selected arbitrarily as w?= 1.0/sec/sec and for the
beam element stiffness matrix use is made of the exact equations of reference (Howson,
Banerjee and Williams 1983). The dynamic stiffness matrix is given as

(n=06)
—9.6237 symmetric
9.6114 1030.0170
K. = 6.7767 —9.5992 52.9108
aa ~10.0698 —6.6561 18.9328 —5.0979
—5.1480 —29.7285 0.5394 7.8188 1025.7190
29.6183 22.9306 —54.4557 —4.2189 —24.3200 70.49584
—9.6231 symmetric
—9.6121 1030.0180
K.oo= —6.7755 —9.6002 52.9128
b6 1 —10.0696 6.6559 —18.9325 —5.0978
5.1484 —29.7287 0.5400 —7.8187 1025.7190
—29.6178 22.9304 —54.4549 4.2190 —24.3198 70.4960
5.2847 —11.1838 —18.9036 6.5770 6.7616 —16.7936
11.1839 —967.5479 —11.6419 —4.6429 —30.9382 11.2974
K. = 18.9041 —11.6415 —53.4631 14.3637 2.6443 —37.6745
a6 6.5771 4,6430 —14.3639 2.4014 —6.8260 —6.7314
—6.7613 —30.9381 2.6440 6.8260 —973.2586 —18.9830
16.7941 11.2977 —37.6750 6.7314 —18.9830 —18.6778 |

The wave number eigenvalues u in Eq. (12) are given by Table 1 in which the eigenvectors are
omitted to save space. Although the eigenvalues differ by several orders of magnitude, the
eigen-solutions match Eq. (12) very precisely, being almost free from any ill-conditioning.

X, U
T | f ! | |
346 L4 13
| | | | |
u,v, e | ! | | |
\ / 3
u,v, o . 1
a b 2,V
(a) a typical substructure

|
N N T~ 7 z
b

[
(b) the periodic structure

4
N\
4
N\

Fig. 3 Second example of a periodic structure. All members have flexural rigidity (EI), extensional rigidity (£
A) and shear rigidity (G A) given by EI=200N m*’, EA=2x10'N and G A=5000N.
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10. Concluding remarks

Finding all of the eigensolutions is very important for wave propagation problems involv-
ing repetitive structures. The present paper derives the eigenequation directly from the stiff-
ness matrix of the typical substructure, so that the method can be applied to cases for which
the cross stiffness submatrix K, is singular. By filtering out the singular eigensolutions first,
the adjoint symplectic orthonormalized basis vectors for the remaining space are generated.
Then the eigenproblem can be made into a square Hamiltonian matrix type eigenproblem.
Therefore, for a large scale matrix (i.e. » is large), the adjoint symplectic subspace iteration
and origin shifting methods can be introduced to find the main eigensolutions. Combining all
of the above techniques composes an effective algorithm for the eigensolution of wave propa-
gation for repetitive structures.

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China
and the Royal Society of the U.K.

References

Howson, W.P., Banerjee, J.R., and Williams, F.W. (1983), “Concise equations and program for exact
eigensolutions of plane frames including member shear.” Adv. Eng. Sofiware, 5, 137-141.

Lin, Wen-Wei (1987), “A new method for computing the closed loop eigenvalue of a discrete-time algebraic
Riccati equation.” Linear Algeb. and Its Appl. 96, 157-180.

Mead, D.J. (1973), “A general theory of harmonic wave propagation in linear periodic systems with multiple
coupling.” Journ. Sound and Vib. 27, 235-260.

Mead, D.J. (1975), “Wave propagation and natural modes in periodic systems; I. mono-coupled systems. II.
multi-coupled systems, with and without damping.” Journ. Sound and Vib., 40, 1-18, 19-39,

Miller, D.W., Hall, S.R. and Von Flotow, A.H. (1990), “Optimal control of power flow at structural junc-
tions.” Journ. Sound and Vib., 140, 475-497.

Miller, D.W., and Von Flotow, A .H. (1989), “A travelling wave approach to power flow in structural net-
works.” Journ. Sound and Vib. 128, 145-162.

Signorelli, J. and Von Flotow, A.H. (1988), “Wave propagation, power flow, and resonance in a truss beam.”
Journ. Sound and Vib., 126, 127-144.

Van Loan, C.F. (1984), “A symplectic method for approximating all the eigenvalues of a Hamiltonian ma-
trix.” Linear Algeb. and Appl., 61, 233-251.

Von Flotow, A.H. (1986), “Disturbance propagation in structural networks.” Journ. Sound and Vib. 106,
433-450.

Yong, Y., and Lin, Y.K. (1989), “Propagation of decaying waves in periodic and piecewise periodic struc-
tures of finite length.” Journ. Sound and Vib. 129, 99-118.

Yong, Y. and Lin, Y.K. (1990), “Wave propagation for truss type structural networks.” Proc. ATAA/ASME/
ASCE/AHS/ASC 31st Structures, Structural Dynamics and Materials Conference, Calif., Apr. 1990,
paper AIAA-90-1082-CP, pp.2026-2035.

Zhong, Wanxie (1992), “The inverse iteration method for the eigenproblem of large symplectic matrices.” To
publish in Comput. Struct. Mech. and Appl. (in Chinese)

Zhong, Wanxie and Cheng, Gengdong (1991), “On regularization of singular control and stiffness shifting
method.” Proc. Asia-Pacific Conference on Comput. Mechanics, 373-378. Hong-Kong, Dec. 1991.

Zhong, Wanxie, Lin, Jiahao and Qiu, Chunhang (1992), “Computational structural mechanics and optimal



60 Wanxie Zhong and F.W. Williams

control.” Int. J. Num. Meth. in Eng., 33, 197-211.

Zhong, Wanxie and Williams, F.W. (1991), “On the localization of the vibration mode of a sub-structural
chain-type structure.” Proc. of Mechanical Engineering Institution, Part C, 205, 281-288.

Zhong, Wanxie and Williams, F.W. (1992), “Wave Problems for Repetitive Structures and Symplectic Math-
ematics.” Proc. of Mechanical Engineering Institution, part C, 206, 371-379.

Zhong, Wanxie and Yang, Zaishi (1992), “Partial differential equations and Hamiltonian system.” Computa-
tional Mechanics in Structural Engineering, pp.32-48, Elsevier.

Zhong, Wanxie and Zhong, Xiangxiang (1990), “Computational structural mechanics optimal control and
semi-analytical method for PDE.” Computers and Structures, 37(6), 993-1004.

Zhong, Wanxie and Zhong, Xiangxiang (1991), “On the adjoint symplectic inverse substitution method for
main eigensolutions of a large Hamiltonian matrix.” Journ. of Systems Eng., 1, 41-50.

Zhong, Wanxie and Zhong, Xiangxiang (1992a) “Elliptic partial differential equation and optimal control.”
Numerical Methods for PDE. 8, 149-169.

Zhong, Wanxie and Zhong, Xiangxiang (1992b), “On the computation of anti-symmetric matrices.” Proc. of
EPMESC-4th, 2 (late papers 2), pp.1309-16, Dalian, PRC, July 30-Aug. 2nd, 1992.

Zhong, Wanxie and Zhong, Xiangxiang (1993), “Method of separation of variables and Hamiltonian
system.” Numerical Methods for PDE, 9, 63-75.





