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Abstract. This study proposes a system identification technique for a fiber-reinforced polymer deck with
neural networks. Neural networks are trained for system identification and the identified structure gives
training data in return. This process is repeated until the identified parameters converge. Hence, the proposed
algorithm is called an iterative neural network scheme. The proposed algorithm also relies on recent
developments in the experimental design of the response surface method. The proposed strategy is verified
with known systems and applied to a fiber-reinforced polymer bridge deck with  experimental data. 
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1. Introduction

The use of fiber-reinforced polymer (FRP) as a primary structural material is increasing rapidly in the

construction industry. FRP has received significant attention for use in civil infrastructure due to their

unique properties, such as the high strength-to-weight ratio and stiffness-to-weight ratio, corrosion and

fatigue resistance. It had been used for reinforcement of bridges, columns and beams and several

researches have been performed to investigate their structural behavior experimentally and numerically

(Cheng, et al. 2002, Kim, et al. 2004, Naghipour and Mehrzadi 2007). Although FRP composites are

increasingly being considered for use in civil engineering, their widespread use is constrained due to

current consideration of their higher initial cost, lack of comprehensive design approaches and guidelines,

and the predominant use of a one-to-one replacement method that often restricts the full utilization of

the characteristics of the material. The development of such new FRP composite bridge systems raises

concerns about dynamic responses to traffic loads and mass and stiffness characteristics, which differ

significantly from those of conventional steel and the structural components of concrete bridges.

Therefore, a technique of system identification (SI) is needed for the purpose of updating the finite element

(FE) models of FRP decks.
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There are a number of SI techniques in which dynamic characteristics, the dynamic response as it is,

or the static data are used in accordance with numerical schemes developed on the basis of algebraic

relations or artificial intelligence. The scheme used in this study is a neural network (NN). Recently, the

problem of identifying mathematical models of physical structures based on experimental measurements

has been receiving considerable attention. Numerous publications and methods have focused on the SI

of structures (Astrom and Eykoff 1971, Ljung 1987 and Billings 1980). The use of SI approaches for

damage detection has been expanded in recent years owing to the improvement of structural modeling

techniques, particularly in techniques that incorporate response measurements and advancements in signal

analysis and information processing capabilities (Lee, et al. 2005). Structural health monitoring has

become an important research topic in conjunction with damage assessment and safety evaluation of

structures (Chassiakos and Masri 1996, Zou, et al. 2000). Feng, et al. (2004) proposed an NN-based method

of building baseline models for monitoring the performance of bridges. Gupta and Sinha (1999) used

NNs in their improved approach to nonlinear SI. Pepijn (2007) proposed an NN-augmented identification

of underwater vehicle models: several NNs are used to identify different parts of the model separately.

With regard to other aspects, Pavic, et al. (2007) proposed a combined experimental and analytical

approach for the purpose of investigating modal properties of a lively open-plan office floor: this

approach is based on state-of-the-art FE modeling, shaker modal testing, FE model correlation, manual

model tuning, and sensitivity-based automatic model updating of a detailed FE model of the composite

floor structure.

The prevalent technique for modeling highly nonlinear systems is a surrogate model technique, which

is represented by the response surface method (RSM) (Hou, et al. 2007). The idea involves the use of

some simple basis functions, typically the polynomials (Fang, et al. 2005 and Forsberg and Nilsson

2006), to approximate the complex response of a structure; this method obviates the need for FE-driven

sensitivity analysis. The polynomial basis function generally provides a good approximation for modeling

the energy absorption; however, the multi-quadratic and inverse multi-quadric basis functions are more

precise for such highly nonlinear responses as peak acceleration in a full-scale vehicle model. Indeed,

the suitability of the RSM for crashworthiness optimization has been exhaustively demonstrated in the

literature for a range of design cases. Cylindrical tubes with uniform cross sections (Lee, et al. 2002)

and tubular-tapered thin-walled structures (Avalle, et al. 2002 and Chiandussi and Avalle 2002) are

some of the typical applications with regard to sectional columns. In general, the RSM most likely

converges to a local optimum, even though it can yield a global optimum if the basis function is selected

properly and the analysis domain is sufficiently large. The computing cost can also be improved by

using such local refinement techniques as a successive RSM (Stander and Craig 2002 and Kurtaran, et

al. 2002), a two-step RSM-enumeration algorithm (Xiang, et al. 2006) or a D-optimality criterion (Redhe,

et al. 2002).

In this paper, the baseline model construction methodology for an FRP deck is presented by using SI

through iterative training of NNs. The data for training and validating NNs are produced from the

simulation of the mathematical model for the FRP deck test model. A multilayer perception network is

selected for the model structure. To construct the baseline model for an FRP deck, we use static displacement

as the input variable and stiffness as the output variable. Laboratory tests on static displacement are

conducted on a real-sized structure. Initially, we use a sampling point method, which is an application

of the RSM, to evaluate the effectiveness of the NN training data. We can determine the optimum training

data. A numerical model is then performed to investigate the effectiveness of the proposed method. The

simulation results confirm that the proposed method is effective and efficient in SI.
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2. Theoretical background

2.1 Identification with NNs

SI usually consists of two stages: model selection and parameter estimation. In NN-based identification,

the selection of the number of hidden modes corresponds to the model selection stage. The network can

be trained in a supervised manner with a back-propagation algorithm that is based on an error-correction

learning rule. The error signal is propagated backward through the network. The back-propagation

algorithm utilizes a gradient descent to determine the weights of the network; thus, this process corresponds

to the parameter estimation stage. The NNs are trained to approximate relations between variables regardless

of their analytical dependence; they are usually referred to as model-free estimators.

Rumelhart, et al. (1986) and Kim and Park. (2005) reported the development of the back-propagation

NN. The back-propagation NN is the most prevalent self-learning model of artificial NNs. The simple

architecture of an NN consists of an input layer, a hidden layer, an output layer, and connections between

the layers (Fig. 1). The sigmoid functions are utilized as nonlinear activation functions for all layers.

2.2 Response surface method (Myers and Montgomery 1995)

The RSM is utilized as a Meta model approach based on deterministic FE analyses to define the optimized

value of the response or to examine the relation between the experimental responses and variations in

the values of the input variables. In determining the optimized value of the design points, the RSM is

designed to consider the uncertainty or variations in the values of the input variables.

The number of design points should be minimized to increase the computational efficiency. To construct

performance functions that contain a second-order polynomial, we can divide the available procedures

for experimental design into two categories: classical design and saturated design. In the classical design

approach, responses are first calculated at specified design points and then a regression analysis is

conducted to formulate the performance function. In this approach, one of the conceptually simpler

designs is the factorial design, where the response values are estimated for each variable sampled at

equal intervals (Fig. 2(c)). The saturated design consists of only as many design points as the total number

of coefficients necessary to define a polynomial which represents the performance function. The design

can be used for second-order polynomials with and without cross terms (Figs. 2(a) and 2(b)).

Fig. 1 Structure of a back-propagation NN
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3. Experimental tests

A test model of an FRP composite deck that is adjoined to several FRP deck units as shown in Fig. 3

is instrumented. For the static displacement tests of the FRP composite deck, two steel girders along the

longitudinal direction, two smaller steel girders along the transverse direction, and four bracings

between the girders are utilized to bind the test model. Fig. 4 shows a photograph of the test model and

Fig. 2 Experimental design points of the RSM (Haldar and Mahadevan 2000)

Fig. 3 Unit module section

Fig. 4 FRP test model
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Fig. 5 shows a schematic representation. The two longitudinal steel girders are supported by four base

blocks at each end of the bottom flanges; the unsupported lengths are about a quarter of the length of

the steel girders. For these two girders, we use H100 × 100 × 6 × 8 and C75 × 40 × 5 × 7 I-shaped

sections. Two tires are used to exert a load of 50 kN at the center of the deck. The static displacement

experiments are performed three times so that we can measure the displacements at the six points shown

in Fig. 6. The experimental results are shown in Table 1.

Fig. 5 Schematic of the FRP test mode

Fig. 6 Schematic of measured points
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4. Preliminary FE model

The development of the first FE model in this analysis is based on the best engineering judgment.

That means we rely solely on information that is typically available in the design, such as construction

and architectural drawings and specifications of the various construction materials. Strand7 (R2.4 2005),

which is a general-purpose FE analysis program for static and dynamic analysis of structures, is used as

our FE analysis tool. To build the test model, which is shown in Fig. 7, we used a total of 172 beam

elements, 19,836 plate elements and 19,261 nodes. Plate elements are extensively used because the

deck is made up of FRP laminates. Table 2 shows the theoretical values of the material properties and

geometric parameters used to build the FE model.

5. SI process

During the SI process, displacements at six different points are chosen as input values, whereas the

stiffness (EX and EY) of the flanges and the web, respectively, are chosen as output values. The use of

these values means that there are six input parameters and six output parameters in total. As shown in

Table 1 Static displacement through experiments

No. of points
Displacements (mm)

Test 1 Test 2 Test 3 Mean

P1 0.16 0.15 0.15 0.1533

P2 0.51 0.48 0.48 0.4900

P3 2.33 2.29 2.23 2.2833

P4 0.92 0.91 0.88 0.9033

P5 0.22 0.23 0.23 0.2267

P6 1.76 1.75 1.70 1.7367

Fig. 7 FE model of the test model
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Fig. 8, the SI with iterative NN training is a process of optimization.

An experimental design based on recent developments of the RSM is used here to find the optimized

value of the design points. First, in the design range of stiffness, only a first-order approximation to

g(X) is used for the sampling, resulting in 13 (6 × 2 + 1) evenly distributed design points. Six stiffness

parameters are then changed simultaneously to form the upper and lower boundaries. Finally, two kinds

of second-order polynomials (Figs. 2(b) and 2(c)) are added in succession to find the most effective and

efficient model.

Table 3 Numerical displacements by static analysis of the preliminary FE model

Items P1 P2 P3 P4 P5 P6

Displacements (mm) 0.2065 0.7221 2.7915 1.1832 0.3749 1.9797

Table 2 Material properties and geometric parameters

Properties of material Top flange Web Bottom flange

Elastic modulus
Transverse (EX (GPa)) 15.83 17.61 15.21

Longitudinal (EY (GPa)) 14.86 14.27 15.80

Poisson ratio (VXY) 0.253 0.287 0.230

In-plane shear strength (GXY (GPa)) 4.457 4.953 4.310

Mass density (ρ (g/cm3)) 1.9 1.9 1.9

Geometry Thickness (mm) 18 11 16

Fig. 8 Flow chart of iterative NN training for SI
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5.1. Numerical verification

Three cases of stiffness and displacements, which are shown in Table 4, are used for NN test patterns

with regard to the numerical verification; the values are obtained by linear static analysis of the FE

model in Strand7. Cases I, II and III refer to the three cases of target stiffness, which are set through

certain percent changes of theoretical stiffness.

5.2 Example studies

The experimental displacements shown in Table 1 are used as inputs; the stiffness can be estimated by the

NNs. All three tests and average displacements are used to investigate the effectiveness of the proposed

method. The construction of the model is based on a simulation of the tested FRP deck and is described in

the section on the preliminary FE model. The results are compared and discussed in the next section.

6. Results and discussion

As shown in Fig. 9, the results of the numerical verification are compared in terms of the mean square

value of errors of the estimated stiffness and the target stiffness. Four training database schemes are

coordinated with the four types of sampling points shown in Fig. 9(a). As shown in Fig. 2, four

experimental design schemes for selecting the design points are considered in this section: scheme 1 is

a saturated design with a second-order polymer and no cross terms; scheme 2 is a central composite

design with a second-order polymer and cross terms; scheme 3 is a saturated design with a second-

order polymer and cross term I; and scheme 4 is a saturated design with a second-order polymer and

cross term II. The four schemes use 13, 15, 27, and 43 cases of the training database, respectively. Fig.

9(b) shows the results when iterations are performed.

As we can see from the comparison in Fig. 9(a) and Fig. 10(a), scheme 2 is the most effective for

estimating stiffness; that means 15 cases of the training database can be used to obtain the optimum value.

There appears to be no improvement in accuracy as the number of cases from the training data

Table 4 Test pattern for the numerical verification

Items CASE I CASE II CASE III

Stiffness
(Units: GPa)

Top flange
EX 17.41 15.83 15.83

EY 14.86 14.86 14.86

Web
EX 17.61 17.61 19.37

EY 14.27 14.27 14.27

Bottom flange
EX 15.21 15.21 15.21

EY 15.80 15.80 15.80

Displacements
(Units: mm)

P1 0.2093 0.2081 0.2128

P2 0.7237 0.7229 0.7238

P3 2.7786 2.7835 2.7584

P4 1.1864 1.1853 1.1808

P5 0.3777 0.3766 0.3821

P6 1.9700 1.9735 1.9537
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increases. To interpret this trend, we assume there is a target line in the coordinate and we endeavor to

find an approximation line that is close to the target line. The sampling points are linked so that they

represent the approximation line. This process improves the precision at the sampling points, though

the precision of the point at the median area (that is, between the sampling points) may be decreased.

To verify the accuracy of the proposed method, we compare the mean square value of the discrepancies

between the numerical displacements and the experimental displacements at six points. The comparison

is shown in Fig. 10. The horizontal axis represents the cases of numerical and experimental displacements.

A comparison of the iteration results confirms that the mean-square error ratio between the simulated

and measured displacements shows a decreasing trend (albeit with slight fluctuations) as the iterations

are performed. As shown in Fig. 11, the results of the numerical displacements obtained with the final

estimated stiffness are compared with experimental displacements and there is good convergence between

the experimental displacements and the final numerical displacements. Thus, the proposed method of

iterative NN training is promising for the SI of an FRP deck. 

The following conclusions can be drawn from the above discussions:

(1) An increase in the number of cases from the training data does not guarantee any improvement in

the accuracy of the method. However, we can obtain a very close approximation of the target accuracy

by linking the sampling points. In this way, the precision is improved at the sampling points, though the

precision of the point at the intermediate area (that is, between the sampling points) may be decreased.

Fig. 9 Results of numerical verification

Fig. 10 Results of example studies
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(2) In spite of the fluctuations, discrepancies in the numerical and experimental displacements show a

decreasing trend. Hence, the proposed method is generally an effective procedure in SI.

7. Conclusions

In this paper, we propose iterative training of NNs for the SI of an FE modeled FRP deck. Static

displacements are used as the input to the NNs to estimate the stiffness of the FRP composite material

and to reduce the effect of modeling errors in the baseline FE model, from which the training patterns

are to be generated. In addition, the RSM is incorporated to make the proposed method more effective

and efficient in the preparation of training data. Example analysis with simulated data demonstrates the

effectiveness and applicability of the proposed method, which seems to have significant potential for

identification of real structures.
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