
Steel and Composite Structures, Vol. 9, No. 1 (2009) 39-58 39

Calibration of model parameters for the cyclic response of 
end-plate beam-to-column steel-concrete composite joints 

Pedro Nogueiro*

ISISE, Department of Applied Mechanics, Escola Superior de Tecnologia e Gestão,

Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300 Bragança, Portugal (nogueiro@ipb.pt)

Luís Simões da Silva

ISISE, Department of Civil Engineering, University of Coimbra – Polo II Pinhal de Marrocos,

3030 Coimbra, Portugal (luisss@dec.uc.pt)

Rita Bento

Department of Civil Engineering, Instituto Superior Técnico Av. Rovisco Pais, Lisboa,

Portugal (rbento@civil.ist.utl.pt)

Rui Simões

ISISE, Department of Civil Engineering, University of Coimbra – Polo II Pinhal de Marrocos,

3030 Coimbra, Portugal (rads@dec.uc.pt)

(Received November 2, 2007, Accepted January 16, 2009)

Abstract. Composite joints, considering the composite action of steel and concrete, exhibit, in general, high
strength and high ductility. As a consequence, the use of this type of joint has been increasing in many
countries, especially in those that are located in earthquake-prone regions. In this paper, a hysteretic model
with pinching is presented that is able to reproduce the cyclic response of steel and composite joints. Secondly,
the computer implementation and adaptation of the model in a spring element within the computer code
Seismosoft is described. The model is subsequently calibrated using a series of experimental test results for
composite joints subjected to cyclic loading. Finally, typical parameters for the various joint configurations
are proposed.

Keywords : structural engineering; composite structures; buildings; component method; beam-to-col-
umn joints; dynamic behaviour; seismic behaviour; joint model.

1. Introduction

The global behaviour of a composite steel-concrete structure depends greatly on the composite

* Corresponding Author, Email: nogueiro@ipb.pt

DOI: http://dx.doi.org/10.12989/scs.2009.9.1.039



40 Pedro Nogueiro, Luís Simões da Silva, Rita Bento and Rui Simões

behaviour of the joints. Several studies have demonstrated that composite connections exhibit adequate

mechanical properties, such as strength, ductility and energy dissipation capacity, for its use in structures

located in seismic areas. The behaviour of usual composite joint typologies under cyclic loading,

representative of the effects of a seismic event, is characterized by hysteretic loops with progressive

degradation of strength and stiffness that eventually lead to failure of the joint. Typically, seismic events

provoke relatively high amplitudes of rotation in the joint area, so that steel and concrete repeatedly

reach the plastic range and the joint fails after a relatively small number of cycles. This typical behaviour

is usually called oligocyclic fatigue, in close analogy with the behaviour of steel under repeated cyclic

loading stressed into the plastic regime (Fig. 1a). 

Predicting the behaviour of composite joints is quite complex, because it combines several phenomena

such as material non-linearity (plasticity, strain-hardening, cracking of concrete), non-linear contact and

slip, geometrical non-linearity (local instability), residual stress conditions and complicated geometrical

configurations. Under cyclic loading, this behaviour is further complicated by successive static loading

and unloading, as illustrated in Fig. 1b, where the characteristic pinching effect in the loading branches

is clearly visible. For static monotonic situations it is nowadays possible to accurately predict the moment-

rotation response of a fairly wide range of joint configurations by applying the principles of the

component method (Eurocode 4 – EN 1994-1-1, 2004; Simões da Silva et al. 2001). However, this is not

the case for the cyclic situation. In this case, the usual approach is to develop multi-parameter mathematical

expressions that are able to reproduce the range of hysteretic behaviours for a given group of composite

joint typologies. Subsequently, the values of the parameters are calibrated to satisfactorily correlate to a

range of section sizes for a given group of joint typologies.

Historically, two mathematical formulas have provided the basis for the majority of the models that

have been proposed in the literature: Ramberg-Osgood type mathematical expressions (Ramberg and

Osgood 1943), that usually express strain (generalized displacement) as a non-linear function of stress

(generalized force) and Richard-Abbott type mathematical expressions (Richard and Abbott 1975), that

usually relate generalized force (stress) to generalized displacement (strain).

Ramberg-Osgood based mathematical models were first used by Popov and Pinkey (1968) to model

hysteresis loops of non-slip specimens and later applied to model the skew symmetric moment-rotation

hysteretic behaviour of connections made by direct welding of flanges with or without connection plate

(Popov and Bertero 1973). Mazzolani (1988) developed a comprehensive model based on the Ramberg-

Osgood expressions that was able to simulate the pinching effect, later modified by Simões et al. (2001)

to allow for pinching to start in the unloading zone. It is noted that models based on the Ramberg-

Fig. 1 The hysteretic moment-rotation curve (Simões et al. 2001) without pinching (a) and with pinching (b).
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Osgood expressions present the disadvantage of expressing strain as a function of stress, which clearly

complicates its integration in displacement-based finite element codes (that constitute the majority of

the available applications) or the direct application for the calibration and evaluation of test results,

almost always carried out under displacement-control once they reach the non-linear stage.

The Richard-Abbott expression was first applied to the cyclic behaviour of joints by De Martino et al.

(1984). Unfortunately, that implementation was not able to simulate the pinching effect (Simões et al.

2001). Subsequently, Della Corte et al. (2000) proposed a new model, also based on the Richard-Abbott

expressions, that was capable of overcoming this limitation and simulate the pinching effect, as well as

strength and stiffness deterioration and the hardening effects.

Since the end of the 1980’s, various research projects on the cyclic behaviour of steel-concrete

composite joints were undertaken in several research centres, comprising a total number of 19 research

projects and 72 individual experimental tests. These tests are summarized in Tables 1 to 3 and comprise

various configurations, ranging from welded configurations to end-plate typologies. In general, the

objective of these cyclic tests was the study of the seismic performance of the joints, following the

observation of failures resulting from the Kobe and the Northridge seismic events.

Previous work by the authors (Nogueiro et al. 2007) was developed with the objective of applying

and calibrating the model developed by Della Corte et al. (2000), based on the Richard-Abbott mathematical

Table 1 Welded steel-concrete composite joints

Total number of research projects: 5 
Total number of tests: 18 

Total number of different load histories: 2 

Authors (date)
N.o

of tests
Joint

Characterization
Load

History
Main parameters

investigated

Sheikh et al.
(1989)

8

Steel beam which is continuous
through the joint was a hybrid built-
up section, with roughly 40% of the
shear strength of a rolled shape (W18
× 76) and similar moment capacity.
Column in concrete (510 ×510), designed
to exceed the connection strength.

(2)

Evaluation of strength and stiff-
ness; confinement effect of stirrups
in the nodal zone.

Plumier and
Schleich (1993)

6

Three external joints and three inter-
nal joints, combining steel elements,
composite column and beam.
Beam in HEA260 and columns in
HEB300.

(1)

Contribution of the shear panel
in the energy dissipation. Study
the strength and rotation capac-
ity joint.

Pradhan and
Bouwkamp (1994)

-

Fully welded joints. Beam section
HEA260 and column section HEB300.
Some tests are with beam and col-
umn filled-in reinforced concrete.

-

Column shear web panel zone,
shear panel thickness and contri-
bution of the concrete.

Bursi and
Ferrario (2003)

3
Steel concrete welded beam-to-col-
umn external joint. IPE330 and IPE400
beam sizes and HEB360 column size 

(1)
Seismic performance of composite
beam.

Calado
(2003)

1
Welded steel composite beam (IPE300)
to column (HEB200) external joint.

(1)
Cyclic behaviour, modes of fail-
ure and effect of the slab.
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model, with a series of experimental test results for steel joints subjected to cyclic loading. In a previous

work, Nogueiro et al. (2003) investigated the effect of pinching on the seismic response of steel frames

and concluded that it leads to an increase of the joint rotation of about 20%, thus increasing the ductility

demand on the joints to avoid failure. Besides the brief presentation of a hysteretic model with pinching

based on the Richard-Abbott mathematical model and developed by Della Corte et al. (2000), it is the

objective of this paper: (i) to describe the computer implementation and adaptation of this model in a

spring element within the computer code SeismoStruct (2007); (ii) to apply and calibrate the model

Table 2 Set angle steel-concrete composite joints 

Total number of research projects: 6 
Total number of tests: 22 

Total number of different load histories: 2 

Authors
(date)

N.o

of tests
Joint

Characterization
Load

History
Main parameters

investigated

Lee and Lu
(1989)

3

Two exterior joint with the beam
flange welded to columns (W10 × 60)
and (W12 × 65). One interior joint,
with the beam flange welded to col-
umn (W12 × 65).
All beams are W18x35.

(1)

Study the stiffness, strength, ductil-
ity and energy dissipation capacity,
emphasising the effects of the com-
posite slab and the panel zone
deformation.

Leon
(1990)

7

Four internal types of composite semi-
rigid connections combining seat angle,
web clips and floor slab. Beams in
W14 × 38, W21 × 57 and columns in
W14 × 120 and W14 × 145.

(3)

Seismic performance, more specifi-
cally the increasing of joint strength
and stiffness by means of slab rein-
forcement, and indication for this
over-strength use. Study of joint
ductility and rotation capacity. 

Plumier and
Schleich (1993)

8

Four external joints and four internal
joints, combining composite elements
some of them with slab. 
Beam in HEA260 and columns in
HEB300.

(1)

Contribution of the shear panel in
the energy dissipation. Study the
strength and rotation capacity joint.

Amadio et al.
(1994)

1

Internal joint, with cleated connec-
tion between the beam lower flange
and the column. Beam IPE330 and
column HEB330.

(1)

Cyclic response of the semi-rigid
joints and seismic resistance capac-
ity of the frames studied. Ductility
and strength of the joints, avoiding
the failure of bolts and in the welds
or local instabilities.

Leon et al.
(1998)

2

Interior joints, with beam W27x94
and the column W14 × 211, the panel
zone incorporate four continuity plates
and doubler plate on both sides of
the column web. The beam flanges
are welded to the column.

(3)

Investigate the modes of failure in
the region of the bottom flange,
specially the effect of the compos-
ite concrete slab.

Calado
(2003)

1
Bolted top, seat and web angle steel
composite external joint with IPE300
beam size and HEB200 column size.

(1)
Cyclic behaviour, modes of failure
and effect of the slab.
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with a series of experimental test results for composite joints (described in Tables 1 to 3) subjected to

cyclic loading; and (iii) to compare and propose typical parameters for the chosen joint configurations. 

Table 3 End-plate steel-concrete composite joints

Total number of projects: 8 

Total number of tests: 32 

Total number of different load histories: 2

Authors
(date)

N.o of 
tests

Joint
Characterization

Load
History

Main parameters
investigated

Plumier and
Schleich (1993)

12

Six external joints and six internal
joints, combining composite elements
some of them with slab.
Beam in HEA260 and columns in
HEB300.

(1)

Contribution of the shear panel
in the energy dissipation. Study
the strength and rotation capac-
ity joint.

Amadio et al. 
(1994)

2

Internal joints, with extended end-
plate, one test with the column made
up with concrete filled square (260
×260) hallow steel profile. Beams
IPE 330 and other column HEB330.

(1)

Cyclic response of the semi-rigid
joints and seismic resistance capac-
ity of the frames studied. Ductil-
ity and strength of the joints,
avoiding the failure of bolts and
in the welds or local instabilities.

Ermopoulos et al. 
(1995)

2

Internal composite beam-to column end-
plate joints, with the column encased
with concrete. Head stubs welded to
the column wed or longitudinal rein-
forcement and stirrups.

(1)

Effect of confinement in columns.

Simões et al.
(2001)

4

Two internal and two external com-
posite extended end plate joints. Beam
IPE270 and column HEA220. 

(1)

Identification of the contribution
of the concrete confinement in
composite columns and assessment
of the degradation of strength and
stiffness, and identify the various
failure modes.

Dubina et al.
(2002)

2
Bolted steel composite double-sided
extended end-plate beam to column
joints.

(1)
Evaluate the performance of the
beam-to-column extended end plate,
and numerical modelling of joints.

Summer and
Murray (2002)

1

Steel composite double extended end-
plate beam-to-column internal joint.
W24 × 68 beam size and W14 × 257
column size. 

(4)

Influence of the extended-end-plate
in the strength, stiffness and joint
ductility and the effect of the com-
posite slab.

Bursi et al.
(2003)

1

Steel-concrete composite extended end-
plate interior joint, with encased col-
umn. IPE300 beam size and HEB280
column size. 

(1)

Performance of relevant compo-
nents to interior joints subjected
to cyclic loading.

Liew and
Shanmugam (2004)

8

Steel composite one side extended
and flush end-plate. 305 × 305 × 97UC
and 305 × 305 × 198UC beam sizes and
305 × 165 × 54 UB column size.

(1)

Performance of composite end plate
joints.

The cyclic loads histories recorded in these tests, four in total, are summarized in Table 4.
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2. Modified Richard-Abbott model

According to this model (Della Corte et al. 2000), the loading curve for a generic branch of the

moment-rotation curve of a joint is given by the following equation:

(1)

where M0a = Mn + M0p. The unloading curve is obtained in the same way, replacing (Mn, φn) by (Mp, φp)

and the parameters M0a, ka and kpa by the corresponding values evaluated at unloading, M0d, kd and kpd.

To describe the pinching phenomenon, two limit curves are introduced, that represent a lower and an

upper bounds to possible M-φ values. Both curves have a Richard-Abbott type law, and are characterised

by parameters Kop, Mop, Khp, np (lower bound curve) and Ko, Mo, Kh, n (upper bound curve). Additionally,

any generic point (M,φ) along the real path is also considered to belong to a Richard-Abbott type curve,

where the relevant parameters are defined as follows:

Kot = Kop + (Ko − Kop) × t (2a)

Mot = Mop + (Mo − Mop) × t (2b)

M Mn

ka kpa–( ) φn φ–( )⋅

1
ka kpa–( ) φn φ–( )⋅

M0a

----------------------------------------------
N

+
1/N

-------------------------------------------------------------------------– kpa φn φ–( )⋅–=

Table 4 Cyclic load histories

Load History N.o of tests Description

(1) 54 ECCS procedure.

(2) 8
Two cycles to 1% distortion, two cycles to 2% distortion and one half-cycle to
4% distortion.

(3) 9
Full reversal cycles at 0.1, 0.25, 0.50, 0.75, 1.0, 1.5, 2.0 and 3.0% interstorey
drifts.

(4) 1 SAC standard and SAC near-fault loading history.

Fig. 2 Generic loading and unloading branches
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Kht = Khp + (Kh – Khp) × t (2c)

nt = np + (n – np) × t (2d)

The parameter t, ranging in the interval [0,1], defines the transition law from the lower bound to the

upper bound curve. It must reproduce, as closely as possible, the shape of the experimental curves and

is given by:

(3)

where t1, t2 and φlim are three experimentally calibrated parameters. Fig. 3 illustrates, qualitatively, the

resulting pinching behaviour with reference to one single excursion from the origin.

In case of a generic deformation history, the parameter φlim is related to the maximum experienced

deformation in the direction of the loading branch to be described. It is evaluated according to the

following relationship:

(4)

where  is the absolute value of the deformation corresponding to the starting point of the current

excursion, φmax is the maximum absolute value of the deformation experienced in the previous loading

history, in the direction of loading branch to be described (Fig. 4a) and C is a calibration parameter. The

unloading branch is assumed to be linear with a slope equal to the initial stiffness Ko up to the

interception with the straight line obtained drawing a parallel to the hardening line going through the

origin. This allows the Bauschinger effect to be considered.

Cyclic action in the inelastic range produces accumulation of plastic deformation, until ductility of

the system is locally exhausted and failure occurs due to fracture. In some cases, the repetition of

loading is accompanied by degradation of the structural response because of deterioration of its

mechanical properties. This can be taken into consideration both for strength (Mo,red) and stiffness

(Ko,red) using the following expressions:

. (5)

t
φ/φl im( )

t
1

φ/φlim( ) t1 1+
-------------------------------

t
2

=

φlim C φo φmax+( )=

φo

Mo red,
Mo 1 iM

Eh

My φu o,×
----------------------×–⎝ ⎠

⎛ ⎞          Ko red,
Ko 1 iK

Eh

Ko φu o,×
---------------------×–⎝ ⎠

⎛ ⎞==

Fig. 3 The loading branch with pinching
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 is the corresponding ultimate value in the case of one single excursion from the origin

(monotonic loading), Eh is the hysteretic energy accumulated in all previous experienced excursions,

My represents the conventional yield resistance of the joint, Ko the initial stiffness as defined in the Fig. 4b

and coefficient i is an empirical parameter related to damage rate.

Hardening due to cyclic plastic deformation is considered to be isotropic. Besides, experimental

results of constant deformation amplitude tests for joints not exhibiting strength deterioration show that

cyclic hardening grows up in few cycles and then becomes stable. 

Therefore, the following assumption is made: 

    Mo,inc = Mo                                                   if  φmax ≤ φy         

(6)

Mo and Mo,inc are the initial and increased value of strength, respectively; φmax is the maximum value of

deformation reached in the loading history (in either positive or negative direction); φy is the

conventional yielding value of deformation (see Fig. 4b); Hh is an empirical coefficient defining the

level of the isotropic hardening (Filippou et al. 1983). The above formulation practically corresponds to

translate the asymptotic line of the original Richard-Abbott equation (De Martino et al. 1984), as a

function of the extent of the plastic deformation. 

3. Computational Implementation 

The numerical implementation of the hysteretic model described above was carried out using the Delphi

(Delphi 7, 2002) development platform. A six degree-of-freedom spring element was implemented in

the structural analysis software SeismoStruct (2007). The implementation comprised two major parts.

The first consists of the management of the hysteretic cycles, where a clear distinction between positive

and negative moment must be made because of possible asymmetry of joint response under hogging or

sagging bending. An illustrative flowchart of the cycle management is shown in Fig. 5. 

The second part of the implementation relates to the development of the code for each cycle. Several

φu o,

Mo inc,
Mo 1 Hh

φmax φy–

φy

---------------------×+⎝ ⎠
⎛ ⎞      if  φmax φy≥=

Fig. 4 Effect of parameter C (a) and definition of the unloading branch (b)
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possibilities must be considered, depending on the starting bending moment (positive or negative) and

the sign of the strain increment (positive or negative), as can be seen in the Figs. 6a, b and c.

In total, 30 parameters have to be defined for this model, fifteen for the ascending branches (subscript

a) and fifteen for the descending branches (subscript d): Ka (and Kd) is the initial stiffness, Ma (and Md)

is the strength, Kpa (and Kpd) is the post limit stiffness, na (and nd) is the shape parameter, all these for

the upper bound curve (see Fig. 1), Kap (and Kdp) is the initial stiffness, Map (and Mdp) is the strength,

Kpap (and Kpdp) is the post limit stiffness, nap (and ndp) is the shape parameter, all these for the lower

bound curve, t1a and t2a (and t1d and t2d) are the two parameters related to the pinching, Ca (and Cd) is the

calibration parameter related to the pinching, normally equal to 1 (see Fig. 4a), iKa (and iKd) is the

Fig. 5 Flowchart for the management of hysteretic cycles

Fig. 6 a) Definition of the increment; b) Hysteretic curve for positive starting; c) Hysteretic curve for negative
starting; d) Small loading for odd parameters
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calibration coefficient related to the stiffness damage rate, iMa (and iMd) is the calibration coefficient

related to the strength damage rate, Ha (and Hd) is the calibration coefficient that defines the level of

isotropic hardening and Emaxa (and Emaxd) is the maximum value of deformation. 

The model must deal with all kinds of loads, especially those resulting from seismic action where the

loading and unloading branches can be either large or small. In particular, the model must be prepared

to consider an inversion of loading as shown in Fig. 6d) for both the positive and the negative starting

points. The versatility of the model may be confirmed elsewhere (Nogueiro et al. 2007).

4. Application to composite joints

4.1. Description of the experimental tests

In order to establish reliable parameters for a range of end-plate beam-to-column composite joint

configurations and to validate the accuracy of the model, a group of well-documented experimental

results was selected from the literature. These tests were performed by Simões et al. (2001), Dubina et

al. (2002) and Liew et al. (2004) and are summarized in Table 5. 

Tests 1 and 2 correspond to external joints. All other tests correspond to internal joints. Tests 2 and 4

have the column encased in concrete. Tests 1 to 4 have 12 mm thick end-plates and M20 bolts, grade

8.8 and the steel is grade S235. For tests 5 to 9 the steel is grade S275. Tests 5, 6 and 7 have M20

preloaded bolts, grade 10.9 and the end-plate is double extended and 20 mm thick. All cyclic tests for

internal nodes are loaded in phase, except for test 7. Test 8 has the column web stiffened with a doubler

plate (Fig. 9d) and a flush end-plate connection. Test 9 corresponds to an extended end plate connection. For

tests 8 and 9 the end-plate is 12 mm thick and the bolts are M20, Grade 10.9. All concrete slabs have

12 cm thickness and continuous steel reinforcement around the column. Figs. 7 to 9 illustrate the joint details.

4.2. Application of the modified Richard-Abbot model 

4.2.1. Introduction

The application of the model should be carried out in two consecutive steps. Firstly, the initial

Table 5 Experimental tests

 No Test Ref. Author Type Beam Column
hc

cm
M+

y

KNm
M-

y

KNm
K+

y

KNm/rad
K-

y

KNm/rad

1 E9 Simões External IPE270 HEA220 12 114 115 24570 26810

2 E10 Simões External IPE270 HEA220+C 12 170 159 36950 40830

3 E11 Simões Internal IPE270 HEA220 12 83 81 16500 18830

4 E12 Simões Internal IPE270 HEA220+C 12 117 118 34440 36220

5 BX-CUC1 Dubina Internal IPE270 HEA220 12 143 137 36870 37920

6 BX-CUC2 Dubina Internal IPE270 HEA220 12 143 137 36870 37920

7 BX-CSC1** Dubina Internal IPE270 HEA220 12 195 150 102500 75050

8 CJ2 Liew Internal 305 × 305 × UB50 305×305×97UC 12 165* 150* 27648 16987

9 CJ4 Liew Internal 305 × 305 × UB50305×305×97UC+S 12 190* 165* 42697 45118

HEA220 + C (concrete); 305 × 305 × 97UC + S (Stiffening of column wed). *Estimated value. **Symmetrical test
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stiffness, moment resistance and post-limit stiffness should be obtained from static monotonic tests.

This was the case for all tests except for tests 8 and 9. Subsequently, the cyclic tests allow the calibration

of the remaining parameters such as strength and stiffness deterioration coefficients, the isotropic

hardening and the pinching parameters. The following sub-sections illustrate the application of the

model to the selected tests.

4.2.2. End-plate joints 1 to 4 

The cyclic loading strategy applied to joints 1 to 4 is illustrated in Fig. 10. For the external node joints

1 and 2 and for the cycles with the largest amplitude, it led to maxima total joint rotations of about 40

mrad, thus matching the Eurocode 8 ductility requirements (EN 1998-1, 2004) for dissipative joints.

For joints 3 and 4 (internal node with symmetrical loading), the maxima total joint rotations reached

about 25~30 mrad, below the requirements of Eurocode 8. However, these joints did not fail, the

reduced rotations resulting from limitations in the loading equipment (Simões et al. 2001).

Fig. 7 Joints 1 (a), 2 (b), 3 (c) and 4 (d)

Fig. 8 Bare steel joint 5 and 6 (a, b) and composite joint 7 (c, d)

Fig. 9 End plate for joints 8 (a) and 9 (b), composite joint 9 (c) and web stiffener (d)
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For test 1 (test reference E9) a strong degradation of its mechanical properties (Fig. 11) due to

bending of the end-plate and the column flange in the tension zone at the bottom level of the beam and

the crushing of the concrete in compression at the interface between the slab and the column flange can

be observed. 

The contribution of the column web panel distortion to the total joint rotation in test 2 (E10) is not so

obvious, when compared to the test E9, due to the additional resistance provided by the encasing

concrete.

Fig. 11 shows the results obtained using the modified Richard Abbott model for tests 1 and 2 (test

reference E9 and E10). They show good agreement with the experimental curves, as seen in Figs. 12 and 13.

Figs. 12 and 13 compare the values of the energy dissipated in each cycle and the strength values for

the two tests. The error is quite insignificant for the cycles where the values of energy dissipated and

strength are high. The energy dissipated and the strength of the joints demonstrate the good cyclic

performance for these composite joint typologies.

The internal joints 3 and 4 (test reference E11 and E12) presented high ductility with similar response

for hogging and sagging moments. The strength degradation was low, also because the maximum

amplitude of deformation was not very high. The numerical curve shows a good agreement with the

experimental results, as can be seen in Fig. 14. The conclusions in terms of energy dissipated and

strength values are the same as for the previous tests. Moreover, these two tests presented a more stable

Fig. 10 Cyclic loading strategy for joints 1 to 4

Fig. 11 Hysteretic curves for joints 1 and 2
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hysteretic behaviour.

Figs. 15 and 16 illustrate the good agreement between experimental and numerical results in terms of

energy dissipation and strength.

4.2.3. End-plate joints 5 to 7 

The cyclic loading strategy applied to joints 5 to 7 is illustrated in Fig. 17, as well as the application of

the Richard-Abbott model to the composite joints tested by Dubina et al. (2002). The maxima total joint

rotations reached were 40 mrad, 33 mrad and 40 mrad, respectively, thus matching the Eurocode 8

Fig. 12 Energy dissipated in each cycle for joints 1 and 2

Fig. 13 Strength reached in each cycle for joints 1 and 2

Fig. 14 Hysteretic curves for joints 3 and 4
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ductility requirements for dissipative joints. 

The first two joints (joints 5 and 6) are structurally identical, but subjected to different cyclic loading

procedures. For test 5, the ECCS procedure was adopted, while for test 6 a constant amplitude loading

procedure was used. While joints 5 and 6 are steel joints, joint 7 is composite with the addition of a

composite slab. For this test, the load strategy is asymmetrical, as can be seen in Fig. 17. For positive

bending moments the deformation reached 40 mrad and for negative bending moments the deformation

reached only 15 mrad. 

Globally, for all three tests, the model is able to accurately reproduce the experimental results, as can

be seen in Figs. 18, 19 in terms of energy dissipation and strength. 

Fig. 15 Energy dissipated in each cycle for joints 3 and 4

Fig. 16 Strength reached in each cycle for joints 3 and 4

Fig. 17 Hysteretic curves for joints 5, 6 and 7
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4.2.4. End-plate joints 8 to 9 

In the tests performed by Liew et al. (2004), the mode failure for joint 8 was excessive panel zone shear

deformation and concrete crushing. The spalling of the white wash in the panel zone indicates extensive

yielding of the column web. Since joint 9 was a bottom extended end plate, the tensile resistance of the

bottom bolts was increased because of the additional bolt row and thus the main effect was an increase of

the positive moment resistance. The failure modes observed included tension cracking of the column

Fig. 18 Energy dissipated in each cycle for joints 5, 6 and 7

Fig. 19 Strength reached in each cycle for joints 5, 6 and 7
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web, concrete crushing, end plate bending, yielding of bolt and column web panel in shear. 

The cyclic loading strategy applied to joints 8 to 9 led to the hysteretic curves illustrated in Fig. 20.

The numerical model is able to reproduce adequately the experimental results. The maxima total joint

rotations reached were 45 mrad and 50 mrad, respectively, thus matching the Eurocode 8 ductility

requirements for dissipative joints. For both joints the ECCS load strategy was followed. The deformation

reached was high, leading to high values of energy dissipated. The hysteretic behaviour of joint 9 is

more symmetrical than the other, due to the bottom extended end-plate.

Figs. 21,22 illustrate the good agreement between experimental and numerical results in terms of

energy dissipation and strength.

4.3. Proposal of hysteretic model parameters for composite end-plate beam-to-column joints

Tables 6 and 7 summarize the results, for all parameters and for the nine tests.

Examination of the variation of the non-dimensional properties for the nine tests reveals that, except

for tests 3 and 4 that present some deviations from the remaining tests (because they were only subjected

to moderate rotations and did not reach collapse), the structural properties for strength and stiffness

were fairly constant. These values can be seen in the last column of Tables 6 and 7. For the calibration

parameters, it was not possible to find a clear tendency. This results from the small number of tests that

are used and the variation of joint characteristics. Thus, for these parameters, a range of values is presented

that covers all tested joints.

Fig. 20 Hysteretic curves for joints 8 and 9

Fig. 21 Energy dissipated in each cycle for joints 8 and 9
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According to Eurocode 8 (EN 1998-1, 2004), dissipative semi-rigid and/or partial strength connections

are permitted, provided that all of the following requirements are verified:

a) the connections have a rotation capacity consistent with the global deformations;

b) members framing into the connections are demonstrated to be stable at the ultimate limit state (ULS);

c) the effect of connection deformation on global drift is taken into account using nonlinear static

(pushover) global analysis or non-linear time history analysis.

Additionally, (i) the connection design should be such that the rotation capacity of the plastic hinge

region θp is not less than 35 mrad for structures of high ductility class (DCH) and 25 mrad for structures

of medium ductility class (DCM) with q > 2. The rotation θp is defined as (see Fig. 23)

(7)

where δ is the beam deflection at midspan and L is the beam span and should not include the column

elastic deformation; (ii) the rotation capacity of the plastic hinge region θp should be ensured under

cyclic loading without degradation of strength and stiffness greater than 20%. (this requirement is valid

θp δ /0 5L,=

Table 6 Joint parameters for all tests for the ascending branches

Test Nº 1 2 3 4 5/6 7 8 9** Ref. Value

Ka KNm/rad 24570 36950 16500 34400 36870 27648 32697 102500 K+
y

Ma KNm 130 200 85 117 170 170 210 240 1.2 × M+
y

Kpa KNm/rad 600 1025 825 1700 1100 1000 1300 3000 0.03 × K+
y

na 2 2 2 2 2 2 2 2 2

Kap KNm/rad 24570 36950 16500 34400 36870 27648 32697 102500 K+
y

Map KNm 70 140 40 60 100 100 120 1** 0.65 × Ma

Kpap KNm/rad 600 1025 825 1700 1100 1000 1300 3000 0.03 × K+
y

nap 1 1 1 1 1 1 1 1 1

t1a 15 10 6 10 15 15 15 15 6 < ... < 15

t2a 0.5 0.5 0.15 0.15 0.5 0.1 0.1 0.2 0.15 < ... < 0.5

Ca 1 1 1 1 1 1 1 1 1

iKa 15 20 3 15 25 30 15 25 3< ... < 25

iMa 0.15 0.25 0.02 0.01 0.10 0 0 0.4 0.01< ... < 0.25

Ha 0.07 0.09 0.05 0.02 0.02 0.04 0.03 0.02 0.01< ... < 0.09

Emaxa rad 0.1 0.1 0.1 0.1 1 0.01 0.1 0.1 0.1

Fig. 22 Strength reached in each cycle for joints 8 and 9
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independently of the intended location of the dissipative zones); and (iii) the column web panel shear

deformation should not contribute for more than 30% of the plastic rotation capability θp.

Table 8 shows that application of these criteria to joints 1 to 9 are approximately in line with the

eurocode requirements. The column web panel contribution could not be verified because of lack of

experimental data. 

Table 8 Verification of Eurocode 8 requirements

Test Nº 1 2 3 4 5/6 7 8 9 Ref. Value

Rotation capacity 40 40 30* 25* 40/33 40 45 50 25~35 mrad

**Strength degradation: positive moment 15 25 2 1 10 0 0 40 < 20%

**Strength degradation: negative moment 10 11 1 1 10 0 0 10 < 20%

**Stiffness degradation: positive moment 15 20 3 15 25 30 15 25 < 20%

**Stiffness degradation: negative moment 18 20 1 5 15 0 10 15 < 20%

* maximum rotation reached in test without joint failure
** number of cycles to reach 20% degradation

Fig. 23 Beam deflection for the calculation of θp

Table 7 Joint parameters for all tests for the descending branches

Test Nº 1 2 3 4 5/6 7 8 9** Ref. Value

Kd KNm/rad 26810 40830 18830 36220 37920 16987 35118 75050 K-
y

Md KNm 125 170 80 118 167 160 190 175 1.2 × M-
y

Kpd KNm/rad 670 1020 940 1800 1140 425 1300 3250 0.03 × K+
y

nd 2 2 2 2 2 2 2 2 2

Kdp KNm/rad 26810 40830 18830 36220 37920 16987 35118 75050 K-
y

Mdp KNm 60 75 60 60 110 90 100 110 0.65 × Md

Kpdp KNm/rad 670 1020 940 1800 1140 425 1300 3250 0.03 × K+
y

ndp 1 1 1 1 1 1 1 1 1

t1d 6 15 5 20 20 15 15 20 5 < ... < 20

t2d 0.2 0.5 0.15 0.15 0.2 0.1 0.1 0.5 0.15 < ... < 0.5

Cd 1 1 1 1 1 1 1 1 1

iKd 18 20 1 5 15 0 10 15 1 < ... < 20

iMd 0.10 0.11 0.01 0.01 0.10 0 0 0.01 0.01 < ... < 0.11

Hd 0 0 0.02 0 0 0 0 0 0

Emaxd rad 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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5. Conclusions

The paper presents the numerical implementation of a hysteretic model able to simulate a generic

cyclic steel-composite joint behaviour. It is incorporated in the structural analysis software SeismoStruct

(Seismosoft 2007) as a joint element, thus allowing realistic non-linear static and dynamic structural

analyses. The model was applied to nine experimental tests from three independent sources for composite

joints, showing a very good agreement with the experimental results, even when using different cyclic

loading strategies. Despite the small sample size, a clear trend was observed for the required model

parameters for end-plate beam-to-column composite joints. A proposal of an interval range of design

parameters for such joints was presented. Finally, these joints matched the eurocode requirements for

dissipative semi-rigid, partial strength joints, showing that these joints may be safely used in seismic

situations, although an extended validation should be sought.
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