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Probabilistic analysis of a partially-restrained
steel-concrete composite frame

C. Amadio*

Department of Civil and Environmental Engineering, University of Trieste,
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Abstract. The paper investigates the seismic performance of a Partially-Restrained (PR) steel-concrete
composite frame using the probabilistic approach. The analysed frame was tested at the ELSA laboratory of
the Joint Research Centre of Ispra (Italy), while the representative beam-to-column composite connections
were tested at the Universities of Pisa, Milan and Trento (Italy). The component modelling of both interior and
exterior composite joints is described first, including the experimental-numerical validation. The Latin
Hypercube method has been used to draw the probabilistic distribution curves of joints, and then the whole PR
composite frame has been analysed. Pushover and incremental dynamic analyses have been carried out using
the non-linear FE code SAP2000 version 9.1. The fragility and performance curves of the PR composite
frame have been determined for four damage limit states.
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1. Introduction

Modern codes for design in earthquake-prone regions (FEMA 356 2000, Bertero 2002, Eurocode 8

2004) require the structure to satisfy some performance objectives during the service life. This design

philosophy, known as Performance Based Seismic Design (PBSD), combines some structural performance

levels with pre-fixed intensities of the seismic action. 

The SEAOC (1995), FEMA 273 (1997) and FEMA 356 (2000), suggest four performance levels: “Fully

Operational, LS0”, “Operational, LS1”, “Life Safe LS2”, and “Near Collapse, LS3”. Any performance level

corresponds to a limitation of a parameter representative of a given damage limit state for structural and

non-structural elements. Four design values of the seismic action, corresponding to different return

periods T, also are in general defined; for example by the SEAOC these are: frequent (T = 43 years),

occasional (T = 72 years), rare (T = 475 years), and very rare (T = 970 years). The design performance

objectives can then be obtained by combining the aforementioned performance levels with the

corresponding design values of the seismic action (Fig. 1), according to the importance of the structure

(ordinary, civil defence, or special structure). The PBSD, therefore, requires a multi-level control by

assessing the structural performance for different levels of the seismic action. The plastic behaviour is

explicitly taken into account in this approach, with the aim of optimising the efficiency and the usability

of the structure during the service life. 

It has been recently pointed out that the use of the probabilistic approach should be preferred when

evaluating the structural performance in earthquake-prone regions. The traditional deterministic
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approach, in fact, may lead to inconsistencies between predicted and noticed structural damages

because of the uncertainties in the models used to evaluate both the demand and capacity. Conversely,

the probabilistic approach can fully consider all of the uncertainties affecting the prediction of the seismic

behaviour and, therefore, the actual seismic performance (Bazzurro and Cornell 1994, Dymitiotis et al.

1999, Cornell and Krawinkler 2000, Piluso et al. 2003, Altug and Elnashai 2004).

The seismic reliability of a given structural typology can be evaluated by means of the fragility

curves. Such curves provide the probability of occurrence Fr(x) of a given Limit State (LS), conditioned

to a parameter IM representing the seismic hazard (which is usually the Peak Ground Acceleration

PGA, the spectral acceleration Sa, or the spectral displacement Sd):

 
(1)

where the limit state LS is considered to be reached when a control variable assumes a pre-defined value.

For a frame, usually the Inter-Storey Drift Angle (ISDA) or a damage parameter, such as the Park and

Ang index (DPA), see Park and Ang (1985), are assumed as control variables. Once the fragility curves

are known, the probability of failure Pf, or limit state probability, can be evaluated with the formula

(Cornell and Krawinkler 2000, Altug and Elnashai 2004): 

(2)

where H(x) represents the Seismic Hazard function, generally expressed in terms of IM=Sa (Song and

Ellingwood 1999), according to the equation:

H(x) = P[Sa > x] = 1 − exp[−(x /µ)−k] (3)

µ and k being parameters determined according to the characteristics of the site. 

Steel (Song and Ellingwood 1999, Sakurai et al. 2001) and concrete frames (Altug and Elnashai

2004), have been extensively analysed using the probabilistic approach. 

In this paper, the seismic performance of a partially-restrained steel-concrete composite frame is

investigated by following this approach. The frame, representative of a composite building in seismic

zone, is realised by partially encased composite columns connected to composite beams (Bursi et al.

2004). The beam-to-column connections are semi-rigid with partial strength. Hereinafter the component

modelling of both interior and exterior composite joints is described first, including the experimental-
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Fig. 1 Example of performance design objectives (SEAOC, Vision 2000, 1995)
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numerical validation. Then the joints are fully characterized using the probabilistic approach by varying

the responses of each mechanical component. The Latin Hypercube method (Olsson et al. 2003,

Rubinstein 1981), involving less numerical analyses, is employed to draw the probabilistic distribution curves

including mean values, variances and coefficients of variation. 

After the joint characterisation, the whole PR composite frame is investigated though numerical analyses

carried out by using the non-linear FE code SAP2000 version 9.1 (Computer and Structures, Inc, 2004).

The numerical model is checked against the experimental tests performed at ISPRA and then it is

used to evaluate the fragility curves by means of the Latin Hypercube method. As recommended by the

SAEOC, four limit states of damage are considered: “Reduced” LS0, “Limited” LS1, “Significant”

LS2, and “Near Collapse” LS3. Ten earthquake ground motions, recorded at different locations, have

been employed as seismic inputs. They were scaled so as to exhibit the same spectral displacement Sd for

the natural vibration period of the frame. Based on results of 1500 time-history analyses, the fragility

curves of the PR composite frame are drawn for each limit state considering the ISDA as damage

parameter. Finally, the curves of the annual probability of failure Pf are determined for the frame in an

earthquake-prone area, which is characterised by a given seismic hazard.

2. The analysed frame

The analysed frame structure, tested at the Joint Research Centre of Ispra (Bursi et al. 2004),

represents a full-scale two-storey steel-concrete composite building. The building is made of three

parallel two-bay main frames with different span lengths of 5 m and 7 m spaced 3 m one to another,

with interstorey height of 3.5 m. The frames are connected in the perpendicular direction by secondary

beams pinned at the ends and braced with only-tension members (Fig. 2a). The structure was designed

according to the Eurocode 4 (1992) and Eurocode 8 (1996) for a PGA of 0.4 g. The composite columns,

partially encased, are made of steel profiles HEB 260/280 for the exterior/interior columns, respectively.

The main beams are made of an IPE 300 steel profile, connected by means of Nelson shear studs to the

upper 15 cm thick concrete slab poured on a Brollo EGB 210 corrugated steel sheathing (a detailed

description of the frame is reported in Bursi et al. 2004). The analyses have been carried out for the

intermediate longitudinal frame (Fig. 2b). The frame is characterized by a fundamental period of 0.506s

with a modal participant factor of 1.207, the second and third period are 0.125s, 0.035s with participant

factors 0.498, 0.005, respectively.

Fig. 2 The analysed structure, (a) spatial view, (b) intermediate longitudinal frame
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3. The probabilistic analysis

The adopted probabilistic approach is based on the following steps:

1. definition of the most critical source of uncertainty: the seismic event;

2. modelling of the structure and beam-to-column connection, including the definition of the sources of uncertainty;

3. choice of the model used for the damage evaluation, and definition of the performance levels for the structure;

4. execution of the incremental dynamic analyses with statistical interpretation of the outcomes, and

determination of the fragility, and collapse curves.

3.1 The seismic inputs

In the analysis, only recorded earthquake ground motions were used. An important point to fix in the

probabilistic analysis is the number of ground motions to be considered, in order to obtain a statistically

correct evaluation. Bazzurro and Cornell (1994) suggested a number of at least 5 ground motions to

correctly represent the seismic hazard. Dymitiotis et al. (1999) recommended the use of 3 recorded

ground motions at least. Recently, the use of 7 recorded ground motions have been suggested (Altug

and Elnashai 2004). Since this study is aimed at the determination of the fragility curves for a structure

in a generic earthquake-prone area, a number of 10 recorded earthquake ground motions has been

considered. This is an optimal value as it represents a compromise between the accuracy of the analysis

and the corresponding computational burden. Such ground motions have been selected so as to

represent a wide range of possible seismic events of relevant intensity (magnitude ≥ 5.8). The acceleration

spectra peak values correspond to different periods and they cover most periods of technical interest.

The indicators of seismic intensity considered when selecting the ground motions have been: 

√ magnitude, Ms;

√ modified Mercalli scale MM 

√ peak ground acceleration, PGA;

Table 1 summarizes the characteristics of the earthquake ground motions selected for the analyses.

The spectral displacement Sd and spectral acceleration Sa of the selected earthquakes, computed for the

structural fundamental period (T = 0.506s) and for a damping ratio ξ = 5%, are also reported.

Table 1 Characterization of earthquake ground motions

Earthquake Date Country Station Comp. Ms MM
PGA
[g]

Sd(T1)
[cm]

Sa(T1)
[g]

GM1 Imperial Valley 15/05/1940 USA El Centro S00E 7.1 X/XI 0.348 5,25 0.83

GM2 Friuli 15/09/1976 Italy Buia N-S 6.1 IX 0.109 1.3 0.20

GM3 Alkoin 24/02/1981 Greece Xilikastro N-S 6.7 IX 0.290 3.59 0.57

GM4 Friuli 06/05/1976 Italy Tolmezzo E-W 6.3 IX 0.315 6.32 1.00

GM5 Tabas 16/09/1978 Iran Boshroych N79E 7.3 1.004 1.91 0.30

GM6 Campano Lucano 23/11/1980 Italy Irpinia,Calitri E-W 6.7 VIII 0.175 2.83 0.45

GM7 Lazio - Abruzzo 07/05/1984 Italy Cassino-Sant’Elia N-S 5.8 VII 0.110 1.69 0.26

GM8 Kocaeli 17/08/1999 Turkey Yesilkoy N-S 7.8 0.089 2.16 0.34

GM9 Gazli 17/05/1976 Uzbekistan Gazli E-W 7.0 0.720 9.18 1.45

GM10 Montenegro 15/04/1979 Montenegro Bar-S.O. E-W 7.0 0.363 6.92 1.10
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3.2 Joint and beam characterization

The correct modelling of the semi-rigid, partial strength composite joint, along with the modelling of

the composite beams, is of maximum relevance when evaluating the seismic performance of the frame.

Most of the plastic dissipation energy, in fact, takes place in these elements. 

√ The main sources of uncertainty for the frame are listed in the following:

√ geometry of structural parts;

√ intensity and type of loads;

√ mechanical properties of materials;

√ type of hysterisis loop of the structural joints and plastic hinges in the beams.

In this paper, the attention has been focused on the mechanical properties of materials and on their

influence on the strength of the joints and composite beams. Permanent and variable loads, as well as

the geometry of the structure, will be regarded as deterministic, their degree of uncertainty being

negligible compared to that of the seismic action. Instead the yield stresses of construction steel and

rebars, as well as the ultimate stresses of concrete, bolts and stud connectors have been assumed as random

variables, which are characterized by a statistical distribution.

1) Construction steel

Mechanical properties of steel profiles are affected by both random phenomena and production

processes. According to Piluso et al (2003), the statistical distribution of the yield stress fy has been assumed

as dependent on the thickness of the plates which make up the profile. It was pointed out that the Lognormal

distribution best represents the experimental distribution. Furthermore, the mean of the logarithm of the

yield stress can be considered as linearly dependent on the thickness t, with decreasing trend: 

E(ln fy) = c1 − c2t = 5.766 − 0.007t (4)

where c1 and c2 are material parameters dependent on the type of steel, t is the thickness in mm, and fy is

the yield stress in N/mm2. Table 2 summarizes the statistical parameters of the random variables

employed for the beams and columns of the frame tested at Ispra, where: 

- fy,m is the mean value of the yield stress;

- s is the standard deviation of the yield stress;

- λ and ξ are, respectively, the mean value and the standard deviation for the lognormal distribution:

(5)λ  fy m,

ξ
2

2
-----   ,– ξln COV2 1+( )ln= =

Table 2  Statistical parameters for the joint components

Steel components  (Fe 360)
t

[mm]
λ ξ COV

fy,m
[N/mm2]

s
[N/mm2]

column flange HEB260 17.50 5.64 0.07 0.07 283.1 19.8

column web HEB260 10.00 5.70 0.07 0.07 298.4 20.9

column flange HEB280 18.00 5.64 0.07 0.07 282.2 19.8

column web HEB 280 10.50 5.69 0.07 0.07 297.4 20.8

beam flange IPE 300 10.70 5.69 0.07 0.07 296.9 20.8

beam web 7.10 5.72 0.07 0.07 304.5 21.3

End plate 15.00 5.66 0.07 0.07 288.1 20.2
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− COV is the coefficient of variation defined as: 

 (6)

2) Rebars

The coefficient of variation generally reported in literature for rebars lies in the range 4% to 12%.

Either normal or lognormal statistical distributions are employed by different authors. In this paper, a

lognormal distribution with a COV equal to 6% has been assumed, according to Altug and Elnashai

(2004). In the Table 3 the statistical properties are summarised.

3) Concrete 

It is generally accepted in literature that the compression strength of concrete (fc) may be represented

by a normal distribution. Dymitiotis et al. (1999) suggest a coefficient of variation of 15% for such a quantity.

The mean value can be obtained from the characteristic strength of the material using the equation:

                                ,                      k = 1.64 (7)

In the Table 3 the statistical properties used for concrete are reported.

4) Bolts

The ultimate strength of bolts in tension has been considered as normal distributed with mean value

E ( fu) = 1.2 · fu,k, and coefficient of variation of 2% (Piluso et al. 2003). In the Table 3 the adopted

statistical properties are shown.

5) Stud connectors between steel beam and r.c. slab

A normal distribution with coefficient of variation of 4% has been considered. The mean value of the

ultimate strength has been obtained from the corresponding characteristic value. In the Table 3 their

statistical properties are reported.

Based on the aforementioned mechanical properties of the materials, the strengths of joints and

beams, regarded as stochastic variables, have been computed through a Monte Carlo simulation. Two

different cases have been considered:

a) Plasticization of the beam-to-column composite joints, i.e., evaluation of the plastic resistant

moments, under positive and negative bending, for the exterior and interior joints;

b) Plasticization of the composite beams, i.e., evaluation of the plastic resistant moments, under sagging

and hogging bending, for the 5 m and 7 m bay beams.

COV
s

fy m,

--------=

fc m,

fc k,

1 k COV⋅–
---------------------------- =

Table 3 Statistical parameters for used materials

Material COV
fm

[N/mm2]
s

[N/mm2]

Rebars Fe b 44k (B450 C) 0.06 477.09  ( fy,m)  28.63

Concrete Class C25/30 0.15 38.43    ( fc,m)  5.76

Bolt Class 10.9 0.02 1070.0  ( fu,m) 21.4

Stud Nelson 3/4" 0.04 553.4    ( fu,m)  22.1
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3.2.1 Statistical simulation
The Monte Carlo simulation has been used to calculate the plastic resistant moment of the composite

beam according to the Eurocode 4 (1992). A number of 10000 pseudo-random values in accordance

with the statistical distributions previously defined has been generated for each random variable using

the Box and Muller method (Augusti et al. 1984). The mean values Mpl,m, standard deviations s, and

coefficients of variation COV of the plastic resistant moments have then be computed. Through some

statistical tests, like the χ2 and the K-S, Kolmogorov-Smirnov tests, (see Benjamin and Cornell 1970,

Rubinstein 1981), it has been pointed out that the best probability distribution function fitting with the

obtained statistics is the lognormal one. Obtained results are reported in Table 4 for the 5 m bay

composite beam. Analogous results have been obtained for 7 m bay composite beam. 

The beam-to-column exterior and interior joints have been schematised using the component models

depicted in Figs. (3a) and (3b), respectively.

In this model all the axial springs are characterised by three-linear relationships with no degradation

of stiffness and strength under cyclic loading. The relevant points of the relationships for the steel and

concrete slab components have been evaluated according to the Annex J of Eurocode 3 (1994) and Eurocode

4 (1996), and according to Faella et al. (1998, 2000). The composite joints have then been analysed using the

Abaqus Finite Element code (Hibbit et al. 1997). The experimental-numerical comparison, in terms of

moment M and rotation θ, is reported in Figs. 4(a) and 4(b) for the exterior and interior joints,

respectively, which were tested under monotonic loading at the Universities of Pisa and Milan

(Salvatore et al. 2004). An overall good correspondence can be noted in both diagrams.

Table 4 Statistical parameters of the composite beam under bending moment

Bending Moment Mpl,m [KN/m] s [KN/m] λ ξ COV

Sagging 426,62 20,38 6,055 0,048 0,05

Hogging 252,79 10,94 5,532 0,043 0,04

Fig. 3 Component model for exterior (a) and interior (b) joint
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Since the computational time required for the statistical simulation of a composite joint is much

higher than for a composite beam, an optimised Monte Carlo simulation has been used. The stratified

sampling technique, also known as the Latin Hypercube Sampling (Olsson et al. 2003), has been

employed. The advantage of this technique is the possibility of reducing the number of analyses without

notable reduction of accuracy. The random variables considered in this study are: (1) yield stress of the

HEB column flanges, fycf; (2) yield stress of the HEB column web, fycw; (3) yield stress of the IPE beam

flanges, fybf; (4) yield stress of the IPE beam web, fybw; (5) yield stress of the endplate, fyep; (6) yield stress

of the rebars, fsr; (7) cylindrical compression strength of concrete, fc; (8) ultimate strength of Nelson studs, fus;

(9) ultimate strength of bolts, fub. The adopted procedure is summarised in the following:

1) the interval of cumulative probability [0,1] has been divided into 200 sub-intervals of equal probability;

2) a random number in the range [0,1] has been generated for each random variable and each sub-

interval. 200 values of probability density have been obtained for each variable;

3) the values of the random variables have then been obtained from the 200 values of probability

density once their statistical distribution have been assumed;

4) each of the 200 values of the random variables above calculated has been randomly coupled with

the other 8 different variables. In this way 200 vectors of 9 parameters each, which fully characterise

the mechanical properties of the joints, have been achieved;

5) the strength of each component (spring) of the joint model has been computed as described above,

assuming the stiffness as a deterministic variable. Such values have then been employed in the

Abaqus schematisation of the joint in order to determine the statistical distribution of the resisting

moment. A number of 200 exterior and 200 interior joints subjected to positive and negative

moments have been analysed.

The statistical tests of χ2 and of Kolmogorov-Smirnov have proved that the lognormal probability

distribution function PDF better represents the joint strength statistics. Fig. 5 depicts, as an example,

the frequency histograms for the strength of the internal joint subjected to positive moment and external

joint subjected to negative moment. Fig. 6 shows the convergence of the approach in terms of ratios

between the current mean value and standard deviation with the correspondent final values,

incrementing the number N of samples. By only 200 samples the convergence is reached, whereas, in

general, with the Monte Carlo approach a very high number of samples are necessary (5000÷7000).

The statistical values of the resistant moment in terms of mean value Mr, standard deviation s and

coefficient of variation COV are displayed in Table 5. 

Fig. 4  Experimental-numerical comparison for (a) exterior joint, and (b) interior joint
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Fig. 5 Frequency histograms of joints

Fig. 6 Convergence of the Latin approach for the internal joint-positive moment
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The results of the statistical analyses described above have been used to analyse the entire composite

frame. In order to reduce the computational time needed in a non-linear time-history analysis of the

frame, the composite joints have been modelled using the rotational spring (link element) provided by

SAP2000 version 9.1 code, and characterised by a bilinear global moment-rotation relationship. The

resistant moments (positive and negative) have been assumed as random variables and computed on the

basis of the results described above, while the stiffness has been considered as a deterministic quantity. 

3.3 Frame analysis

In order to draw the fragility curves of the frame, the damage parameters must be identified, along

with the values assumed by such quantities when the different performance levels are achieved. The

interstorey drift angle ISDA, which is given for a frame by: 

 (8)

where n is the number of stories, δi is the interstorey drift, and hi the interstorey height, has been considered

in the paper. This parameter is the most used since it is well correlated with the damage of structural and

non structural elements, and in general it is adopted by codes to control the damage in simple way. 

Table 6 reports the limit values employed for the ISDA damage parameter corresponding to the

achievement of a given degree of damage in the frame. These values have been calibrated on the

maximum rotation of plastic hinges and joints according to Eurocode 8 (2004), that for performance

levels LS1, LS2, LS3, are equal to 13, 30, 50 mrad, respectively. Such limit points are reported in Fig.

7, where a good correspondence with the assumed limit rotations is pointed out. The pushover curve

has been drawn for the frame tested at ISPRA by assuming a distribution of lateral forces proportional

to the storey masses. The frame has been schematised according to the FE model depicted in Fig. 8. The

analysis has been carried out by using the non-linear FE software SAP2000, assuming the actual

mechanical properties of the frame tested at ISPRA. 

In the probabilistic analysis the strength of the joint has been considered as a random variable and

ISDA
δi

 hi  

-------⎝ ⎠
⎛ ⎞

i 1=

n

∑= max

Table 5  Statistical parameters for the composite joints

Type of 
joint

Bending
Macro-model

Mr [kNm] s [kNm] COV

External
M > 0 263.86 16.87 0.06

M < 0 200.14 9.74 0.05

Internal
M > 0 178.07 10.09 0.06

M < 0 107.34 8.61 0.08

Table 6 Damageability limit states expressed through the ISDA index

Level of damage ISDA % Consequence

LS0 : REDUCED 0.5 Usable building

LS1 : LIMITED 1.0 Repairable building

LS2 : SIGNIFICANT 2.5 Irrecoverable building

LS3 : NEAR COLLAPSE 5.0 Loss of the building
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computed using the statistical simulation described in the previous paragraph on the basis of the

statistical distribution of the material mechanical properties. In particular, the beam-to-column joint has

been modelled using a link element with bilinear non-symmetric moment-rotation relationship. The elastic

stiffness for positive and negative bending was obtained through the component method and considered as a

deterministic variable. In plastic phase, the joint has been considered perfectly plastic, with stable loops

without pinching.

The composite beams have been modelled by means of elastic beam elements linked one to another

with rigid-plastic rotational springs without pinching. The strength of such springs has been considered

as a random variable and computed using the statistical simulation. The columns have been modelled with

linear beam elements and connected to the foundation with an elasto-plastic rotational spring.

The FE model of the frame has been validated against the results of the pseudo-dynamic tests

performed at ISPRA (Bursi et al. 2004). Fig. 9 displays the experimental-numerical comparison for a

generated earthquake ground motion compatible with the Eurocode 8 spectrum in the case of type A soil

and 0.25 g PGA. The numerical results have been carried out using the fast-nonlinear time-history

analysis with a structural dumping ratio ξ = 5%. Despite the simplicity of the model adopted for the joint

in dynamic conditions, an overall fairly good accuracy can be noted, however the numerical model

underestimates the damping of the structure towards the end of the analysis.

Once validated the FE model, a sample of 15 pseudo-random frames has been generated using the

stratified Latin Hypercube Sampling method with 9 random variables: strength of the column-to-foundation

Fig. 7 Comparison among the damageability limit states defined through the ISDA index and limit rotation of EC8

Fig. 8 FE model adopted for the frame
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joint, characterised by a log-normal distribution with mean value λ = 5.64, standard deviation ζ = 0.07

and coefficient of variation COV = 0.07; positive and negative ultimate moments for the 5 m and 7 m bay

beams, characterised by a log-normal distribution with mean value, standard deviation and coefficient of

variation reported in Table 4; positive and negative ultimate moments for the interior and exterior

beam-to-column joints, characterised by a log-normal distribution with mean value, standard deviation

and coefficient of variation reported in Table 5. The earthquake, as discussed in the introduction, is the

main source of uncertainty, since the corresponding recorded ground motion is uncertain in terms of peak

ground acceleration PGA, duration, and frequency content. Such uncertainties have been taken into

account by subjecting the 15 frames generated above to the 10 recorded ground motions selected in

paragraph 3.1 and summarised in Table 1. The corresponding displacement response spectra computed for

a damping ratio ξ = 5% are displayed in Fig. 10. Each ground motion, described by the history of ground

acceleration, has been scaled on 10 values of seismic intensity, represented by the spectral displacement

Sd. Such a quantity is commonly regarded as the most stable and representative parameter of the seismic

intensity (Bazzurro and Cornell 1994, Altug and Elnashai 2004). The scale factors have been selected so

that the frames can achieve all the damage levels previously defined. The displacement response spectrum

of each earthquake has been scaled with the factor λi, i = 1 to 10, such that the spectral displacements Sdi

corresponding to the natural vibration period of the frame (T1 = 0.506s) are equal to 20, 30, 40, 50, 60, 80,

100, 120, 160, and 200 mm. The adopted procedure can be summarised in the following:

(1) the interval of cumulative probability [0,1] has been divided into 15 sub-intervals of equal probability;

(2) a random number in the range [0,1] has been generated for each random variable and each sub-interval.

    15 values of probability density have then been obtained for each variable;

Fig. 9 Experimental-numerical comparison for PGA = 0.25g

Fig. 10 Displacement spectra (ξ = 5%) for the selected earthquake ground motions.
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(3) the values of the random variables have then been achieved from the 15 values of probability

density once their statistical distribution have been assumed;

(4) each of the 15 values of the random variables above calculated has been randomly coupled with

the other 8 different variables. In this way 15 vectors of 9 parameters each, which fully characterise the

mechanical properties of the frames, have been obtained;

(5) All of the 15 frames have then been subjected to the 10 earthquake ground motions, each of them

scaled through the factor λi to the 10 values of seismic intensity corresponding to Sdi. An overall

number of 1500 (15 × 10 × 10) nonlinear time-history analyses have then been carried out.

Fig. 11 displays, as an example, the structural response of the frame in terms of Incremental Dynamic

Analysis (see Mwafy and Elnashai 2001, Vamvatsikos and Cornell 2002), for the earthquake recorded at

Tolmezzo, Friuli (Italy), in 1976. The (IDA) curve, which reports the maximum base shear versus the

maximum top floor displacement for different values of PGA, is also known as the dynamic pushover

curve. Such a curve is also compared with the outcomes of static pushover analyses (SPA) carried out in

the cases of lateral forces proportional to the masses (uniform distribution) and proportional to the first

vibration mode (inverted triangular distribution). Fig. 12 reports the comparison in terms of IDA among

different earthquake ground motions. The main remarks are reported herein after:

(1) the IDA curves markedly depends on the type of earthquake ground motion;

(2) for PGA less than 0.5 g, the IDA curves generally fit with the SPA curves with lateral forces

proportional to the masses. This is true for almost all ground motions;

(3) for PGA larger than 0.5 g to 0.8 g, the IDA curves lie well above the SPA curves, especially for

the Uzbechistan, Lazio-Abruzzo, Turkey and Montenegro ground motions; 

(4) the limit state of reduced damage LS0 is achieved, on average, for PGA in the range from 0.1 g to 0.15 g;

(5) the limit state of limited damage LS1 is achieved, on average, for PGA in the range from 0.25 g to 0.35 g ;

(6) the limit state of significant damage LS2 is achieved, on average, for PGA in the range from 0.70 g to

1.00 g; the limit state of near collapse LS3 is achieved, on average, for PGA larger than 1.30 g.

The fragility curves have been obtained as a result of the 1500 nonlinear time-history analyses above

described, the outcomes of which have been analysed using the statistical approach. Fig. 13 displays the

Fig. 11 Comparison among static pushover and dynamic pushover of the Tolmzzo (1976) ground motion
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outcomes carried out for the frame using the interstorey drift as damage parameter. 

150 values of the ISDA, carried out by subjecting each of the 15 frames to 10 ground motions, are

reported for each of the 10 adopted spectral displacements, which represent the seismic intensity. This

damage parameter has then been regarded as a random variable at each level of seismic intensity. According

to the literature (Dymitiotis et al. 1999, Piluso et al. 2003, Altug and Elnashai 2004), a lognormal

distribution has been assumed to represent the damage parameter at each level of spectral displacement Sd.

Figs. 14 and 15 display the probability density functions obtained for the limit states defined on the basis of

the global damage index ISDA for the values Sd = 50 mm and Sd = 200 mm, respectively. 

The accuracy of the adopted lognormal distributions has been checked using the Kolgomorov-

Smirnov test. It has been found that the lognormal distributions satisfy the accuracy level up to the

seismic level Sd = 80 mm, while for higher levels the test is no longer satisfied. This result can be

justified because of the large scatter of values for higher seismic intensities, mainly due to the increased

influence of the uncertainties affecting the mechanical properties of materials when the structure largely

deforms in plastic phase.

Through a fitting by using a log-normal distribution, the fragility curves with ISDA as damage

parameter, have been obtained. Such curves, displayed in Fig. 16, represent the cumulative probability

Fig. 12 Comparison among the dynamic pushover curves for different earthquake ground motions

Fig. 13 Outcomes of the time-history analyses in terms of interstorey drift versus spectral displacement.
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distributions of a given damage limit state when the seismic intensity, represented by the spectral displacement,

is assumed as a random variable.

The same fragility curves are reported in Fig. 17 in terms of PGA (obtained as medium PGA of the

scaled earthquakes for a fixed Sd value).

The trends of the fragility curves in terms of ISDA demonstrate that the frame is subjected to

significant interstorey drifts even for low seismic intensities. Table 7 reports the probability Fr of

Fig. 14 Lognormal probability distribution function of the ISDA damage parameter obtained for the 4th level
of seismic intensity Sd = 50 mm

Fig. 15 Lognormal probability distribution function of the ISDA damage parameter obtained for the 10th level
of seismic intensity Sd = 200 mm

Fig. 16 Fragility curves (ISDA) in terms of Sd for different damage limit states
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reaching a given damage limit state once a seismic event with a pre-fixed intensity occurs. The seismic

intensity has been represented by the spectral displacement Sd. Some values corresponding to medium

PGA for the set of ground motions used in the analyses have been selected for Sd and reported in Table

7. The values of probability Fr have been obtained from curves of Figs. 16, 17.

It is worth highlighting that the values of probability Fr do not represent the actual probability of

failure for the structure since such probability will depend also on the seismic hazard of the region

where the structure is located. In order to calculate the failure probability, the curve of seismic hazard

must be introduced. Such a curve provides the annual probability of exceeding of a given seismic

intensity (see Eq. 3), which is generally measured by the spectral acceleration Sa. In order to calculate

the probability of failure for the frame under study, the seismic hazard curve proposed by Song and

Ellingwood (1999) for the state of California has been considered. Such a curve, represented by Eq. (3)

with parameters k = 2.38 and µ = 0.045, provides values of seismic hazard compatible with those of the

Irpinia earthquake-prone region (Italy). The failure probabilities Pf are reported in Table 8 in terms of

ISDA. In such table, the quantities λ and ξ correspond to the parameters of the lognormal distributions

representing the fragility curves, while the quantities µSd and µSa denote the mean values of Sd and Sa.

The correspondent performance curve is displayed in Fig. 18. Such curve defines the annual probability of

exceeding with reference to the damage that the structure may suffer in a fixed earthquake-prone region.

Hence, the performance curves can be considered as the final outcome of a reliability analysis carried

out using a full probabilistic approach.

Fig. 17 Fragility curves (ISDA) in terms of PGA for different damage limit states

Table 7 Probability Fr of reach of a given damage limit state for the frame tested at ISPRA

LS0 LS1 LS2 LS3

ISDA

Sd 23 mm 42 mm 113 mm 175 mm

PGA ~0.1 g ~0.25 g ~0.6 g ~1.0 g

Fr 6.02E-02 1.44E-03 1.61E-04 1.35E-05

Table 8 Probabilities of failure for the frame based on the use of the ISDA parameter

ISDA [%] ξ λ µSd [mm] µSa[g] Pf

LS0 0.5 0.041 3.198 24.52 0.4 6.1 × 10-3

LS1 1.0 0.040 3.856 47.33 0.7 1.3 × 10-3

LS2 2.5 0.070 4.979 145.71 2.3 8.8 × 10-5

LS3 5.0 0.045 5.353 211.39 3.3 3.6 × 10-5
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4. Conclusions

In the paper, the seismic performance of a partially-restrained steel-concrete composite frame, has been

investigated by means of a full probabilistic approach. The frame was designed using the Eurocode 8 and

tested at the ELSA laboratory of the Joint Research Centre of Ispra (Italy). 

Statistical tests have proved that the lognormal probability distribution function, better represents the

obtained statistics of the joints and beams strength. For the analysed joints and beams, the COV lies in

the range 5%÷8% and 4÷5%, respectively.

For the whole frame, the fragility and performance curves have been obtained using the Latin

Hypercube Sampling tool, carrying out 1500 nonlinear time-history analyses. In order to evaluate the

performance of the analysed composite frame, on the basis of the probabilistic analysis, an acceptable

value of the annual probability of exceeding must be defined for each of the four damage limit states.

Accepting the following usual values: LS0  → 10-2; LS1 → 10-3; LS2 → 10-4; LS3 → 10-5, from Table

8 it can be noted that the frame exhibits an annual probability of exceeding of 6.1·10-3, 1.3·10-3, 8.8·10-4,

and 3.6·10-5 for the reduced (LS0), limited (LS1), significant (LS2), and near collapse (LS3) damage

limit state, respectively. It can be then observed that the frame is slightly under-designed for the LS2

and LS3, while it is slightly over-designed for the reduced and limited damage limit states. This result is

in contrast with the design of the frame obtained using the static analysis according to the Eurocode 8

deterministic approach. In this case, in fact the serviceability limit states were the most critical conditions.

Another important point revealed by the probabilistic analysis is that the acceptable values for the

PGA at the collapse are around 1.0 g (see Table 7 and Fig. 17). Conversely, the deterministic analysis

based on the static or dynamic pushover (see Fig. 11 for example), can overestimate the resistance of

the frame, leading to PGA larger than 1.4 g. This is owed to the large scattering of dynamic results

when the seismic intensity increases. The design value of Eurocode 8, for a return period of 475 years

(0.40 g), has been in any case assured. 
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