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Implementation of the modified compression field theory
in a tangent stiffness-based finite element formulation

Wilkins Aquino† and Ibrahim Erdem

School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA

(Received July 8, 2006, Accepted January 17, 2007)

Abstract. A finite element implementation of the modified compression field theory (MCFT) using a tangential
formulation is presented in this work. Previous work reported on implementations of MCFT has concentrated
mainly on secant formulations. This work describes details of the implementation of a modular algorithmic
structure of a reinforced concrete constitutive model in nonlinear finite element schemes that use a Jacobian matrix
in the solution of the nonlinear system of algebraic equations. The implementation was verified and validated
using experimental and analytical data reported in the literature. The developed algorithm, which converges
accurately and quickly, can be easily implemented in any finite element code. 
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1. Introduction

The finite element method is the most widely used numerical tool for analyzing complex reinforced

concrete structures such as tanks, offshore structures, curved bridges, shear walls with irregularities, etc. In

order to analyze such structures, robust material models for the finite element models are essential. Many

different concrete material models have been reported in the literature. Material models for finite element

analysis are formulated depending on the type of application and range from simple linear elastic to

complex viscoplastic-damage models (Imran and Pantazopoulou 2001, Lee and Fenves 1998, 2001,

Vecchio and Collins 1986, Vecchio 1989, Vecchio and Selby 1991, Vecchio 1992, Polak and Vecchio

1993, Palermo and Vecchio 2005, Zhou abd Vecchio 2005, Hsu 1991, Pang and Hsu 1995, Belarbi and

Hsu 1995, Pang and Hsu 1996, Hsu and Zhang 1997, Wang ans Hsu 2001). Although the theory of

plasticity is very suitable for calculating the limit capacity of a member and modeling path-dependent

behavior of concrete, oftentimes models based on this theory may need a large number of parameters

without clear physical significance and that are difficult to obtain. In many practical situations, it is of

interest to estimate the monotonic nonlinear behavior of reinforced concrete structures. For this cases,

theories such as rotating and fixed crack models such as the modified compression field theory (MCFT)

by Vecchio and Collins (1986), and the fixed-angle softened-truss model (FA-STM) by Hsu and Zhang

(1997, 2001) present attractive alternatives because of their simplicity in implementation and ease of use. 

The implementation of MCFT has been addressed in secant finite element formulations by Vecchio
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(1990). Its implementation in tangent stiffness-based formulations has been reported too (Stevens et al.

1991, Cook and Mitchell 1988). However, for the solution of each load increment, they had to use the

modified Newton technique to achieve convergence and they had to modify the concrete constitutive

relationships to avoid sharp changes, which may prevent convergence. More robust implementations of

MCFT have not been reported in the literature to the best knowledge of the authors. Many available

commercial and in-house finite element codes use tangential formulations to solve the nonlinear system of

equations arising from the finite element discretization. This formulation requires the calculation of a

material tangent stiffness matrix from the constitutive model during the iterative solution process, which

may not be a trivial step in many circumstances. 

In this paper, a detailed, more robust implementation of MCFT in a tangent stiffness-based finite

element scheme is presented. First, the fundamental concepts from MCFT are described. Then, the finite

element formulation is presented, addressing the issues of stress updating and computing the tangent

stiffness matrix from the material model. The different components of a reinforced concrete material

model based on MCFT are explained followed by numerical examples and the validation of the

implementation. 

2. The modified compression field theory (MCFT) 

MCFT was introduced by Vecchio and Collins (1986) and it was developed from the original compression

field theory developed by Mitchell and Collins (1974). In these theories, relationships between average

stresses and strains were postulated based on experimental observations. Cracks in these theories are

treated in a distributed sense. 

The following are the assumptions made in MCFT. 

• There is a one-to-one correspondence between stresses and strains. That is, the model is non-linear elastic.

• Average stress and strain are defined for areas which are large enough to cover several cracks. 

• There is perfect bonding between reinforcing bars and concrete (i.e. no slip). 

• The longitudinal and transverse reinforcing bars are uniformly distributed. 

• The principal strain directions are coincident with the principal stress directions. 

Three main components define MCFT: equilibrium equations, constitutive relationships, and load

transmission conditions at cracks. These components are extensively described in Vecchio and Collins

(1986) and are briefly outlined herein for completeness. 

2.1 Constitutive relationships in MCFT 

The constitutive relationships involved in MCFT are presented in principal stress-strain space. Vecchio

and Collins (1986) reported that the principal compressive stress at a point in concrete depends on both the

principal tensile and compressive strains, while the principal tensile stress is only dependent on the

principal tensile strain (i.e. decoupled from the compressive strain). 

The compressive stress is calculated in MCFT as 

(1)

where σc2 is the minimum principal stress (compression in MCFT), εo is the strain at the peak stress in a

σc2 σc2max 2
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uniaxial compression test, and εc2 is the minimum principal strain. The factor σc2max accounts for the

state of biaxial tension-compression and is calculated as 

(2)

where fc'
 
is the uniaxial compressive strength of the concrete. 

The stress-strain curve of concrete under tension is defined as linear elastic up to cracking as 

(3)

where Ec is the modulus of elasticity of concrete, σc1 is the maximum principal tensile stress, and εc1 is

the maximum principal strain. After cracking, the tensile stress in the concrete is taken as 

(4)

The stress-strain behavior of the steel is assumed to be elastic-perfectly plastic in this work. That is, the

material is assumed to be linearly elastic up to yielding and then remain at the yield stress for strains

greater than the yield strain. 

2.2 Equilibrium equations

Equilibrium equations are used to calculate the average stresses at a point from the concrete and steel

contributions as 

(5)

where σx, σy and σxy are the average stress in the X-direction, average stress in the Y-direction, and

average shear stress calculated at a material point in reinforced concrete. The quantities σcx and σcy

represent axial stresses in the concrete, while σsx and σsy represent axial stresses in the steel. Neglecting

the average shear stress contribution of the steel, the shear stress σxy is assumed to be equal to the shear

stress carried by the concrete, σcxy. Reinforcement ratios in the X and Y directions are represented by ρsx

and ρsy, respectively. These ratios are given as cross sectional area of steel to area of concrete. 

2.3 Load transmission conditions at cracks 

The stress-strain relationships described above are valid in an average sense. However, stresses in the

steel at cracks will be higher than their average values. Therefore, it is necessary to ensure that the steel

reinforcement is capable of transmitting the demanded average tension stresses across cracks.

Vecchio and Collins (1986) derived the following conditions which are used to ensure that enough
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capacity exists in the concrete and steel to properly transmit tension across cracks. 

(6)

In the above equations, σsxcr and σsycr are the axial stresses in the steel in the X and Y directions at the

crack face, respectively,  is the yield stress of the steel in the X direction,  is the yield stress

of the steel in the Y direction, σci is the compressive stress acting on the crack, νci is the shear stress

acting along the crack, θ is the angle of inclination of cracks with respect to the X-axis. 

The maximum shear that can act along the crack is calculated as Vecchio and Collins (1986) 

(7)

Where w is the estimated crack width, a is the maximum aggregate size. The crack width, w, is

calculated as 

w = εc1sθ (8)

The spacing of the cracks along the principal direction tensile direction, sθ , can be calculated from the

spacing of the cracks perpendicular to the reinforcement in X-direction and Y-direction as

(9)

where smx and smy are the average spacing of the cracks perpendicular to the X and Y directions,

respectively. 

3. Implementation of MCFT in finite element analysis

This section describes how MCFT can be implemented in a displacement-based finite element

formulation that uses a tangent stiffness matrix. The crucial aspects for this implementation are how

stresses are updated and how the material tangent stiffness is computed at integration points in iterative

incremental solution schemes. Only material nonlinearity is considered herein. 

3.1 Finite element formulation of the nonlinear problem 

The principle of virtual work is commonly used to derive the finite element formulation of nonlinear

stress analysis problems. The principle of virtual work can be expressed as 

(10)

σsxcr σsx σc1 σci vci tanθ⁄+ +( ) ρsx⁄ σyx

yield≤+=

σsycr σsy σc1 σci vci tanθ⁄–+( ) ρsy⁄ σyy

yield≤+=

σxx

yield σyy

yield

νci  max

fc′–

0.31 24 w a 16+( )⁄⋅+
-------------------------------------------------------=

sθ
1

sinθ

smx

----------
cosθ

smy

-----------+

----------------------------=

εδ{ }T
σ{ } Ωd

Ω

∫ uδ{ }T
τ{ } Γd

Γ

∫ uδ{ }T
b{ } Ωd

Ω

∫ Pi uδ i

i
∑+ +=



Implementation of the modified compression field theory in a tangent stiffness-based finite element formulation

where {δu} is an admissible virtual displacement field in the domain Ω and its boundary Γ, {δε} is the

corresponding virtual strain field, {σ} is the stress vector, {τ} represents the tractions applied over part

of the boundary, {b} represents body forces, and Pi are applied point forces. 

If the domain Ω is divided into n finite elements and for each element, the displacement vector {u} and

virtual displacement vector {δu} are related to the nodal displacements of the element {ue} with the same

interpolation functions [N], one can obtain the following from Eq. (10): 

(11)

where [B] is the matrix representing the partial derivatives of the shape functions with respect to

position. {δU} is the virtual displacement vector containing all degrees-of-freedom in the domain,{Q}

is the external load vector defined as 

(12)

and {Ppo int} is a vector of point loads. 

Since Eq. (11) must hold for all choices of {δU}, then the expression in the square brackets must vanish.

Then, 

(13)

If the left hand side of Eq. (13) is defined as the internal force resisting vector, {I}, then the system of

equations for a non linear problem can be rewritten as, 

(14)

The Newton-Raphson or modified Riks methods (Bathe 1996, Crisfield 1991, Belytschko et al. 2000)

are commonly used to solve the system of equations described in Eq. (14). These iterative solution

procedures require the calculation of a tangent stiffness or Jacobian matrix defined as 

(15)

The global Jacobian matrix is assembled from the contributions of the local material tangent stiffness as 

(16)

where the local material tangent stiffness has been defined as 

(17)
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The main tasks that need to be performed by the constitutive model implementation in the finite element

scheme shown above are updating the stresses to compute the internal force resisting vector using internal

force resisting vector, {I} and computing the material tangent stiffness matrix using Eq. (17). These

quantities are computed at each Gauss integration point in the finite element mesh. The calculation of a

Jacobian matrix is many times a non-trivial task. This is the case in MCFT mainly because of the need to

check for load transmission conditions at cracks. 

3.2 Implementation of MCFT in a finite element scheme 

This section shows how the equations of MCFT enter the finite element formulation described above.

The algorithm, implemented using FORTRAN 77, is composed of two main parts: stress updating and

computation of the material Jacobian matrix. 

The layout of the reinforced concrete model implementation is shown in Fig. 1. The main finite element

program supplies the material model subroutine with strains at integration points for computing stresses

and the material Jacobian matrix. Stress updating occurs separately for steel and concrete and these tasks

are implemented as separate subroutines. Similarly, the steel and concrete contributions to the Jacobian

matrix are computed in a separate subroutine. Box 1 shows the organization of the reinforced concrete

material subroutine. 

Fig. 1 Layout of a reinforced concrete material model implementation

Box 1 Reinforced concrete material subroutine
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3.2.1 Main material model subroutine

Steel and concrete stresses are computed in separate subroutines called by the RC Material Subroutine.

The steps involved in this process are described in Box 1. The implementation in this paper assumes that

bars are oriented in the global X and Y directions. If bars with arbitrary orientations are used, Eqs. (5) and

(6) must be modified to take directionality of steel into account. 

Steel stresses are computed as shown in Box 2. This implementation assumes elastic-perfectly plastic

behavior of the steel. More sophisticated steel models that take strain hardening into consideration can

also be similarly implemented. 

3.2.2 Concrete stress subroutine 
Concrete behavior is described using three different states of stress: biaxial compression, biaxial tension,

and biaxial tension-compression. In all three cases, the stress state is determined in the principal stress/

strain space. Therefore, only principal strains are computed and used to determine principal stresses. Once

Box 2 Steel stress subroutine

Box 3 Concrete stress subroutine
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principal stresses are determined, they are transformed back to the original coordinate system and passed

back to the main material subroutine. 

The subroutine for computing concrete stresses is described in Box 3. Once principal strains are

computed, the state of stress (i.e. biaxial compression, biaxial tension, or tension compression) is inferred

from the signs of the principal strains. Principal strains are sent to different subroutines depending on the

stress state for computing principal stresses. 

3.2.3 Biaxial stress subroutine
The structure of the biaxial stress subroutine is illustrated in Box 4. If both principal strains are positive,

then a state of biaxial tension exists. For this case, the stress-strain behavior is assumed to be uniaxial in

each direction. Principal stresses are computed separately from strains for each axis using Eqs. (3) and (4).

If both strains are negative, the material point is in a state of biaxial compression. The

implementation given in this paper uses the equations described in Vecchio (1992). These equations

are given as 

K1 1 0.92
σ2

fc′
-----⎝ ⎠

⎛ ⎞– 0.76
σ2

fc′
-----⎝ ⎠

⎛ ⎞
2

–=

σp1 K1 fc′=

εp1 K1ε co′=

Box 4 Biaxial stress subroutine
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(18)

The same procedure is used for computing σ2, but the roles of σ1 and σ2 in Eq. (18) are reversed. Notice

that the above system of equations is nonlinear, so it needs to be solved iteratively as shown in Box 4.

The direct substitution method shown in Box 4 produced fast convergence for the examples

investigated in this research. Other solution methods for nonlinear algebraic equations such as the

Newton-Raphson scheme can also be used. 

3.2.4 Modified compression field theory (MCFT) subroutine 
MCFT is used to determine the stress state when biaxial tension-compression stress states exist as

illustrated in Box 5. The compressive and tensile stresses σ2 and σ1, respectively, are determined using the

principal strains and Eqs. (1)-(4). 

A fundamental aspect of MCFT is that the tension field transmitted across cracks is limited by two

main criteria: yielding of reinforcement crossing a crack and the maximum shear stress that can be

carried at the surface of a crack. The admissible tension field conditions across the cracks are

checked using Eqs. (6)-(9). The implementation of the enforcement of these conditions is shown in

Box 5. Notice that θ represents the crack orientation, while φ represents the principal direction angle

(Vecchio and Collins 1986). 

The first condition considers yielding of the reinforcement at the crack in the X-direction, while the

reinforcement in the Y-direction remains below its yield limit. The shear stress, vci, needed to sustain

the average tensile stress, σ1, is computed using the first Equation in (6). If the maximum shear stress

admissible at a crack, vci max, is exceeded, then a new tensile stress, 1σ1, is calculated so that

vci = vcimax. The same procedure is repeated for a second condition in which the steel in the Y-

direction reaches yielding at the crack face, while the steel in the X-direction remains below its yield

point. If the maximum shear is exceeded, a new admissible tensile stress, 2σ1, is computed in order to

maintain the shear stress at the crack below its maximum value. The third condition computes the

maximum tensile stress, 3σ1, that can be developed when the reinforcement in the X and Y directions

reaches its yield limit. Finally, the average concrete tensile stress selected is the minimum of the

above four possible choices (σ1, 
1σ1, 

2σ1, and 3σ1).

3.2.5 Jacobian matrix subroutine

Once the stresses are updated, the material stiffness or Jacobian matrix needs to be determined as

explained previously. The material stiffness matrix in Eq. (17) involves the derivative of the stresses with

respect to the strains. Although closed-form expressions for the concrete Jacobian matrix can be calculated

using the stress-strain relationships described in this paper, the resulting expressions are cumbersome and

their implementation is lengthy, increasing the possibilities of introducing errors in the code. A simpler

approach is to use a finite difference approximation of the material Jacobian matrix. Because of the

modular structure of this implementation, the process of computing this finite approximation is fairly

simple as illustrated in Box 6. The computational cost of following this approach proved to be low in

comparison with the benefits of code simplicity. 

σ1 σp1– 2
ε1

εp1

------⎝ ⎠
⎛ ⎞ ε1

εp1

------⎝ ⎠
⎛ ⎞

2

– 0 ε1 εp1> >,=

σ1 σp1– 1
ε1 εp1–

2εco εp1–
-----------------------⎝ ⎠

⎛ ⎞
2

– εp1 ε1 2εco–> >,=
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To compute the concrete contribution of the material Jacobian matrix, first an increment of strain is

defined as shown in Box 6. Then, forward and backward strain steps are created using this increment of

strain. The Jacobian matrix is formed column by column, as shown in Box 6, by progressive calls to the

concrete stress update subroutine using the incremented strains. The steel contribution can be easily

computed in closed form as shown in Box 6. The total material stiffness matrix is then formed by adding

the concrete and the steel contributions. 

It is important to realize that the Jacobian matrix computed using the above procedure will be in general

non-symmetric. Therefore, it is important to bear this in mind when invoking solvers that may try to

Box 5 Concrete MCFT subroutine
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exploit symmetry to increase computational speed. Often finite element software use symmetric solvers

by default and non-symmetric solvers have to be activated by the user. 

Box 6 Jacobian matrix subroutine
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4. Validation and verification examples 

The implementation described above was incorporated into a user-defined subroutine in a tangent

stiffness-based finite element code. The commercial software ABAQUS was utilized for the examples

presented herein. Shear panels tested by Vecchio, Collins, and co-workers at the University of Toronto

were used to validate the implementation (Vecchio and Collins 1986, Chan 1989, Bhide and Collins 1987).

In addition, the results obtained with the described implementation were compared to solutions obtained

with other software implementation of MCFT (Bentz 2000). Four node quadrilateral elements with full

integration were used for all the analyses. 

Square reinforced concrete panels with a side dimension of 890 mm were used for the validation. The

thickness of the panels was 70 mm. The maximum aggregate size used for the concrete was 6 mm. The

panels were reinforced with two layers of 6 mm diameter reinforcing bars in each direction and the steel

had a Young’s modulus of 200 GPa. Other material properties are given in Table 1. 

Three different panels were investigated: two solid panels, PV20 and PB5, and one with a square

opening at its center, PC5. Details of the panel geometry, reinforcement ratios, and loading conditions are

also given in Table 1. Panel PV20 was loaded under pure shear, Panel PC5 was loaded under biaxial

compression and shear, and Panel PB5 was loaded under biaxial tension-compression and shear. There are

289 elements in the finite element model of PV20 and PB5. The elements density around the corner of the

hole in PC5 was increased, which resulted in twice the number of elements used in PV20. 

Shear stress-strain response curves for panels PV20 and PB5 are shown in Fig. 2 and Fig. 3, respectively.

The plots show results from laboratory experiments, the current MCFT implementation, and the

software Membrane 2000 (Bentz 2000, Bentz et al. 2006). As can be seen from Figs. 2 and 3, the

results obtained with the proposed implementation of MCFT follows closely the results obtained with

Membrane 2000. In addition, the initial stiffness and initial cracking predicted by the current MCFT

implementation are in close agreement with the experimental values obtained for both specimens. The

predicted maximum shear stress satisfactory agrees with the experimental values in both cases, but the

error was more pronounced in the case of Panel PB5. The largest discrepancy between the predicted

Table 1 Details of the test specimens

Specimen fc' (MPa) εo ρx (%) σxx
yieldxx (MPa) ρy (%) σyy

yieldyy (MPa) Loading σxx: σyy: σxy

PV20 19.6 0.0018 1.785 460 0.885 297 

PB5 23.5 0.0018 1.085 415 0 -

PC5 27.3 0.0018 1.65 390 0.82 390
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and the experimental responses occurred in the postpeak branch. This result was expected as the failure

mechanisms that occurred in the actual panels such as slippage at cracks or localized crushing cannot be

captured by MCFT. 

4.1 Panel with square opening (PC5) 

In order to test the performance of the current MCFT implementation with a panel structure that results

in a non-uniform stress distribution, a reinforced concrete panel with a square opening at its center was

analyzed. This configuration results in stress conditions that span the four states considered by the

implementation: tension-tension, compression-compression, and tension-compression. The results of the

Fig. 2 Shear stress-strain behavior of Panel PV20

Fig. 3 Shear stress-strain behavior of Panel PB5
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finite element analysis were compared to experimental and numerical analysis results reported in (1989).

Fig. 4 shows plots of the average shear stress-strain behavior of Panel PC5. Fig. 5 shows the finite

element mesh used for this problem and the non-uniform stress distribution that results around the

opening. It can be observed in the experimental results that unloading occurred at some instances during

testing. This unloading was the result of test stops for reading of the instrumentation. As can be seen from

Fig. 4, the initial stiffness, cracking stress, and ultimate shear strength of the specimen were satisfactorily

estimated by the current finite element implementation whereas the ultimate displacement was lower than

the experimental counterpart. The finite element results reported by Chan (1989) are also shown in Fig. 4.

5. Comments on mesh objectivity 

It is well known that finite element implementations of softening material behavior result in non-

objective meshes. That is, results are dependent upon the mesh size used for the analysis if no steps are

taken to prevent this phenomenon. Several approaches have been proposed to alleviate mesh dependency

Fig. 4 Average shear stress-strain response of Panel PC5

Fig. 5 (a) Axial stress in Y-direction (σyy), (b) Axial stress in X-direction (σxx), (c) Shear stress (σxy)
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problems such as non-local formulations, enriched interpolation functions, and the use of a characteristic

element length in the constitutive models (Bazant and Cedolin 1991, Ortiz et al. 1987, Bontempi and

Malerba 1997). The implementation of MCFT presented in this paper displays mesh dependency

pathologies since no regularization was incorporated into the formulation. This can be fixed by using the

approach proposed in Bazant and Cedolin (1991, Ortiz et al. (1987), Bontempi and Malerba (1997) in which

constitutive laws are modified to incorporate a characteristic length deduced from energy constraints. This

approach ensures that energy dissipation per unit volume will not depend on the element size selected.

Another approach that could be used with the implementation described in this paper is to select the size

of the element to be approximately equal to the expected crack spacing. This strategy was used by the

authors and produced adequate results. This spacing is consistent with the experiments from which MCFT

equations were derived. The authors plan in the future to investigate different regularization schemes and

their incorporation into the current MCFT implementation in order to devise a more robust strategy for

alleviating mesh dependency. 

6. Conclusions 

In this paper, a simple implementation of the Modified Compression Field Theory (MFCT) has been

presented. The algorithm can be used with any tangent stiffness-based finite element formulation. The

implementation was validated using experimental data from tests performed on reinforced concrete

panels. It was found that the results obtained with the current implementation of MCFT are in agreement

with experimental and analytical results reported in the literature. The algorithm described in this paper

was implemented using FORTRAN 77. The code is available for research and educational use from the

authors. 
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