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Minimum-weight design of non-linear steel frames
using combinatorial optimization algorithms
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Abstract. Two combinatorial optimization algorithms, tabu search and simulated annealing, are presented
for the minimum-weight design of geometrically non-linear steel plane frames. The design algorithms obtain
minimum weight frames by selecting suitable sections from a standard set of steel sections such as American
Institute of Steel Construction (AISC) wide-flange (W) shapes. Stress constraints of AISC Load and Resistance
Factor Design (LRFD) specification, maximum and interstorey drift constraints and size constraints for
columns were imposed on frames. The stress constraints of AISC Allowable Stress Design (ASD) were also
mounted in the two algorithms. The comparisons between AISC-LRFD and AISC-ASD specifications were
also made while tabu search and simulated annealing were used separately. The algorithms were applied to the
optimum design of three frame structures. The designs obtained using tabu search were compared to those
where simulated annealing was considered. The comparisons showed that the tabu search algorithm yielded
better designs with AISC-LRFD code specification.

Keywords: optimum design; tabu search; simulated annealing; steel frames; non-linear analysis; allowable
stress design; load and resistance factor design.

1. Introduction

In recent years, some local search algorithms such as tabu search (TS) and simulated annealing (SA)

have been used to solve many optimization problems. Local search is an emerging paradigm for combinatorial

search which has recently been shown to be very effective for a large number of combinatorial problems. It is

based on the idea of navigating the search space by iteratively stepping from one solution to one of its

neighbours, which are obtained by applying a simple local change to it. 

TS is based on the human memory process and uses an iterative neighbourhood search procedure in

an attempt to avoid becoming trapped in local optima. TS was developed by Glover (1989, 1990) for

solving combinatorial optimization problems. It has been applied to many different fields of engineering and

technology recently (Chamberland and Sanso 2002, Sait and Zahra 2002, Abido 2002, Richards and

Gunn 2003, Pai et al. 2003, Cunha and Riberio 2004, Jeon and Kim 2004). An excellent theoretical

aspect of TS is given by Glover and Laguna (1997). 

TS is also suitable for discrete design variables. It was found from literature survey that the

applications of TS to the structural optimization were only about the optimal design of planar and space
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trusses which behave linear elastically (Bennage 1994, Dhingra and Bennage 1995a, Bland 1995,

Bennage and Dhingra 1995b, Bland 1998a, Bland 1998b, Manoharan and Shanmuganathan 1999).

SA is an application of annealing process in solids into the computational algorithms and able to

solve discrete and continuous optimization problems. SA method was originally put forward by

Kirkpatrick et al. (1983) for optimization problems. SA has been used in different fields of engineering

optimization problems recently (Teegavarapu et al. 2002, Erdal and Sonmez 2005, Zhao and Zeng

2006, Sathiya et al. 2006, Kumar et al. 2006, Moita et al. 2006). 

SA also deals with the discrete and continuous optimum structural design problems. SA was applied

to the size and/or topological optimization of metal structures, ie plane frames, plane and/or space

trusses subjected to static or dynamic loading using discrete and/or continuous variables (Bennage and

Dhingra 1995a, Dhingra and Bennage 1995b, Pantelidis and Tzan 2000, Chen and Su 2002, Hasancebi

and Erbatur 2002, Park and Sung 2002). SA was also applied to the optimum design of concrete retaining

structures (Ceranic et al. 2001) and shell structures (Barski 2006). Rama Mohan Rao and Arvind

(2007) put forward a SA algorithm in which TS is embedded in the algorithm in order to prevent

recycling of recently visited solutions. They used this algorithm for optimal stacking sequence design

of laminate composite structures.

As regards the using of SA in the optimum design of steel frames under the actual design constraints

and loads of code specifications, the following articles can be considered: Huang and Arora (1997)

employed SA in the optimum design of steel plane frames subjected to design constraints of AISC-

ASD specification. They used standard AISC-W sections as discrete variables and continuous variables

establishing relationships between the cross-sectional properties and applying the rounding-off procedure.

Balling (1991) applied SA to the optimum design of 3-D steel frames for the design constraints of

AISC-ASD specification using discrete W steel sections and compared the results with the ones of

branch and bound method. The behaviour of the structures in the last two articles was assumed to be

linear-elastic.

The present article aims at applying/comparing two combinatorial optimization algorithms, tabu

search and simulated annealing, for the optimal design of steel plane frames with different design code

and behaviour from the ones of aforementioned articles, ie geometrically non-linear steel frames, under

the actual design constraints of code specifications (AISC-LRFD 2001). Displacement constraints and

size constraints due to constructional reasons were also incorporated into the optimal design of frames.

Discrete design variables selected from the standard set of AISC wide-flange (W) shapes were used.

The article also compares two design codes, AISC-LRFD (2001) and AISC-ASD (1989) specifications,

for the optimal design of steel frames. Optimum designs of three steel frames were performed using TS

and SA methods together with LRFD and ASD codes. The two methods were compared to each other

according to the results of the numerical design examples. The two design codes were also compared

while each of the two methods was used. 

2. The formulations of the optimum design problem

The discrete optimum design problem of non-linear steel frames where the minimum weight is

considered as the objective can be stated as follows: 

Minimize   (1) W x( ) Ak ρi
i 1=

mk

∑
k 1=

ng

∑ Li=
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subjected to the stress constraints of AISC-LRFD (2001) and AISC-ASD (1989), displacement and size

constraints. In Eq. (1), mk is the total numbers of members in group k, ρi and Li are density and length of

member i, Ak is cross-sectional area of member group k, and ng is total numbers of groups in the frame. 

All the constraints are given in normalized forms which are suitable for TS and SA whose objective

functions can be arranged in an unconstrained manner. 

The displacement constraints are

, j = 1, ……., m, l = 1,……. nl  (2)

, j = 1,……., ns, i = 1,……., nsc, l = 1,…….nl (3)

where δjl is the displacement of the j-th degree of freedom due to loading condition l, δju is its upper

bound, m is the number of restricted displacements, nl is the total number of loading conditions, ∆jil is

interstorey drift of i-th column in the j-th storey due to loading condition l, ∆ju is its limit, ns is the

number of storeys in the frame, nsc is the number of columns in a storey.

The stress constraints taken from AISC-LRFD (2001) are expressed in the following equations.

For members subject to bending moment and axial force:

for 

i = 1,…, nm, l = 1,……,nl  (4)

for 

i= 1,…, nm, l = 1,……,nl  (5)

where nm is total number of members in the frame.

If the axial force in a member is tension, the terms in Eqs. (4) and (5) can be defined as: Pu = required

tensile strength, Pn = nominal tensile strength, Mux = required flexural strength about the major axis

including second-order effects (geometric non-linearity), Mnx = nominal flexural strength about the

major axis, φ = φt = resistance factor for tension (equal to 0.90), φb = resistance factor for flexure (equal

to 0.90).

If the axial force in a member is compression, the terms in Eqs.(4) and (5) are described as: Pu =

required compressive strength, Pn = nominal compressive strength, φ = φc = resistance factor for

compression (equal to 0.85). The definition of the other terms is the same as the previous one. The

nominal compressive strength of a member is computed as

Pn = Ag . Fcr  (6)

 for    (7)

gjl x( )
δjl

δju

------= 1– 0≤

gji l x( )
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∆ju

-------= 1– 0≤
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φPn
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gil x( )
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---------⎝ ⎠
⎛ ⎞

il
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for    (8)

  (9)

where Ag is cross-sectional area of a member; K is effective length factor; E is modulus of elasticity; r is

governing radius of gyration; L is the member length; and Fy is the yield stress of steel. The effective

length factor K, for unbraced frames were calculated from the following approximate equation

(Dumonteil 1992):

 (10)

where GA and GB are relative stiffness factors at A-th and B-th ends of column. The out-of-plane effective

length factor for each column member was assumed to be one. The required strengths were determined

from the non-linear analysis of steel frames subjected to the factored load combinations.

When the stress constraints of AISC-ASD (1989) are used the following equations are required to be

included in the design formulation.

For members subjected to both axial compression and bending stresses,

,    i = 1,…, nc (11)

     ,        i = 1,…, nc  (12)

 

When fa /Fa ≤ 0.15, Eq. (13) is permitted in lieu of Eqs. (11) and (12)

      ,           i = 1,…,  nc  (13)

For members subjected to both axial tension and bending stresses,

          ,           i = 1,….,nb  (14)

where nc is total number of members subjected to both axial compression and bending stresses and nb

is total number of members subjected to both axial tension and bending stresses.

In Eqs. (11)-(14), the subscript x, combined with subscripts b, m and e, indicate the axis of bending

about which a particular stress or design property applies, and Fa = axial compressive stress that

would be permitted if axial force alone existed, Fb = compressive bending stress that would be

permitted if bending moment alone existed, Fe
' = Euler stress divided by a factor of safety, fa =

Fcr
0.877

λc

2
-------------⎝ ⎠
⎛ ⎞Fy= λc 1.5>

λc
KL

rπ
-------
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E
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computed axial stress, fb = computed compressive bending stress at the point under consideration, Cm

= a coefficient whose value is taken as 0.85 for compression members in frames subject to sidesway.

In Eq. (14), fb is the computed bending tensile stress, fa is the computed axial tensile stress, Fb is the

allowable bending stress and Ft is the governing allowable tensile stress. Allowable, 0.6Fy and Euler

stresses are increased by 1/3 in accordance with the specification when produced by wind, acting

alone or in combination with the design dead and live loads. Definitions of the allowable and Euler

stresses and the other details are given AISC-ASD (1989) specifications and therefore will not be

repeated here.

The same normalized displacement constraints are used for AISC-ASD code as in Eqs. (2) and (3)

with the exception that the subscript l is omitted due to single load condition. 

The size constraints employed for constructional reasons given as follows:

                ,            n = 1,…, ncl  (15)

where dun and dbn are depths of steel sections selected for upper and lower floor columns, ncl is the total

number of columns in the frame except the ones at the bottom floor. 

The unconstrained objective function ϕ (x) is then written for AISC-LRFD code as

(16)

where C is a penalty constant to be selected depending on the problem. vjl, vjil, vil and vn are violation

coefficients which are calculated as 

if  then

if  then

if then

if then

if then

if then

if then

if then (17)

For AISC-ASD code, the subscript l is omitted in Eqs. (16) and (17) together with the summation

symbol associated with l, and the stress constraints in Eqs. (11)-(14) are used instead of Eqs. (4) and (5).

The minimum of the unconstrained function ϕ (x) will be searched by TS and SA. It is clear that

computation of ϕ (x) for TS and SA requires the values of displacements and stresses in the frame. This

is achieved by carrying out the non-linear analysis of frames.
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3. Non-linear analysis of steel frames

In this study, an algorithm and its programming code were used developed by Levy and Spillers

(1994) for the analysis of geometrically non-linear frames. A frame becomes geometrically non-linear

mainly due to the presence of large deformations. The ultimate load is reached by incremental loads and

at each load increment, incremental displacements are obtained by solving the equilibrium equations of the

frame systems which are written in the incremental form of load and displacements. The member

stiffness matrices are composed of linear elastic and geometric stiffness matrices. The iterations at each

load increment continue until the unbalanced joint forces become quite small. The equilibrium equations are

linearized and written for the deformed frame systems at each iteration. The solutions for all load increments

are added up to acquire a total non-linear response. 

4. Tabu search

TS is an optimization method which finds optimum solution by neighbourhood search in the solution

space. A constrained optimization problem consists of constraints to be satisfied and an objective function

whose minimum value is searched. Objective function is composed of design variables. Design variables are

selected from a list of discrete variables that each of them is represented by a sequence number in that list. 

First an initial design is generated randomly. A variable of this design is also selected randomly and

various designs are obtained by changing only that variable in the range of a predetermined neighbourhood

depth. For example, if the neighbourhood depth is determined as ±2, four different designs are obtained

by exchanging the selected variable with two upper and lower variables in the sequence of the list. The

best of the four designs is found (the best design is the one with the lowest objective function value).

Meanwhile, the move (design variable) which determines the best design is recorded in a one-

dimensional list called as ‘tabu list’. The other design variables of the best design are also checked

whether they are in the tabu list or not. This design is replaced with the current design even if a design

variable of it is not in the tabu list and the process continues starting with the new current design. The

other design variables are also selected randomly and the same process is applied to each of them. A

cycle is completed when all design variables are considered. The best of the neighbourhood designs is

recorded in a list with single member if it satisfies all the constraints. This list is called ‘aspiration list’.

The aspiration list is updated throughout the cycles when a better feasible design is encountered. During

the search process, even if all variables of a best neighbourhood design are in the tabu list, its tabu status

is temporarily ignored providing that it is a better feasible design than the one in the aspiration list.

These two conditions are called ‘aspiration criteria’. This design is accepted as new current design and

also put into the aspiration list. This design is rejected when it does not satisfy the aspiration criteria. 

Tabu list is short term memory feature, which is continually refreshed as the search explores the

design space. It is a one-dimensional array whose size is kept constant during the search process. For

this reason, when the tabu list is filled the oldest move at the beginning of the list is dropped and a new

move is put into the end of the list. 

5. Simulated annealing

The SA algorithm is inspired by the analogy between the annealing of solids and searching the solutions to
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optimization problems. Annealing is a thermal process applied to solids heating up them to a maximum

temperature value at which all molecules of the solid crystal randomly arrange themselves in the liquid

phase. The temperature of the molten crystal is fallen slowly later on. The crystalline structure becomes

very tidy if the maximum temperature is quite high and the cooling is performed slowly enough. In this

case, all molecules arrange themselves in the minimum energy (ground state). The solid reaches

thermal equilibrium at each temperature level T described by a probability of being in a state i with

energy Ei given by the Boltzman distribution:

 (18)

where Z(T ) is a normalization factor and kB is Boltzmann constant. The Boltzmann distribution focuses

on the states with lowest energy as the temperature decreases. 

An analogy between the annealing and the optimization can be established in the following way: the

energy of the solid denotes the objective (cost) function while the different states during the cooling

represent the different solutions (designs) throughout the optimization process and ground state

(minimum energy) denotes the global optimum.

In this study, a SA algorithm taken from Bennage and Dhingra (1995a) was employed but only the

normalization constant in the Metropolis algorithm (Metropolis et al. 1953) which will be explained in

advance was used as suggested by Balling (1991).

A constrained optimization problem with discrete design variables was also considered in SA like TS.

First an initial design is generated randomly. The value of the unconstrained objective function of this

design is obtained as explained in Section 2. The initial design is assigned as current design. A variable

of this design is also selected randomly. This variable is exchanged with a randomly selected variable in

the range of a predetermined neighbourhood depth ±mv to obtain a new design. For example, if the

neighbourhood depth is determined as ±3 and the number 2 is selected in the interval [-3,+3] randomly,

the above mentioned variable is exchanged with the one in the second upper row from that in the

sequence of the list. (If the number were chosen as -3, the variable would be replaced with the one in

the third lower row). This new design is called candidate design or neighbourhood design. 

The value of the unconstrained objective function, which will be merely called objective function, of

the candidate design is also calculated. The current design is replaced with the candidate design

providing that the objective function value of the candidate design is less than the one of the current

design, otherwise the candidate design is accepted or rejected according to the Metropolis algorithm:

The acceptance probability Aij of accepting candidate design j which has been generated from current

design i is given as

 (19)

where ,  and  are objective function values of candidate and current

designs,  is a normalization constant which is the running average of , Tk is the strategy

temperature.  is updated as follows when  before computing the acceptance probability

(Balling 1991):

Pr E Ei={ } 1

Z T( )
-----------exp

Ei–
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--------⎝ ⎠
⎛ ⎞=

Ai j Tk( )

1  if  ∆ϕi j 0≤

∆ϕi j–

∆ϕTk
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⎪
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⎪
⎧

=

∆ϕij ϕ xj( ) ϕ xi( )–= ϕ xj( ) ϕ xi( )
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 (20)

M = M + 1   (21)

where M is the number of terms in the running average. The initial values for  and M are taken as 1

and 0, respectively. The second half of the acceptance probability criterion is carried out by generating a

random number rn, uniformly distributed over the interval [0,1]. The candidate design is accepted as

the current design if rn < Aij, otherwise the iterations continue with the previous design. 

The strategy temperature Tk is gradually decreased while the annealing process proceeds according to

a cooling schedule. This requires the values for Ts and Tf, the initial and final values of temperature.

Moreover, the values of starting acceptance probability Ps for , the final acceptance

probability Pf for , and the number of temperature reduction cycles N are needed. Once Ps

is given, the starting temperature Ts is found as

  (22)

 (23)

The strategy temperature Tk is reduced as

 (24)

where α is the cooling factor and less than one. Tk+1 is the temperature in the next cycle. While T

approaches zero, for design transitions with > 0, Aij also approaches zero. Given Pf, Tf is also

obtained as

 (25)

 (26)

After N cycles, the final temperature value Tf can be expressed as

  (27)

and α is obtained as

 (28)

In an optimization problem with n design variables, an iteration around current design i comprises n

designs generated by randomly perturbing one of the n variables providing that each variable is changed

only once and temperature is kept constant during these neighbourhood search. The variables are

∆ϕ
M ∆ϕ× ∆ϕij+
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-----------------------------------=

∆ϕ

∆ϕij ∆ϕ=

∆ϕij ∆ϕ=

Ps
1–

Ts

------⎝ ⎠
⎛ ⎞exp=

Ts
1–

Psln
-----------⎝ ⎠
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⎛ ⎞=
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⎛ ⎞
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selected randomly for perturbation. 

As the acceptance probability of a candidate design is higher at high temperatures, the algorithm can

escape from local minima easily and thermal equilibrium is reached rapidly, ie in a fewer number of

iterations. As the aforementioned probability is smaller at low temperatures, the algorithm needs larger

number of iterations to escape from local minima and attain equilibrium. For that reason, it is necessary

to increase the number of iterations while the temperature is reduced to reach the thermal equilibrium.

The number iterations carried out during each temperature reduction cycle, IPC(T), are given as

 (29)

where IPCs is the number of iterations per cycle at the initial temperature Ts while IPCf is the number of

iterations per cycle needed at the final temperature Tf . IPCs = 1 and IPCf ∈ [3,6] work quite well for

most structural optimization problems (Bennage and Dhingra 1995a).

In the present work, two terminating criteria were adopted which are the same for TS and SA. The

first one stops the optimization process when a predetermined total number of cycles (the maximum

cycle number) are performed. The second criterion stops the process before it reaches the maximum

cycle number, providing a lighter frame is not found during a definite number of cycles. 

6. Optimum design algorithm for tabu search

Design variables which form the objective function are discrete ones and they are the members of the

steel section list with selected length. The algorithm will be given according to the stress constraints of

AISC-LRFD code and it is the same algorithm for AISC-ASD code providing that the stress constraints

of AISC-ASD and the displacement constraints for single loading condition are used as mentioned in

Section 2. The optimum design algorithm for non-linear steel space frames using TS consists of the

following steps:

1. Construct the initial design randomly. Assign this design as current design. Carry out the non-

linear analysis and obtain the response of the frame. Calculate the value of unconstrained

objective function ϕ(x) using Eqs. (1)-(10) and (15)-(17).

2. Randomly select a variable (a member group of frame) of this design and obtain new designs

by changing the variable along the neighbourhood depth. Carry out non-linear analysis for each

new design and select the one with lowest objective function value (the best design) even

though it does not satisfy all the constraints. Record the move (sequence number of the mem-

ber group in the steel section list) which determines the best design in the tabu list. Put the best

design into the aspiration list if it satisfies all the constraints.

3. Select again randomly a variable among the remaining ones of the best design and apply the

process in the previous step to this design. Put the best neighbourhood design into the aspira-

tion list if it satisfies the aspiration criteria, otherwise reject it.

4. Assign the best neighbourhood design as the current design and repeat steps 2 to 4 until the

same process is completed for the last variable. This is the end of a cycle.

5. Start the next cycle with the current design obtained at the end of the previous cycle. Repeat

steps 2 to 5 until one of the terminating criteria explained in Section 5 is satisfied. Define the

existing design in the aspiration list at the end of the last cycle as the optimum design.

IPC T( ) IPCf IPCf IPCs–( )
T Tf–

Tf Ts–
---------------⎝ ⎠
⎛ ⎞+=
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7. Optimum design algorithm for simulated annealing

The optimum design algorithm for non-linear steel frames using SA consists of the following steps:

1. Assign the values of Ps, Pf and N and calculate the cooling schedule parameters Ts, Tf and α from

Eqs. (23), (26) and (28). Initialize the cycle counter ic = 1. Set the variable counter iv, and iterations

per cycle counter il to zero. 

2. Construct the initial design x0 randomly. Assign this design as current design xi. Carry out the non-

linear analysis and obtain the response of the frame. Calculate the value of the objective func-

tion ϕ(x0) using Eqs. (1)-(10) and (15)-(17).

3. Determine the iterations required per cycle IPC from Eq. (29).

4. Randomly select a variable (the section no. of frame’s member group) ka∈[1,…,n] to be changed

and set iv = iv + 1. Give a random perturbation to the variable ka to generate a candidate design

xj in the neighbourhood of current design xi.

5. Calculate the related objective function value ϕ(xj) and ∆ϕij = ϕ(xj) − ϕ(xi).

6. If ∆ϕij≤ 0, accept the candidate design xj as the current design. Meanwhile, if the new current

design is a feasible one and better than the previous optimum, assign it temporarily as the optimum

design. If iv > n go to step 9, else return to step 4.

7. If ∆ϕij > 0, update ∆  using Eq. (20). Calculate the acceptance probability Aij(Tk) from the

second half of Eq. (19). Generate a uniformly distributed random number rn over the interval [0,1].

If rn<Aij go to step 8, otherwise check if iv > n. If it is so, go to step 9, else go to step 4.

8. Accept the candidate design as the current design, ie set  and . If the

new current design is a feasible one and better than the previous optimum, assign it temporarily

as the optimum design. If iv>n go to step 9, else go to step 4.

9. If , set , , and go to step 4. Otherwise go to step 10.

10. Update the temperature Tk using Eq. (24), set the cycle counter . If one of the

terminating criteria explained in Section 5 is satisfied, terminate the algorithm and define the last

temporary optimum as the final optimum design. Otherwise set  and return to step 3.

8. Design examples

The algorithms were applied to the optimum designs of three frame structures. A36 steel grade with a

modulus of elasticity of 200 GPa and shear modulus of 83 GPa was used in the examples. The yield

stress and unit weight of material are 248.2 MPa and 7850 kg/m3, respectively. Four different types of

loads are employed: dead load (D), live load (L), roof live load (Lr), and wind loads (W). Four load

combinations were taken into account per AISC-LRFD specification: I: (1.4D), II: (1.2D + 1.6L + 0.5Lr), III:

(1.2D + 1.6Lr + 0.5L), and IV: (1.2D + 1.3W + 0.5L + 0.5Lr).However, only a load combination was considered

per AISC-ASD specification: (D + L + Lr+ W).

The values of 32.85 kN/m for dead load (D), 21.9 kN/m for live load (L) and roof live load (Lr), 22.4

kN for wind load (W) were considered in the three design examples. For the designs based on AISC-

ASD, the maximum drift of top storey was restricted to H/500 (Ad Hoc Committee 1986), where H is

the total height of the structure; the interstorey drift was also limited to hc/300 (Ad Hoc Committee

1986), where hc is the height of the considered storey. These limits were increased by 30% to include

the effect of the coefficient 1.3 in the LRFD wind load combination.

Two discrete design sets for both algorithms and design codes comprised 64 W sections each were

ϕ

xi xj= ϕ xi( ) ϕ xj( )=

il IPC≤ iv 0= il il= 1+

ic ic 1+=

il iv 0= =
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used in the design examples. The first one is beam section list taken from AISC-ASD (1989)-Part 2,

“Beam and Girder Design”- Allowable stress design selection table for shapes used as beams. The

boldface type sections (lighter ones) were selected starting from W36×720 to W12×19. The second one

is column section list taken from the same code, Part 3, “Column Design”- Column W shapes tables.

They were selected from W14×283 to W6×15. The aim of the using the size constraint for columns as

well as two separate section lists for columns and beams is to ensure physically realizable optimal

designs. 

The maximum cycle number N and the cycle number for the second terminating criterion were

selected as 200 and 30 respectively, in TS and SA. 

8.1 Design of one-storey, single-bay frame

The dimensions and member grouping of one-storey single-bay frame are shown in Fig. 1. The maximum

top storey drift was restricted to 0.8 cm and 1.04 cm for ASD and LRFD respectively.

The following parameter values were chosen for the execution of the SA algorithm: The annealing

algorithm is quite sensitive to the values of the starting acceptance probability (Ps) and the final acceptance

probability (Pf). Ps and Pf were selected 0.50 and 10-7 respectively. Using higher values for Ps and Pf

caused non-optimal solutions, while lower values for Ps resulted in premature convergence. Another

parameter affecting the results is neighbourhood depth. The neighbourhood depth (mv) for the perturbations

was selected as ±3. SA became inefficient when lower values for mv were used. Higher values for mv

yielded local optima. IPCs and IPCf were selected as 1 and 4 respectively. The higher values of them did

not improve the optimum design, while the lower values of IPCf caused the non-optimal solutions. 

The following parameter values were used for the TS algorithm: TS was quite sensitive for values of

the neighbourhood depth. It was selected as ±3 in TS. The higher values of mv did not improve the

designs to large extent and increased the computing time considerably, while the lower values of it

caused local optima. It is quite important to assign an adequate value to the length of the tabu list in TS.

The length should be neither so short nor so long. The short tabu list caused the searched to turn around

the old designs while the long list restricted the search to a small area because most of the moves were

in the tabu list. As a result of computational experience, five times the number of groups was found

suitable for the length of the tabu list. 

The penalty constant C was found to work best for the value of 1.0 in both algorithms. The lower

Fig. 1 One-storey, single-bay frame
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values for C led to local optima, while higher values of it caused premature convergence. The second

terminating criterion stops the optimization process if a better design is not found during 30 cycles. The

values of cycles lower than 30 led to non-optimal solutions, whereas the values higher than 30 did not

improve the optimum designs.

For each of the four design algorithms, 10 different optimum frames were obtained generated from

randomly selected 10 different initial designs and the lightest one of those were reported in Table 1. A

personal computer with the Pentium 4 - 3.2 GHz microprocessor was used for all computations.

The optimum designs were obtained after 63 and 59 cycles for LRFD and ASD respectively using

TS, that is, the algorithm could not find a better design during the 30 cycles after the 33-rd and 29-th

cycles. When SA was used, the optimum designs were obtained after 117-th cycles and 129-th cycles

for LRFD and ASD, respectively. This implies that SA could not find a better design during the 30

cycles after 87-th and 99-th cycles for LRFD and ASD. 

Stress constraints were active, while top and interstorey drift constraints were passive for both design

codes at the optimum while TS was performed. Displacement and stress constraints were active for

LRFD and ASD respectively, when SA was executed. TS yielded 3.7% lighter frame than the one

obtained by SA for the LRFD code. TS resulted in 8.2% lighter frame than the one obtained by SA for

the ASD code. 

When compared the design codes, LRFD resulted in 12.1% and 16.2% lighter frames than the ones of

ASD for the TS and SA implementations, respectively. Moreover; the computing time spent for TS was

smaller than the one of SA as shown in the Table 1. 

8.2 Design of 3-storey, 2-bay frame

Fig. 2 shows the frame configuration, dimensions and member grouping of the three-storey, two-bay

frame. The top and interstorey drift constraints were determined as 2.1 cm and 1.17 cm respectively, for

ASD. For each of the four design algorithms, 10 different designs were executed and the lightest one of

those were reported in Table 2.

The optimum designs were obtained after 84 and 72 cycles for LRFD and ASD respectively, using

TS algorithm. SA obtained the optimum designs at the end of the 144-th and 137-th cycles for LRFD

and ASD, respectively. The optimum design results are given in Table 2. Stress constraints were active,

top and interstorey drift constraints were passive in the four design results. 

In the comparison of the algorithms, it was found that TS resulted in 12.1% lighter frame than the one

of SA for LRFD code. %5.6 lighter frame was also obtained with TS than the one obtained using SA

Table 1 Optimum design results of one-storey, single-bay frame

Group No.
Tabu Search Simulated Annealing

LRFD ASD LRFD ASD

        1  W 21×62  W 24×76  W 24×68  W 24×84

        2  W 10×33  W 10×33  W 8×31  W 8×35

Weight (kg)  1029 1171 1068 1275

Top storey drift (cm) 0.73 0.56 1.04 0.77

Max. interstorey drift (cm) 0.73 0.56 1.04 0.77

Max. interaction ratio 0.99 1.0 0.93 0.91

Computing time (min) 2.24 0.50 2.52 0.53
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for ASD code. When compared the design codes, 18.2% lighter frame was obtained by LRFD than the

one obtained by ASD using TS. 12.2% lighter frame was also obtained by LRFD than the one obtained

by ASD while SA was considered. As regards the computing time, TS also gave lower values than SA

in this example.

8.3 Design of 10-storey, single-bay frame

The last example is the 10-storey, single-bay frame which is divided into eight groups as shown in

Fig. 3. The values of 6 cm and 1cm were imposed on the frame for ASD specification for the top and

interstorey drift constraints. These values were calculated as 7.8 cm and 1.3 cm for LRFD specification.

Fig. 2 3-storey, 2-bay frame

Table 2 Optimum design results of 3-storey, 2-bay frame

Group No.
Tabu Search Simulated Annealing

LRFD ASD LRFD ASD

1  W 18×35  W 24×55  W 16×40  W 21×50

2  W 18×35  W 21×50  W 16×40  W 18×50

3  W 8×35  W 8×31  W 14×43  W 8×40

4  W 8×35  W 8×31  W 14×43  W 14×43

5  W 10×33  W 8×40  W 12×40  W 8×40

6  W 14×48  W 10×54  W 14×43  W 14×53

Weight (kg) 3437 4202 3910 4451

Top storey drift (cm) 1.70 1.25 1.46 0.77

Max. interstorey drift (cm) 0.66 0.61 0.62 0.32

Max. interaction ratio 1.0 0.94 0.98 0.99

Computing time (min) 28.25 6.70 30.92 7.93
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For each of the four design algorithms, 10 different designs were executed again and the lightest one of

those were reported in Table 3. The optimum designs were obtained after 67 and 79 cycles for LRFD

and ASD respectively, when TS was considered . SA found the optimum designs at the end of 81-st and

94-th cycles for LRFD and ASD respectively.

Both displacement and stress constraints were active for LRFD code while stress constraints

were only active for ASD code when TS was used. Neither stress nor displacement constraints

were active for LRFD code with the use of SA. This indicates that size constraints for columns

governed this design. Stress and size constraints for columns were also active for ASD code while

SA was carried out. 

When compared the methods, TS resulted in 1.8% and 3.9% lighter frames than the ones of the SA

while LRFD and ASD codes were considered respectively. 

Fig. 3 10-storey, single-bay frame
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As regards the design codes, 13.3% lighter frame was obtained by LRFD than the one obtained by

ASD when TS was used. 15.1% lighter frame was also obtained by LRFD than the one obtained by

ASD while SA was considered. TS spent less computing time than SA as shown in the Table 3.

9. Conclusions

The following conclusions are drawn from the design examples considered when tabu search and

simulated annealing are used in the optimum design of non-linear steel frames:

1. TS obtained 1.8%-12.1% lighter frames than SA for the LRFD code. It also found 3.9%-8.2%

lighter frames than SA for the ASD code. The reason for this is that TS uses more powerful

techniques in searching the global optima.

2. When compared the design codes, LRFD yielded 12.1%-18.2% lighter frames than ASD for

the TS method. LRFD also resulted in 12.2%-16.2% lighter frames than ASD for the SA

method. The reason for this is that LRFD is based on the limit-state concept for the strength

and serviceability of the structure. Load and resistance factors are determined from statistical

analyses and probability theory and therefore LRFD presents more rational approach in the

design of steel frames. Consequently, TS method yielded better designs together with LRFD

specification.

3. As regards the computing time, TS gave lower values than SA as shown in the tables. This

indicates that TS is able to find the lighter optima in lower computing time. Moreover, the comput-

ing time for LRFD is much more than the one of ASD. This is because of the multiple loadings

and therefore multiple frame analyses considered in LRFD.

4. In this work, actual constraints of code specifications were used. The developed algorithms are

general and can be applied to the different standards such as Eurocode or British standards.

Table 3 Optimum design results of 10-storey, single-bay frame

Group No.
Tabu search Simulated Annealing

LRFD ASD LRFD ASD

1  W 24×76  W 30×90  W 24×76  W 30×90

2  W 21×68  W 30×90  W 24×68  W 27×84

3  W 24×76  W 30×90  W 24×68  W 30×90

4  W 27×84  W 30×99  W 27×84  W 33×118

5  W 10×49  W 14×53  W 14×53  W 12×96

6  W 12×65  W 14×74  W 14×90  W 14×90

7  W 12×106  W 14×109  W 14×90  W 14×90

8  W 14×120  W 14×132  W 14×132  W 14×132

Weight (kg)  17750  20466  18070  21286

Top storey drift (cm)  7.80  4.55  7.61  4.01

Max. interstorey drift (cm)  1.14  0.61  1.12  0.59

Max. interaction ratio  1.0  0.97  0.89  1.0

Computing time (min)  63.25  17.21  69.80  20.18
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