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Abstract. Based on stability theory of current rigid steel frames and using the three-column subassemblage
model, the governing equations for determining the effective length factor (µ-factor) of the columns in semi-
rigid composite frames are derived. The effects of the nonlinear moment-rotation characteristics of beam-to-
column connections and composite action of slab are considered. Furthermore, using a two-bay three-storey
composite frame with semi-rigid connections as an example, the effects of the non-linear moment-rotation
characteristics of connections and load value on the µ-factor are numerically studied and the µ-factors
obtained by the proposed method and Baraket-Chen’s method are compared with those obtained by the exact
finite element method. It was found that the proposed method has good accuracy and can be used in stability
analysis of semi-rigid composite frames. 
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1. Introduction

The structural behavior of a steel frame is closely related with the characteristics of beam-to-column

connections. It is the common engineering practice to assume connections between beams and columns to

be either pinned or fully rigid in a frame. However, experiments have shown that the actual behavior of

flexible beam-to-column connections, or called semi-rigid connections, lies somewhere between these

two idealized conditions. When a moment is applied to a flexible connection, the relation of relative beam

column rotation is nonlinear (Kameshki and Saka 2001). In order to perform the design of semi-rigid

frames based on the actual behavior of connections, the designer must have a sufficient knowledge of the

moment-rotation characteristic of connections and carry out a second-order elastic frame analysis that also

takes into account the connection behavior. On the other hand, most steel buildings built in recent years

have used concrete floor slabs designed to act compositely with steel beams by means of shear connectors.

There are economic and structural benefits to utilize the partially restrained composite connections with

some degree of continuity (Liew 2001). Consequently, the effects of semi-rigid connections and composite
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action of slab should be properly considered in the design of steel frames. 

Stability problem has played a very important part in the steel frame design. Presently the effective

length method is popularly used for the design of frame columns. Since the effective length of a column is

mainly relevant to the end restraints of adjacent members to the column, the simplified practical method

for determining the column effective length may be developed on the basis of the subassemblage

involving the column. Evaluation of the effective length of semi-rigid steel frames has drawn attention of

a number of researchers. Cheong-Siat-Moy (1986) examined the µ-factor paradox for leaning columns.

Bridge and Fraser (1987) proposed an iterative procedure for the evaluation of the effective length, which

accounts for the presence of axial forces in the restraining members and thus also considers the negative

values of rotational stiffness. Aristizabal-Ochoa (1994) proposed two simple formulas to evaluate the

effective length of columns with semi-rigid connections, which are simpler to apply than the alignment

chart. Hellesland and Bjorhovde (1996) proposed a new restraint demand factor considering the vertical

and horizontal interaction in member stability terms. Kishi et al. (1997, 1998) proposed an analytical

method for determining the effective length of columns in semi-rigid steel frames. Essa (1997) proposed a

design method for the evaluation of the effective length of columns in unbraced multi-story frames

considering different story drift angles. 

To evaluate the effective length factor of columns in semi-rigid frames, the rotational stiffness of the

semi-rigid beam-to-column connections at the bucking state of the column should be determined firstly.

Many studies used initial connection stiffness for this purpose, such as Liu (1985) etc, but Goto et al. (1993)

indicated that it could underestimate the µ-factor. As improvement, Brarakat and Chen (1990) recommended

the modification of the relative stiffness factor in the alignment for unbraced steel frames and corresponding

to a reference plastic rotation for braced frames. Kishi et al. (1997, 1998) considered that the alignment

chart could be used to determine the column µ-factor in semi-rigid steel frames, with a proper evaluation

of the tangent connection stiffness for semi-rigid connections at bucking state.

The objective of this work is to propose a simplified approach for the evaluation of the effective length

factor of the column in semi-rigid composite frames, taking into account the behavior of semi-rigid

connections. A simplified method for determining rotational stiffness of connections is also evaluated

considering the influence of the connection non-linearity. Furthermore, using a two-bay three-storey

composite frame with semi-rigid connections as an example, the effects of the non-linear moment-rotation

characteristics of connections and load value on the µ-factor are numerically studied and the µ-factors

obtained by the proposed method and Barakat-Chen’s method are compared with those obtained by the

exact FEM.

2. Governing equations for the effective length factor

The three-column subassemblage model is shown in Fig. 1. The model involves the target column (c2)

as well as the neighbor columns (c1 and c3) and girders (b1, b2, b3, and b4) providing restrains. The

beam-to-column connections can be semi-rigid. 

The following assumptions are employed for establishing governing equations of µ-factor with the

subassemblage model: 

(1) All beams and columns are purely elastic;

(2) All members are uniform in cross-section;

(3) For braced frames, rotations at opposite ends of the restraining beams are equal in magnitude but

opposite in direction, i.e., beams are bent in single curvature;
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(4) For unbraced frames, rotations at opposite ends of the restraining beams are the same in magnitude

and direction, i.e., beams are bent in double curvature;

(5) The stiffness parameters  of all columns are equal; 

(6) All columns in a story buckle simultaneously; and

(7) The axial forces in the beams are negligibly small. 

Based on the slop-deflection equations of the target column and the equilibrium equations of the joints

at the ends of the target column, the governing equation for the column µ-factor in semi-rigid frames can

be derived as:

(1) for braced frame

Column c1 (1a)

Column c2 (1b)

(1c)

Column c3 (1d)

Lci P EIci⁄

MA( )c1
EIc1

Lc1

---------- Si iθA SijθB+[ ]=

MA( )c2
EIc2

Lc2

---------- Si iθA SijθB+[ ]=

MB( )c2
EIc2

Lc2

---------- Si iθA SijθB+[ ]=

MB( )c3
EIc3

Lc3

---------- Si iθA SijθB+[ ]=

Fig. 1 Three-column subassemblage model
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Beam b1 (1e)

Beam b2 (1f)

Beam b3 (1g)

Beam b4 (1h)

where Skl (k, l=i or j) are the stability functions:

(2a)

(2b)

In Eqs. (1a)-(1h), subscripts A and B indicate the values of the columns and girders connecting the ends

A and B of the target column, and subscripts b and c denote beam and column, respectively; E is Young

modulus of steel material; Ib is the effective moment of inertia of girders; Lb is the corresponding length of

girders; Ic is the moment of inertia of columns and Lc is the corresponding length of columns. The

flexibility coefficient α1 representing the connecting conditions can be obtained by 

 (3)

in which RkL, RkR are elastic spring constants at left and right ends of semi-rigid beam, respectively.

Formulating joint equilibrium at nodal points A and B, then 

(4a)

(4b)

Substituting Eqs. (1a)-(1h) into Eqs. (4a)-(4b), the general governing equation for the µ-factor of

column c2 in braced frame can be derived as

 (5)

where K1' , K2'  are the modified relative stiffness factors, given by
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MA( )b2 2α1
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Lb2

----------θA=

MB( )b3 2α1
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(6)

(2) for unbraced frame

Column c1 (7a)

Column c2 (7b)

(7c)

Column c3 (7d)

Beam b1 (7e)

Beam b2 (7f)

Beam b3 (7g)

Beam b4 (7h)

Formulating joint equilibrium at nodal points A and B, and story sway equilibrium on column c2, then 

(8a)

(8b)

(8c)

where , . 

Substituting Eqs. (7a)-(7h) into Eqs. (8a)-(8c), the general governing equation for the µ-factor of

column c2 in unbraced frame can be derived as

(9)

K1

′

α1EIb Lb⁄
A
∑

EIc Lc⁄
A
∑

-----------------------------=     K2

′

α1EIb Lb⁄
B
∑

EIc Lc⁄
B
∑

-----------------------------=,

MA( )c1
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-------–+=

MA( )c2
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-------–+=
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where

(10)

(11)

The relation of the rotation angles of beams is associated with the buckling mode of the frame, which

influenced by many factors such as the configuration of the frame, stiffness of members and connections,

load distribution, and bracing and support conditions (Xu 2002). Therefore, an assumption has to be made

on the buckling mode of the frames. The current practice of evaluating the effective length factor for rigid

frames is based on the alignment chart method, in which a symmetric buckling mode is applied to braced

frames with third assumption, while an asymmetric bucking mode is adopted for unbraced frames with

fourth assumption. However, in general, the buckling mode of the frame may be neither symmetric nor

asymmetric. Therefore, it is understood that such assumptions may result in inaccuracy in some cases. Xu

and Liu (2000) investigated the effect of the fourth assumption on critical buckling loads of unbraced

semi-rigid frames and concluded that the maximum error is only 7.92%. So the assumption of the rotation

angles of beams used in this paper is feasible and reasonable. 

3. Determination of main parameters

3.1 Moment-rotation relation of connections 

Modeling of beam-to-column connections requires representation of the non-linear moment-rotation,

M-θr , curve. The Kishi-Chen’s (1990) three-parameter power model of semi-rigid connections can be

used to represent the nonlinear M-θr relation of a composite connection. The model includes three

parameters: the initial connection stiffness, Rki, the ultimate moment capacity of connection, Mu , and the

shape parameter n. The dimensional power equations relating moment to relative rotation θr is expressed

as

(12)

(13)

where θ0 is the reference plastic rotation given by θ0 = Mu / Rki.

This power model is an effective tool for designers to execute the second-order nonlinear structural

analysis quickly and accurately. The tangent connection stiffness Rkt can be expressed as

(14)
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∑
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-----------------------------=,
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2EIb
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4EIb
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⎛ ⎞ EIb

Lb
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2 4
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Rkiθr
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-----------------------------------------=
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M

Rki 1 M Mu⁄( )n–[ ]
1 n⁄

--------------------------------------------------=

Rkt

dM

dθr
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n 1+( ) n⁄
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Based on a larger of number of experiments and the component method, design approaches (Xiao et al.

1996, Ahmed and Nethercot 1997, Ahmed et al. 1997) to predict the key aspects of connections, such as

moment capacity and initial connection stiffness, have been developed. Xiao et al. (1996) proposed formulas

to predict moment capacity of endplate type connections. Based on a simple force transfer mechanism and

consideration of the behavior of individual components, a method has been developed to predict the initial

stiffness of composite flush endplate connection proposed by Ahmed and Nethercot (1997).

3.2 Effective stiffness of composite beam

In analysis of composite frames, the composite effect of steel beam and concrete slab on the frame

behavior should be considered. However, since the ability of concrete to bear tension is ignorable, the

composition of concrete slab with steel beam should not be considered at the location of the beam where

the moment makes the concrete slab in tension. Because the moment is various at different locations in the

beam of a frame, the effective stiffness of the composite beam may also varies at the locations where the

moment makes the concrete slab in compression and in tension. Despite this apparent complexity, the

effective second moment of inertia to predict an acceptable behavior of the beam in a composite frame has

been proposed by Ammerman and Leon (1990), which is given by

(15)

where Ib is the effective moment of inertia of the composite beam; Ipos and Ineg are the moments of

inertia of the composite section and pure steel beam section, respectively.

3.3 Connection rotational stiffness 

The beam-line equation and moment-rotation curve of connection are applied to determinate tangent

connection stiffness, Rkt, as shown in Fig. 2. Firstly, through structural analysis, the moment at the end of

the beam in the corresponding rigidly connected frames and the rotation at the end of the beam in the

corresponding pin-connected frame are obtained. Then the crossing point between the beam-line equation

and moment-rotation curve of connection can be determined. Finally, using Eq. (14), the tangent rotational

stiffness of the connection with the moment at the crossing point as shown in Fig. 2.

Ib 0.6Ipos 0.4Ineg+=

Fig. 2 Rotational stiffness of connection
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For an elastic beam with symmetric and vertical load as shown in Fig. 3, the relation between the

moment, ME, and rotation, θb, at the end of the beam may be expressed as

(16)

where MF is the moment of at the end of the corresponding rigidly connected beam.

The Eq. (16) is called the beam-lined equation. According to compatibility of deformation, the beam-

line equation and connection curve intersect to a point A as shown in Fig. 2.

4. Numerical studies

To consider the effects of the non-linear M-θr characteristics of beam-to-column connections on the

column µ-factor for semi-rigid composite frames, numerical studies are performed using a two-bay

three-storey composite frame with semi-rigid connections under uniformly distributed loads, as shown

in Fig. 4(a).

Select HN300×150×6.5×9 for steel beams and HW250×250×9×14 for steel columns. A 24 mm diameter

bolts are used for this connection. A composite endplate connection is adopted for the semi-rigid beam-to-

column connections as shown in Fig. 4(b). The value of the basic distributed load q0 is specified in Fig. 4(a).

ME MF
2EI

Lb

---------θb–=

Fig. 3 Beam with semi-rigid connections

Fig. 4 Two-bay three-story semi-rigid composite frame
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The distributed load q applied on the frame is varied up to βq0 using an amplification factor β. Since the

column µ-factor of semi-rigid frames depends on the non-linear moment-rotation relations of connections,

the initial stiffness Rki and the ultimate moment capacity Mu of connection in the three-parameter power

model are taken as parameters for numerical studies.

For universalization, a non-dimensional parameter γ is defined as:

  (17)

In this study, γ is varied within the range from the nearly rigid state (γ = 0.001) to the nearly pinned state

(γ = 10). The ultimate moment capacity of the connection Mu is assumed to be: Mu= Mp (case I) and

Mu = 0.5 Mp (case II), in which Mp is the plastic moment capacity of beam and in this study Mp = 260 kN.m.

The shape parameter of the connection n is set to be 1.5. Fig. 5 shows the M-θr curves of the

connections with various values of γ used in the study. 

The procedure for calculating the column µ-factor in frames with flexible beam-to-column connections

is as follows:

(1) assume γ and determine Rki using Eq. (17);

(2) assume the remaining two parameters of Eq. (12) for a non-linear M-θr curve of semi-rigid

connections and an applied distributed load q;

(3) calculate relative rotations θr by using Eqs. (12) and (16);

(4) estimate the tangent connection stiffness Rkt by using Eq. (14);

(5) calculate the flexibility coefficient αi (i = 1, 2) using Eqs. (3) and (11);

(6) calculate the modified relative stiffness factor ,  using Eqs. (6) and (10);

(7) solve for µ-factor of each column from Eq. (5) or Eq. (9).

The comparisons of the µ-factors of column c1 among the method proposed here in before, the exact

component finite element method (FEM) and Barakat-Chen’s method are shown in Figs. 9-12.

4.1 Moment capacity of connection Mu

The comparison of the results for the case of Mu=Mp and Mu=0.5 Mp is shown in Figs. 6(a) and 6(b). The

solid and dashed lines in Fig. 6 are for the cases of Mu=Mp and Mu=0.5 Mp, respectively. It shows that

γ
EIb

LbRki

------------=

K1

′ K2

′

Fig. 5 M-θr curves
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when the initial connection stiffness is small, the incremental rate of the column µ-factor with respect to

the applied load is large. 

From Fig. 6, it is seen that µ-factor of the column c1 in the example frame is within the two lines of the

results for the braced frames with rigid (µ = 0.678) and pinned (µ = 1.0) connections, or for the unbraced

frames with rigid (µ = 1.155) and pinned (µ = 6.96) connections.

Fig. 6 also shows that the µ-factor becomes large with increasing of load factors β in both cases of

Mu = Mp and Mu = 0.5 Mp. The variation of µ-factor for the case of Mu = 0.5 Mp is larger than that for Mu = Mp,

because the former tangent connection stiffness are smaller than the later ones. For braced frame, the

maximum difference in µ-factor between the two cases is about 0.299; and for unbraced frame, the

maximum difference in µ-factor between the two cases is about 3.6.

4.2 M/Mu and β relation

EC3 (2004) suggested that when the moment-rotation characteristic is elastic, the moment in connection

is less than 2/3 Mu. In order to study the effects of load value and connection stiffness on µ-factor, M/Mu

and α relation with variety of γ are analyzed, as shown in Figs. 7 and 8. The results show that when

M/Mu ≤ 2/3 and β < 2.0, M/Mu and β relation is approximately linear. 

4.3 Braced frame 

The results of the µ-factors of column c1 in a flexibly jointed and two-bay three-story braced frame in

cases of Mu=Mp and Mu=0.5 Mp, obtained by the proposed method and Barakat-Chen’s method are

compared with those obtained by the exact FEM. The secant connection stiffness Rks, adopted in Barakat-

Chen’s method corresponds to a reference plastic rotation θ0 and is less than the initial connection stiffness

Rki for the connection model used in this study. In the case of Mu = Mp and Mu = 0.5 Mp, the comparison of

the results between the proposed method and the exact FEM are respectively shown in Figs. 9(a) and (b),

Fig. 6 Effective length factors of column c1 for composite frames
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Fig. 7 M/Mu and β relation (joint A)

Fig. 8 M/Mu and β relation (joint B)

Fig. 9 Comparison of µ-factors in braced frame between the proposed method and the exact FEM
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and the comparison of the results between Barakat-Chen’s method and the exact FEM are respectively

shown in Figs. 10(a) and (b). The results show that the µ-factors obtained by the proposed method are

quite close to those obtained by the exact FEM. However, the results obtained by Barakat-Chen’s method

have much difference with those obtained by the exact FEM in the case of Mu = Mp and Mu = 0.5 Mp.

4.4 Unbraced frame

The results of the µ-factors of column c1 in a flexibly jointed and two-bay three-story unbraced

frame in cases of Mu = Mp and Mu = 0.5 Mp, obtained by the proposed method and Barakat-Chen’s

method are compared with those obtained by the exact FEM. The secant connection stiffness Rks,

adopted in Barakat-Chen’s method corresponds to a reference rotation θb (θb = ME / Rks) and is equal

to 63% the initial connection stiffness Rki for the connection model used in this study. In the case of

Mu = Mp and Mu = 0.5 Mp, the comparison of the results between the proposed method and the exact

FEM are respectively shown in Figs. 11(a) and (b), and the comparison of the results between

Barakat-Chen’s method and the exact FEM are respectively shown in Figs. 12(a) and (b). The results

show that the µ-factor obtained by the proposed method are quite close to those obtained by the exact

FEM. However, the results obtained by Barakat-Chen’s method have much difference with those

obtained by the exact FEM in the case of Mu = 0.5 Mp.

When the moment-rotation characteristic is elastic, i.e., M/Mu ≤ 2/3 and β < 2.0, the investigations in

before demonstrate that:

(1) The method proposed can predict quite well the column µ -factor in the semi-rigid frames;

(2) The column µ -factor is increased with increment of the initial stiffness of connections for both

braced and unbraced frames; and

(3) The column µ -factor is also increased with the increment of the loads applied on frames, except when

the ultimate moment capacity of connection Mu, close to the plastic moment of the beam, the

increment of the column µ -factor for unbraced frames is negligible.

Fig. 10 Comparison of µ-factors in braced frame between Barakat-Chen’s method and the exact FEM
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5. Conclusions

In current specifications for engineering practice, such as in GB50017 (2003), AISC-LRFD (1999), the

µ -factor of frame columns must be determined in order to check the structural capacity of steel frames. 

In this paper, the governing equations for determining the µ-factor of columns in semi-rigid composite

frames are proposed with considering the effects of the nonlinear moment-rotation characteristics of

beam-to-column connections and composition of concrete slab with steel beams. The proposed method

can predict the µ-factor of columns in semi-rigid composite frames with satisfactory accuracy and be used

for stability design of semi-rigid composite frames.

Fig. 11 Comparison of µ-factors in unbraced frame between the proposed method and the exact FEM

Fig. 12 Comparison of µ-factors in unbraced frame between Barakat-Chen’s method and the exact FEM
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Nomenclature

EIb : Flexural stiffness of composite beam
EIc : Flexural stiffness of beam-column
K1, K2 : Beam-to-column stiffness factors at A-th and B-th ends
K1

',  K2
' : Modified Beam-to-column stiffness factors at A-th and B-th ends

µ : effective length factor of column
Lb : length of beam
Lc : length of beam-column
P : Axial force applied on beam-column
M : Connection moment
MA, MB : End moment at A-th and B-th ends
MF : Moment at the end of the corresponding rigidly connected beam
Mp : Plastic moment capacity of beam
Mu : Ultimate moment capacity of connection
n : Shape parameter in the three-parameter power model for beam-to-column connections
θr : Relative rotation of connection
θA, θB : Nodal rotation at A-th and B-th ends
θ0 : Reference plastic rotation, Mu / Rki

RkA, RkB : Elastic spring constants at A-th and B-th ends of beam
RkL, RkR : Elastic spring constants at left and right ends of beam
Rki : Initial connection stiffness
Rks : Secant connection stiffness
Rkt : Tangent connection stiffness
β : Load factor
q : Distributed load applied on the beam, =βq0

Skl : Stability functions (k, l=i or j)
α1 : Flexibility coefficient representing connecting conditions of beam in braced frame
α2 : Flexibility coefficient representing connecting conditions of beam in unbraced frame
∆ : Side-way of column
ρ : Obliquity of column
Ib : Effective moments of inertia of the composite beam
Ipos, Ineg : Moments of inertia of the composite section and pure steel beam section
γ : Non-dimensional parameter, = EIb/(RkiLb)

CC




