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Abstract. Based on a non-linear model taking into account flexural-torsional couplings, analytical 
solutions are derived for lateral buckling of simply supported I beams under some representative load cases. A
closed form is established for lateral buckling moments. It accounts for bending distribution, load height 
application and pre-buckling deflections. Coefficients C1 and C2 affected to these parameters are then derived. 
Regard to well known linear stability solutions, these coefficients are not constant but depend on another 
coefficient k1 that represents the pre-buckling deflection effects. In numerical simulations, shell elements are 
used in mesh process. The buckling loads are achieved from solutions of eigenvalue problem and by 
bifurcations observed on non linear equilibrium paths. It is proved that both the buckling loads derived from 
linear stability and eigenvalue problem lead to poor results, especially for I sections with large flanges for 
which the behaviour is predominated by pre-buckling deflection and the coefficient k1 is large. The proposed 
solutions are in good agreement with numerical bifurcations observed on non linear equilibrium paths. 

Keywords: buckling; finite element; eigenvalue; linear stability; non linear stability; open section; 
pre-buckling; thin-walled beam.

1. Introduction

Steel and composite structures made in thin-walled are very sensitive to stabilities. Usually, elastic 
buckling loads of a structure can be computed in two steps. The first, based on first order assumption 
leads to a estimation of buckling loads using classical linear stability models or from solution of 
eigenvalue problem. Nevertheless, the obtained results are not sufficient and it is necessary to obtain 
buckling loads more accurately. For this aim, the non linear behaviour of the structure must be 
undertaken in a second step with consideration of geometric imperfections. This leads to the 
equilibrium path until the post-buckling range. Then, the real buckling loads are captured. 

Most of stability analyses of thin-walled beams ignore the pre-buckling effects (Barsoum 1970, Bazant
1973, Laudiero 1988). Nevertheless, it is proved that the pre-buckling deformations have a predominant
influence on beam lateral buckling. It results from non-linear couplings between the two bending 
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curvatures and is then function on bending stiffness ratio. Yet, the effect of pre-buckling deflections on 
beam lateral buckling strength had been investigated essentially in the case of pure bending moments 
by Vacharajittiphan (1974) and more recently by Achour (2000). This solution is frequently used as a 
benchmark reference for validation of finite element models (Ronagh 2000, Pi 2001). Another solution 
has been derived by Mohri (2002) in the case of a beam under distributed loads including the load 
height parameter and pre-buckling effects.

In this paper, a model is developed in large torsion context taking into account for flexural-torsional 
couplings. Load eccentricities, pre-buckling deflections and non linear warping are considered. An 
improved compact analytical expression is investigated and extended to lateral buckling resistance of 
beams under some representative load cases including uniform and concentrated loads. Bending 
distribution, pre-buckling deformations and load height effects are included in the solution. These 
proposed solutions are compared to the classical ones commonly used in linear stability and design and 
validated by recourse to a non-linear shell finite element package.

2. Overview of a non-linear model for thin-walled elements

2.1. Equilibrium equations

In a previous work, Vlasov’s model has been extended to large displacements and non-linear stability
analyses (Mohri 2001). A straight thin-walled element with an open section is pictured in Fig. 1 and a 
direct rectangular co-ordinate system has been chosen. x denotes the initial longitudinal axis and y and z
are the principal bending axes. The origin of these axes is located at the centre G. The shear centre with 
co-ordinates (yc, zc) in Gyz is denoted C. Consider M, a point on the section contour with its co-
ordinates (y, z, ω) where ω is the sectorial co-ordinate used in Vlasov’s model. Based on the usual 
assumptions of the theory of thin-walled elements, displacement components of the point M can be 
derived from those of the shear centre:

 (1)

(2)

uM u y v′cosθx w′sinθx+( ) z w′cosθx v′sinθx–( )– ωθx′––=

vM v z zc–( )sinθx– y yc–( ) 1 cosθx–( )–=

Fig. 1 An open section beam
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 (3)

In these formulations, u is the axial displacement of centroid G, v and w are displacement components 
of shear centre C in y and z directions. θx is the torsion angle of the shear center. The x-derivative is 
denoted (.)’. The expressions of displacement components of M given by (1-3) are then non-linear and 
depend on the approximation done for circular functions cosθx and sinθx. Let us recall that linear 
stability models are derived from (1-3) by using the approximation cosθx=1 and sinθx=θx and by 
disregarding the resulting non-linear terms (Timoshenko 1961, Trahair 1993, Barsoum 1970, Bazant 
1973). Equilibrium equations are formulated from the stationary conditions: 

(4)

where δ denotes virtual variation. σij is the Piola-Kirchhoff stress tensor. εij represents the Green strain 
tensor which incorporates large displacements. W is the external load work which is reduced for simplicity
in the present work to distributed vertical loads qz with eccentricities ey and ez measured from shear 
centre point (Fig. 2). 

In non linear stability models, differential equilibrium equations are computed under consideration of 
non-linear relationships between bending moments and curvatures and with non linear approximations 
for circular functions. In the present work, they are the following:

,    (5a,b)

After some calculations, in the case of elastic behaviour, the coupled flexural-torsional equilibrium 
equations are derived and arranged as:

(6)

 (7)

wM w+ y yc–( )sinθx z zc–( ) 1 cosθx–( )–=

δ σijεij vd
v
∫ W–⎝ ⎠

⎛ ⎞ 0=

cosθx 1
θx

2

2
-----–= sinθx θx

θx
3

6
-----–=

EIz v 4( ) 3v′v″v′″ v″3 v 4( )v′2

2
-------------- + + +⎝ ⎠

⎛ ⎞ +

EIz EIy–( ) w 4( )θx 2w′″ θx′ w″θx″ v 4( )θx
2– 4v′″θxθx′– 2v″θxθx″– 2v″θx′2–+ +( ) 0=

EIy w 4( ) 3w′w″w′″ w″3 w 4( )w′2

2
----------------- + + +⎝ ⎠

⎛ ⎞ +

EIz EIy–( ) v 4( )θx 2v″′θx′ v″θx″ w 4( )θx
2 4w ″′θxθx′ 2w″θxθx″ 2w″θx′2+ + + + + +( ) qz=

Fig. 2 Beam element under eccentric distributed load
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 (8)

In these differential equations, (.)”(.)”’ and (.)(4) denote x-derivative of order 2, 3 and 4. E and G are 
axial and shear constants. Iy and Iz are the second moments of area about the principal axes y and z. J
and Iω are respectively the St-Venant torsion and the warping constants. It denotes the fourth moment of 
area about the shear centre. A numerical procedure for the computation of these geometric characteristics
is described in Mohri (2001).

In the case of simply supported conditions in both bending and torsion with free warping, a realistic 
function for the displacement v, w and θ x in the first mode is:

,   ,    (9a-c)

v0, w0 and θ0 are the associated displacement amplitudes. In order to solve the non-linear differential 
system (6-8), Galerkin’s approximation method is first applied. After integration and some calculations, 
the three coupled equilibrium equations written in compact form are: 

(10)

(11)

(12)

In these algebraic equations, M0 is the maximal bending moment of the beam. Py and Pz, are the Euler’s 
buckling loads. Pθ is the pure torsion buckling load and I0 is the polar moment of area. They are given 
by the following relationships:

(13)

(14)

(15)

(16)

At this stage, one can remark that equilibrium equations obtained are all non linear and highly coupled.
Again, in the torsion equilibrium Eq. (12) a cubic term in θ0 is present and is called the shortening or 
non-linear warping term.

EIωθ x
4( ) GJθx″– 3

2
---EItθx′2θx″– EIz EIy–( ) v″w″ v″2θx– w″2θx+( )+ qz ey ezθx–( )=
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2.2. Computation of lateral buckling loads

When one deals with non-linear equations, one can remind that the solution is not unique and 
becomes more complex in presence of singular points. First, when this is possible, analyst can be 
helped when the singular points can be estimated. In beam lateral buckling, bifurcation happens when 
the load qz or the equivalent bending moment M0 is applied to the beam without any eccentricity ey 
(Fig. 3). In this context, the beam moves vertically, what corresponds to the pre-buckling state, also 
called ‘the fundamental state’. When the buckling load is reached, the behaviour of the beam is 
suddenly flexural-torsional. Displacements components in the fundamental state are in the form {v0, w0, 
θ 0}t = {0, w0, 0}. The buckling loads are computed from singular points of the tangential matrix of the 
non-linear system (10-12). This leads to a quadratic equation combining bending moment M0 and 
deflection w0 as formulated in Mohri (2002).

(17)

In fundamental state, beam deflection w0 can be easily related to the applied moment M0 using first 
order assumptions in (11). One gets:

(18)

By using the relationships of Py and M0 given in (13,16), this relationship is easily reduced to the well 

known formula used in the literature . Incorporation of (18) in (17) yields to a quadratic

equation that depends only on M0. The final expression of the buckling moment M0, denoted by
M0,b(nl ), is:

(19)

where     and (20a-c)

According to models developed from linear stability as in Trahair’s book (Trahair 1993) or solutions 
adopted in (Eurocode 3 1992), a similar expression is used with constant values for the coefficients C1

Pz
π 2EIω

L2
-------------- GJ 3

4
--- Pz Py–( )w0

2 8
π 2
-----+ M0ez+ + 64

9π 2
-------- Pz Py–( )2w0

2– 0=

w0
32
π 3
------M0

Py
-------=

w0
5

384
---------qzL

4

EIy
----------=⎝ ⎠

⎛ ⎞

M0 b, nl( ) C1
π 2EIz

L2
------------- C2ez( ) C2ez( )2 Iω

Iz
---- 1 GJL2

π 2EIω

--------------+
⎝ ⎠
⎜ ⎟
⎛ ⎞

+±=

C1
1.14

k1

----------= C2
0.46

k1

----------= k1 1
Iz

Iy
---–=

Fig. 3 A beam under distributed load and definition of load height parameter ez
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and C2, respectively equal to C1=1.13, C2=0.46. In the present model which includes the effects of the 
pre-buckling deflections, these coefficients are not constant but depend on the section shapes and 
represented by the coefficient k1 that is function on the geometric ratio Iz / Iy. Referred to (20), for a 
section with a highly bending resistance about the y-axis (Iy >> Iz), the coefficient k1 is close to 1.0 and 
the coefficients C1 and C2 are reduced to values usually found in linear stability. But, when a section 
beam has an equivalent bending resistance about the two principal axes y and z (Iy Iz), the coefficients 
C1 and C2 are very different from the constant values found within linear stability. Obviously, for such 
section shapes, the difference between the linear and non-linear stability should be very important. 
Again, when the inertial moment are close (Iy = Iz), the coefficient k1 vanishes. The beam resistance to 
lateral buckling becomes infinitely large.

Also, the present model can be employed in lateral buckling of beams under concentrated loads. In 
such situations, Dirac’s function is used and the same procedure can be followed as discussed in Mohri 
(2003). As an example, in the case of a beam under two concentrated loads Qz applied at L/4, the 
relationship (17) is fulfilled but the relationships between load (Qz, M0) and (M0, w0) are the following:

       (21a,b)

The expression of the buckling moment is similar to (19) but the coefficients C1 and C2 in (20a-b) are 
exchanged respectively into:

      (22a,b)

In the case of a beam under two concentrated loads Qz applied at L/3, the bending moment and the 
deflection are:

   (23a,b)

The buckling moment Eq. (19) is obtained with coefficients C1 and C2 given by:

     (24a,b)

Remind that from linear stability, one yields for these load cases constant coefficients independent of
the ratio Iz / Iy. They are respectively equal to C1=1.05, C2=0.43 for loads applied at L/4 and C1=1.10, 
C2=0.50 for loads applied at L/3.

Also, when the beam is loaded only by a concentrated load applied at mid-span, one uses in (19) the 
following values for C1 and C2 and for M0:

              (25a-c)
  

The importance of the pre-buckling deflections on the lateral buckling of beams has been outlined 
since 1974 by Vacharajittiphan (1974) in the case of a bisymmetric I-beam under end uniform bending.
More recently, Achour (2000) obtained the same analytical expression as in Vacharajittiphan (1974). 
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Referred to the nomenclature adopted in the present work, the buckling moment formulated in 
Vacharajittiphan and Achour works can be written as:

(26a)

where M0,b(lin) is the classical buckling moment of a beam derived from linear stability in pure 
bending:

            or    (26b)

k1 is the same as (20c) and k2 is an additional geometric constant given by:

(26c)

After some manipulations, one can easily check that the relationship (26a) is consistent with (19). For 
this load case, the C2 coefficient is insignificant for axial moments and coefficient C1 is written as:

(26d)

Hereafter, we will investigate the importance of the additional coefficient k2 on beam lateral buckling 
and it will be proved that the value of k2 in (26c) is often close to 1.0 for most of usual standard cross 
sections. Its contribution can reasonably be omitted. 

So, the compact relationship (19) with the coefficients C1 and C2 depending on bending distributions, 
load height parameter and including the pre-buckling deflections constitutes an improved and original 
formulation that predict accurately the beam lateral buckling under some representative load cases and 
for any bi-symmetric I section shape and can be applied to other section shapes such as channel sections 
under some requirements for load applications.

At this stage, it is important to compare the present solutions to those presented in Roberts and Burt 
(1985). Following the nomenclature adopted in the present work, the buckling loads of a bisymmetric I 
section under uniform moment, a concentrated central load Qz or distributed load qz including load 
height parameter are given by:

For uniform bending: (27a)

For concentrated load: (27b)

For distributed load (27c)
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⎝ ⎠
⎜ ⎟
⎛ ⎞
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⎝ ⎠
⎜ ⎟
⎛ ⎞
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⎜ ⎟
⎛ ⎞
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Coefficients λ1, λ2 and λ3 are derived in terms of  Wagner’s term, torsion constants, load height level and 
pre-buckling deflection effects. Their expressions are shown in Roberts and Burt (1985). Solutions (27) 
have been modified in order to get the compact closed form solution (19). It can be proved that (27a) is 
straightforward. Relationships (27b) is first changed to equivalent buckling moment according to (25c). 
After some manipulations on the obtained buckling moment relationship, one gets for C1 and C2 the 
following values:

         (28a,b)
      

These coefficients are close to (25a,b). Again Eq. (27c) is first changed to equivalent buckling moment 
according to (16) and the obtained expression is modified in accordance to (19). For this load case, one 
obtains for coefficients C1 and C2:

         (29a,b)

One can easily check that these values agree well with (20a,b).
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------------------------= C2
41.1

π 810 1
Iz

Iy
---–

----------------------------------=

Table 1 Improved Ci coefficients for different load cases
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k1

----------

1.0
k1

--------

Iz

Iy
---



Effects of load height application and pre-buckling deflections on lateral buckling of thin-walled beams 409
2.3. Summary of the proposed solutions

Before the validation approach, the authors believe that it is important to summarise the principal 
ideas discussed previously. An improved analytical solution is proposed for checking the lateral 
buckling strength of bi-symmetric I and Channel sections. It includes the load bending distribution, load 
height parameter for distributed and concentrated loads and pre-buckling deflections. The analytical
solution is reminded below: 

M0,b (nl) = (30)

The coefficients C1 and C2 are given in Table 1 for some representative load cases. These coefficients 
are functions on the geometric ratio Iz /Iy. These analytical solutions are valid for simply supported 
beams in both bending and torsion. It has been admitted that the load axis is passing through shear 
centre. The load height parameter ez should be indifferent, but initial torsion must vanish.

3. Illustrative examples

3.1. Finite element modelling of beam lateral buckling

In numerical approach, attention is focused on the importance of the pre-buckling deflection and on 
load height parameter effects on beam lateral buckling resistance. Three load cases are considered in 
the study: beam under uniformly distributed load, beam under concentrated load at mid-span and beam 
under uniform bending moments. The results are similar for the other load cases. The beam section is a 
standard HEA 200. For this section, the flanges width (200 mm) is approximately of the same order as 
the height (190 mm). The ratio Iz /Iy of order 0.38 is large. The geometric characteristics of the sections 
are computed according to the numerical procedure originally developed in Mohri (2001). The steel 
elastic constants are E = 210 and G = 80.77 GPa.

For each load case, analytical solutions resulting from classical linear stability and the proposed 
solutions formulated here from non-linear stability are compared to numerical simulations. In numerical 
results, Abaqus finite element code is customized (Hibbit, Karlsson and Sorensen Inc 2003). Each 
beam is modelled with thin-walled shell elements (S8R5). For the purpose, uniform mesh has been 
assumed for web and flanges. In engineer practices, it is frequent that stability analysis is limited to 
buckling loads derived only from solutions of eigenvalue problem without considering imperfections. 
The resulting solutions show a qualitative estimation of the real buckling loads and must be considered 
cautiously. To determine the real buckling load more accurately, it is necessary that eigenvalue solutions 
must be validated by considering the entire non-linear load-deflection response of the member, with 
eventually account for imperfections. Unfortunately, this last process is very difficult to obtain and time 
consuming. This is the reason why analytical or eigenvalue problem solutions are more popular and 
preferred in usual engineering design. In what follows, numerical buckling loads result from the two 
techniques.

When one deals with buckling analysis of thin-walled beams using shell elements, many problems 
should be encountered such as distorsional modes and local buckling effects affecting area of 
concentrated loads and boundary conditions (Fig. 4a). All these phenomena are naturally ignored in 

C1
π 2EIz

L2
------------- C2ez( ) C2ez( )2 Iω

Iz
---- 1 GJL2

π 2EIω

--------------+
⎝ ⎠
⎜ ⎟
⎛ ⎞

+±
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previous analytical formulations derived from beam theory. Nevertheless, in order to reduce the effects 
of these undesirable modes, only slenderness beams are considered and attention is focused on research 
of overall buckling modes (Fig. 4b). It is well known that in non-linear pre-buckling ranges, the beam 
response is essentially flexural. The displacement is reduced to a deflection w in z direction. When the 
buckling load is reached, the beam behaviour becomes suddenly flexural-torsional. Additional 
displacements v in y direction and torsion θx arise in post-buckling range. Fig. 5 depicts beam 
deformation at the end of process in post-buckling range. In order to initiate the flexural-torsional 
behaviour of the beam, initial twist moment and a concentrated load in y directions are applied at mid-
span. These loads lead to initial small imperfections. For each beam, the displacements v0 and w0 of the 
shear centre at the middle of the beam are followed and their variation with respect to load or relating 
bending moment are pictured. Due to the nature of the equilibrium equations and the presence of 
singular points, Riks method is adopted in the path-following.

3.2. Beam under distributed loads

The equilibrium paths (M0, v0) in pre-buckling and post-buckling states are plotted in Fig. 6(a), for a 
beam slenderness L = 6 m. Three load positions have been investigated, top flange, shear centre and 
bottom flange. One can observe that the displacements v0 are present only in post-buckling range. The 
equilibrium paths (M0, w0) in pre-buckling and post buckling states are depicted in Fig. 6(b), for the 
three load heights. In pre-buckling range, the deflection w0 is linear, agrees well with relationship (18) 

Fig. 4 (a) Undesirable local mode due to concentrated load, (b) Overall mode in beam lateral buckling

Fig. 5 Initial and flexural-torsional states of I beam in lateral post-buckling behaviour
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and is independent from the load position. These curves have the same tendencies and present a stable 
post-buckling behaviour for the three load positions. This means that the beam has some reserve in 
post-buckling range. Bifurcation points are load height dependent. They are respectively observed at 
118.13 for load on top flange, 165.02 when load is on shear centre and 238.97 kNm for load on bottom 
flange. Buckling moments computed according to eigenvalue problem lead to 101.61, 135.54 and 
174.25 respectively for loads on top, shear and bottom flanges. Analytical buckling moments 
according to linear and non-linear stability models have been computed and compared to shell results. 
Buckling moments resulting from classical linear stability are obtained from relationship (19), but the 
coefficients C1 and C2 are kept constant respectively to C1 = 1.14, C2 = 0.46. The buckling moment of 
the beam according to non-linear stability are derived from the compact analytical solution (19) which 
includes the pre-buckling deflections. Here, as mentioned in relation (20a,c), the coefficients C1 and C2
are functions on the ratio Iz /Iy. Analytical and numerical results are summarized in Table 2 for the three 
load positions. Some comments are needed:

- The numerical buckling moments resulting from bifurcations relating to non-linear behaviour 
agrees with analytical solutions proposed from non-linear stability. The difference is less than 1%,

- eigenvalue problem solutions are close to linear stability values for the three load positions, 

Fig. 6 (a) (M0, v) beam response for three load positions under distributed load, (b) Beam deflections for three 
load positions under distributed load
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- In spite of imperfections, bifurcations deduced from non-linear shell behaviour lead to higher buckling
moments than those predicted by linear stability and eigenvalue problem. 

- linear stability and eigenvalue problem solutions underestimate tremendously the real lateral buckling
resistance of beams for which the behaviour is predominated by pre-buckling deflections such as I 
sections with large flanges. For this slenderness, the difference is of order 15% when load is on top 
flange and can reach 30% when load is applied on bottom flange.

Fig. 7 (a) Analytical and numerical buckling moment variations versus L, load on top flanges, (b) Analytical 
and numerical buckling moment variation versus L, load on bottom flanges

Table 2 Analytical linear and non-linear bifurcation moments and comparison to numerical buckling moments. 
Beam of slenderness 6 m under distributed load qz, values in kNm

Linear stability
(analytic)

Shell
(EVP)

Non-linear stability
(analytic)

Shell
(non-linear)

Top flange 101.77 101.61 119.87 118.13
Shear centre 134.47 135.54 170.09 165.02

Bottom flange 177.68 174.25 241.33 238.97
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In order to outline the importance of pre-buckling deflection on lateral buckling stability, an 
extensive study has been done by varying slenderness L. The elastic buckling moment variation 
versus L are reported in Fig. 7(a) for load on top flange and in Fig. 7(b) for load on bottom flange. 
Analytical results according to classical linear and proposed non-linear stability are reported and 
compared numerical solutions resulting from eigenvalue problem (EVP) and singular points along 
the non linear equilibrium paths (non linear). One can check that the difference of buckling moments 
resulting from the classical stability and eigenvalue problem with regard to buckling moments 
computed from non-linear stability is very impressive. They are very conservative for the two load 
positions and for all the practical beam slenderness L. The difference is of order 17% when load is on 
top flange and can reach 36% for load on bottom flange. On the other hand, the agreement between 
buckling moments computed from non-linear bifurcations and the proposed solutions is excellent. 
Effectively, for sections with large ratio Iz/Iy, the lateral buckling resistance of beams is predominated 
by pre-buckling deformations. The linear stability leads to poor results and cannot predict correctly 
the real lateral buckling resistance. For such sections, the proposed improved solutions should lead to 
important cost and weight savings.

3.3. Beam under a concentrated load

For this load case, the equilibrium paths curves have the same tendency as the previous load case. For 
this reason they are not shown. Singular points are again load height dependant. Singular points 
observed along the equilibrium curves are respectively produced for the three load positions at 
131 kNm when load is on top flange, 195 kNm for load applied to shear centre and 297.46 kNm when 
load acts on bottom flange. Solutions of eigenvalue problem lead to buckling moments respectively 
equal to 114.74, 56.35 and 222.68.

Analytical buckling moments resulting from linear and non-linear stability models have been computed. 
Non-linear stability buckling moments are obtained according to relationship (19). Coefficients C1 and 
C2 related to this load case formulated in (25a,b) include pre-buckling deflection effects. They are 
function on the ratio Iz/Iy. For linear stability solutions, closed form Eq. (19) is used but coefficients C1 and 
C2 are kept constant respectively to C1 = 1.36, C2 = 0.55. Analytical and numerical results are 
summarized in Table 3 for the three load positions. One can remark: 

- The numerical buckling moments relating bifurcations observed equilibrium paths agrees with 
analytical solutions proposed from non-linear stability. The difference is less than 2%, 

- linear stability values are close to solutions of eigenvalue problems for the three load positions but 
these solutions are lower than non-linear stability values. For this slenderness (L = 6 m), the 
difference is of order 15% when load is on top flange and can reach 30% when load is applied on 
bottom flange.

Table 3 Linear and non-linear bifurcation moments and comparison to numerical buckling moments, beam of 
slenderness 6 m under concentrated load at 3 m, values in kNm

Linear stability
(analytic)

Shell
(EVP)

Non-linear stability
(analytic)

Shell
(non-linear)

Top flange 115.7 114.74 134.6 131.00
Shear centre 161.27 156.35 203.98 195.00

Bottom flange 224.79 222.68 309.13 297.46
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3.4. Beam under uniform bending

Let us now investigate the importance of the pre-buckling deflections on the lateral buckling of beams 
under uniform bending. Referred to relationship (26) originally investigated in (Vacharajittiphan 1974,
Achour 2000), one can remark the presence of an additional coefficient k2 , formulated in (26c). For this 
aim, buckling moments of the beam for some practical slenderness L are presented in Table 4. The 
buckling moments are computed according to linear and non-linear stability. Classical linear stability 
results M0,b(lin) are in column 2. The coefficient C1 is kept constant (C1 = 1.0). The buckling moments 
of the beam (M0,b(nl, k1) with coefficient C1 function only on k1 follow in column 3. Non-linear stability 
results including both coefficients k1 and k2 are denoted M0,b(nl, k1, k2). They are arranged at the last 
column 4. As in the previous example, on can observe that the linear stability underestimates greatly 
beam lateral buckling capacity and shows poor results with reference to non-linear stability. The 
buckling moments M0,b(nl, k1) and M0,b(nl, k1, k2) coincide. For this example, we have observed that the 
main value of coefficient k2 averages 0.996. Other comparisons have been done on some standard 
H-sections shapes ranging from HEA100 to HEA1000 and lead to k2 close to 1. The effect of this 
coefficient is not so important. Improved solutions are sufficient with only the coefficient k1. In 
engineering practice, it is then acceptable and usual to disregard the k2 coefficient. 

4. Conclusions

In this paper, non-linear stability analysis of thin-walled open section beams has been investigated. 
The equilibrium equations are deduced in the context of large displacements, taking into account for 
warping, shortening and couplings between bending and torsion. It has been established that the lateral 
buckling loads are highly dependent on bending distribution, on load height parameter and on pre-
buckling deflections. Improved analytical solutions are provided for the lateral buckling resistance of 
beams with bisymmetric I or Channel sections. The coefficients C1 and C2 are given for some representative 
load cases. These coefficients are function on the geometric ratio k1 = 1−Iz/Iy.

Analytical solutions have been compared to finite element model using shell elements. Buckling 
moments have been computed from solutions of eigenvalue problem of from singular points observed 
along the non-linear equilibrium paths. Attention has been focused on effects of load height parameter 
and on geometric ratio k1. It has been demonstrated that linear stability and buckling eigenvalue 
solutions are not appropriate for sections where the behaviour is predominated with pre-buckling 
deflection. The proposed solutions predict well beam lateral buckling resistance independently of 
section shape and are close to singular points of non linear equilibrium curves.

Table 4 Beam under uniform bending: comparison of analytical solution for buckling moments, related to linear
and non-linear stability models, values in kNm

L(m) M0,b(lin) M0,b(nl, k1) M0,b(nl, k1, k2)
4 212.28 268.51 268.04
5 152.55 192.96 192.69
6 118.58 149.99 149.81
7 96.96 122.64 122.50
8 82.07 103.80 103.70
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