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Free vibration analysis of composite conical shells using
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Abstract. The discrete singular convolution (DSC) algorithm for determining the frequencies of the free
vibration of single isotropic and orthotropic laminated conical shells is developed by using a numerical
solution of the governing differential equations of motion based on Love’s first approximation thin shell
theory. By applying the discrete singular convolution method, the free vibration equations of motion of the
composite laminated conical shell are transformed to a set of algebraic equations. Convergence and comparison
studies are carried out to check the validity and accuracy of the DSC method. The obtained results are in
excellent agreement with those in the literature.
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1. Introduction

Because of the practical importance of the free vibration analysis of the conical shell in structural,

aerospace, nuclear, petrochemical, submarine hulls, and mechanical applications, investigators have

made efforts to deal with free vibration analysis of this type of structures (Bert and Francis 1974, Reddy

1996, Bacon and Bert 1967, Siu and Bert 1970, Irie et al. 1984, 1982, Sivadas and Ganesan 1992, Yang

1974, Tong 1993a,b, Tong and Wang 1992). Layered composites are increasingly used in these

structures because of their possible higher specific stiffness and better damping absorbing properties

over the isotropic ones. More recently, Shu (1996a,b, 1997), Hua (2000a,b), Hua and Lam (2000) and

Lam and Hua (1997) presented the differential quadrature method to study the free vibration of

orthotropic and laminated rotating conical shells. Liew et al. (1995) also studied the effects of initial

twist and thickness variation on the vibration behavior of shallow conical shells. Some selected works

in this research topic includes those of Liew et al. (2005, 1994), Lim et al. (1998, 1995), Wu and Wu

(2000), Leissa (1973), Soedel (1996), Civalek (1998, 2004), Lim and Kitipornchai (1999) and Markus

(1988). More detailed information can be found in related references (Chang 1981, Kapania 1989, Wu

et al. 2005, Hu et al. 2002, Lee et al. 2002). The focus in this work is on the application of the DSC

method to the differential equation, which governs the free vibration analysis of laminated, orthotropic,

and single isotropic conical shells. To the best knowledge of author, it is the first time the discrete

singular convolution algorithm has been successfully applied to composite laminated, orthotropic, and

isotropic conical shell problem for free vibration analysis.
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2. Formulation

A typical laminated conical shell is given as shown in Fig. 1. The cone semivertex angle, thickness of

the shell, and cone length are denoted by α, h and L, respectively. R1 and R2 are the radii of the cone at

its small and large edges. The conical shell is referred to a coordinate system (x, θ, z) as shown in

Fig. 1. The components of the deformation of the conical shell with references to this given coordinate

system are denoted by u, v, w in the x, θ and z directions, respectively. The equilibrium equation of

motion in terms of the force and moment resultants can be written as Tong (1993b)

(1)

(2)

(3)

where

(4)
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Where ρ and ρa are, respectively, the density and density per unit length.
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Fig. 1 Geometry and notation of laminated conical shell
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Based on the Love’s first approximation theory the strain components are defined as linear functions

of the normal (thickness) coordinate z, namely

(6)

where {ε}T = {ε1, ε2, γ} and {κ}T =  {κ1, κ2, 2τ} are respectively the strain and curvature vectors of

the reference surface. They are defined by

(7)

For a thin and generally orthotropic layer, the stresses are given by

(8)

where {εk
*}T = {εx, εθ , εxθ} is the strain vector. The transformed reduced stiffness matrix of the kth

layer is defined by

(9)

Where

(10)

in which [K] is the transformation matrix between the material principal coordinate of the kth layer

and the geometric coordinate of the laminated composite conical shell; ϕ is the angle between these

two coordinate directions. The force and moment resultants are given in terms of displacements u, v

and w by

(11)
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where

 

(12)

where i = 1,2 and j = 3+i. Aij, Bij and Dij are the extensional, coupling and bending stiffnesses and

calculated from the following equations:

(13)

For an arbitrarily laminated composite shell, these stiffnesses can be given as

(14)

Where NL is the number of total layers of the laminated conical shell, Qij
(k), the element of the

transformed reduced stiffness matrix for the kth layer, and hk and hk-1 denote distances from the shell

reference surface to the outer and inner surfaces of the kth layer. By substituting Eq. (11) into Eqs.

(1)-(3), governing equations for the linear free vibration analysis of composite laminated conical

shells are obtained; 

(15a)

(15b)

(15c)

ci1 Ai1
∂

∂ x
-----= Ai2

sinα

R x( )
-----------+   c i2

Ai2

R x( )
-----------

∂

∂ θ
------=,

ci3 A– i2
cosα

R x( )
------------ B1 i

∂
2

∂ x
2

-------- Bi2
sinα

R x( )
-----------

∂

∂ x
-----–

Bi2

R
2

x( )
-------------

∂
2

∂ θ
2

--------––=

c31

A66

R x( )
-----------

∂

∂θ
------=   c32 A66

∂

∂x
-----

sinα

R x( )
-----------–⎝ ⎠

⎛ ⎞=   c33 B66–
∂

∂x
-----

1

R x( )
-----------

∂

∂θ
------⎝ ⎠

⎛ ⎞=, ,

cj i B1 i
∂

∂ x
-----

Bi2sinα

R x( )
------------------+=   cj2

Bi2

R x( )
-----------

∂

∂ θ
------=,

cj3 D1 i
∂

2

∂ x
2

--------–= Di2
sinα

R x( )
-----------

∂

∂x
-----–

Di2

R
2

x( )
-------------

∂
2

∂θ
2

--------– Bi2
cosα

R x( )
------------–

c61

B66

R x( )
-----------

∂

∂θ
------=   c62 B66

∂

∂ x
-----

sinα

R x( )
-----------–⎝ ⎠

⎛ ⎞=   c63 2– D66

∂

∂ x
-----

1

R x( )
-----------

∂

∂θ
------=, ,

Ai j Bij Dij, ,( ) Qi j

*

h 2⁄–

h 2⁄

∫ 1 z z
2, ,( )dz=

Ai j( ) Qi j

k( )
hk hk 1––( )

k 1=

N
L

∑   Bij( ) 1

3
--- Qi j

k( )
hk

2
hk 1–

2
–( )

k 1=

N
L

∑=   Dij( ) 1

3
--- Qi j

k( )
hk

3
hk 1–

3
–( )

k 1=

N
L

∑=, ,=

L11u L12v L13w+ + ρh
∂

2
u

∂t
2

-------- 0= =

L21u L22v L23w+ + ρh
∂

2
v

∂t
2

-------- 0= =

L31u L32v L33w+ + ρh
∂

2
w

∂t
2

--------- 0= =



Free vibration analysis of composite conical shells using the discrete singular convolution algorithm 357

where Lij is the differential operators. These can be found in related literatures (Shu 1996a). The

displacement terms are taken as

(16a)

(16b)

(16c)

In this study, the following three type main boundary conditions and four subclasses boundary conditions

for clamped edge are considered. These are defined as:

Simply supported edge (S)

V = 0,   W = 0,   Nx = 0,   Mx = 0 (17)

Clamped edge (C)

U =  0,   V = 0,   W = 0   and   Wx = 0 (18)

Free edge (F)

Qx = 0,   Mx = 0,   Nx = 0,   Sxθ = 0 (19)

Type-1 Clamped boundary (C-C1)

W = 0,   Nx = 0,   Nxθ = 0,   Wx = 0  (20a)

Type-2 Clamped boundary (C-C2)

W = 0,   U = 0,   Nxθ = 0,   Wx = 0  (20b)

3. Discrete singular convolution (DSC)

Discrete singular convolutions (DSC) algorithm introduced by Wei (1999). As stated by Wei

(2001a,b) singular convolutions (SC) are a special class of mathematical transformations, which appear

in many science and engineering problems, such as the Hilbert, Abel and Radon transforms. Wei and

his co-workers first applied the DSC algorithm to solve solid and fluid mechanics problem (Wei et al.

2002a,b). Zhao et al. (2002a,b) analyzed the high frequency vibration of plates and plate vibration

under irregular internal support using DSC algorithm. Zhou and Wei (2002) adopted the DSC in the

vibration analysis of rectangular plates with non-uniform boundary conditions. Numerical solution of

unsteady incompressible flows using DSC is given by Wan et al. (2002). A good comparative accuracy

of DSC and generalized differential quadrature methods for vibration analysis of rectangular plates is

presented by Ng et al. (2004). More recently, Hou et al. (2005) and Lim et al. (2005) presented the

DSC-Ritz method for the free vibration analysis of Mindlin plates and thick shallow shells. Consider a

distribution, T and η (t) as an element of the space of the test function. A singular convolution can be

u U x( ) cos nθ ( ) cos ωt( )⋅ ⋅=

u V x( ) sin nθ ( ) cos ω t( )⋅ ⋅=

w W x( ) cos nθ ( ) cos ωt( )⋅ ⋅=
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defined by

(21)

where T(t−x) is a singular kernel. For example, singular kernels of delta type 

T(x) =δ (n)(x);   (n = 0,1,2,...,) (22)

Kernel T(x) =δ (x) is important for interpolation of surfaces and curves, and T(x) =δ (n)(x) for n > 1

are essential for numerically solving differential equations. More recently, the use of some new kernels

and regularizer such as delta regularizer (Wei 2001a) was proposed to solve applied mechanics problem.

The Shannon’s kernel is regularized as

(23)

where ∆ is the grid spacing. It is also known that the truncation error is very small due to the use of

the Gaussian regularizer, the above formulation given by Eq. (23) is practically and has an essentially

compact support for numerical interpolation. Eq. (23) can also be used to provide discrete approximations

to the singular convolution kernels of the delta type
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When the regularized Shannon’s delta kernel (RSDK) is used, the detailed expressions for ,

, ,  and  can be easily obtained. Detailed formulations on these

coefficients are found in Wei (1999, 2001a). First order derivative, for example, are given as:
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Substituting Eqs. (16) into Eqs. (15), the governing equations can be written in DSC forms as
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(26b)

(26c)

Thus, the governing equations are spatialy discretized by using the DSC algorithm. From the above

procedures, one can derive the general form of eignvalue equation as follows

GU =ΩBU (27)

where U is the displacement vector defined as follows:

U = [Uijk Vijk Wijk]
T (28)

In Eq. (27), G and B are the matrices derived from the governing equations described by (26) and

the boundary conditions considered in Eqs. (17-20). In the above eigenvalue equation, Ω is the

nondimensional frequency parameter.

4. Numerical applications

4.1. Numerical results for single isotropic conical shells

To check whether the purposed formulation and programming are correct, an isotropic conical shell is

analysed first. The numerical results are given by the dimensionless frequency parameter Ω, defined by

where ω is referred to as the frequency parameter. During the numerical applications, the unit of

cone angle(α) is taken as degree(o), for simplicty. For example, in Table 1, α = 15 means, the cone

angle is 15o.

Table 1 shows the convergence of computed frequency parameters Ω for an isotropic conical shell

with Lsinθ / R2=0.25 and circumferential wave number, n=0. The results given by Irie et al. (1984),

Tong (1993a), and Shu (1996b) are also given in this Table 1. In order to examine the influence of bandwidth

on the accuracy, five values of N = 8,11,16,21, and 32, with corresponding regularization parameters

being σ/∆ = 1,73, 2,15, 2.46,2,8 and 3.2, and we choose M = N with r being optimally selected. From

the Table 1, it is shown that the convergence of DSC results is very good. By comparing with the results

of Irie et al. (1984), the DSC results using 16 uniform grid points are very accurate. When the number
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of grid points is larger than 16, the DSC results are independent of grid. Table 2 shows the convergence

of computed frequency parameters Ω for an isotropic conical shell with Lsinθ/R2 = 0.5. The results

given by Irie et al. (1984), Wang et al. (1999), and Civalek (2004) are also given in this Table. By

comparing with the results of Irie et al. (1984), the DSC results using 16 uniform grid points are very

accurate. When the number of grid points is larger than 16, the DSC results are independent of grid.

The results given by Civalek (1998) are obtained using the finite element method (FEM) and the result

given by Wang et al. (1999) are obtained by differential quadrature (DQ) method. From the Table 2, it

is shown that the convergence of DSC results is very good for only 16 grid points. The DSC results are

generally in agreement with the results produced from the analytical (Irie et al. 1984) and harmonic

differential quadrature (HDQ) results (Civalek 2004). It is also seen, the DSC results compare very well with

the FEM solutions from reference (Civalek 1998) for only 16 grid points. The present numerical solutions

are in close agreement with the HDQ (Civalek 2004), FEM (Civalek 1998), DQ (Wang et al. 1999), and

analytical solutions (Irie et al. 1984) available in the literature. But it is impossible to state that the DSC

method is superior to finite elements or DQ in all cases or problems by only depending on this study.

Each method has its own advantages and application areas.

4.2. Numerical results for orthotropic conical shells

The frequency parameters of simply supported orthotropic conical shells for Lsinα / R2 = 0.25,

h/R2 = 0.01, µxφ = 0.3, s = Ex/Eθ , Ex = 2.1 × 106 and Gxθ = 807692 are presented in Figs. 2. These

figures show the effects of the ratio s on the values of Ω. It is observed that the values of Ω decrease

when the ratio s increases. The variation is only marginal for larger value of s, irrespective of cone

Table 1 Frequency parameters of C-S conical shells; ν = 0.3, h/R2 = 0.01, n = 0

L sina / R2 = 0.25

α = 15 α = 30 α = 45 α = 60 α = 75

N=8 0.8983 0.9058 0.8204 0.7704 0.6629

N=11 0.8355 0.8901 0.8151 0.7556 0.6447

N=16 0.7851 0.8935 0.8043 0.7357 0.6228

N=21 0.7856 0.8941 0.8047 0.7361 0.6234

N=32 0.7856 0.8941 0.8047 0.7361 0.6234

Irie et al. (1984) - 0.8938 0.8041 0.7353 -

Tong (1993a) - 0.8938 0.8041 0.7353 -

Shu (1996b) - - - 0.7366 -

Table 2 Frequency parameters of S-S conical shells; ν = 0.3; h/R2 = 0.01; α = 45

L sinα / R2 = 0.5

DSC
Irie et al.

(1984)Cicumferential
wave number (n)

N=16 N=21
FEM 

Civalek (1998)
HDQ 

Civalek (2004)
DQ 

Wang et al. (1999)

2 0.6313 0.6312 0.6435 0.6313 0.6319 0.6310

3 0.5066 0.5064 0.5102 0.5064 0.5063 0.5065

4 0.3947 0.3947 0.4016 0.3946 0.3947 0.3947

5 0.3348 0.3348 0.3428 0.3348 0.3348 0.3348



Free vibration analysis of composite conical shells using the discrete singular convolution algorithm 361

angles. In general, it is seen that the frequencies increase considerably with circumferential wave

number for larger value of s (i.e., s > 10). Variations of frequency are shown in Figs. 3 for various cone

angles of S-S boundary condition. Two different orthotropic parameters, s = 3, s = 10 are considered.

For the cases under consideration, axisymmetric frequencies (n = 0) are not the lowest frequencies. The

lowest frequencies occur for a higher value of n. 

4.3. Numerical results for orthotropic laminated conical shells

It is noted that the extension bending coupling terms reach their maximum values with two plies

(NL = 2) and become zero with an infinite number of plies (NL = ∞). Thus the case of NL = 2 is referred

to as “maximum coupling” and the case of NL = ∞ is referred to as “without coupling”. The effect of

extension-bending coupling on frequency response with circumferential wave number is shown in

Figs. 4-5 for antisymmetric cross-ply laminated conical shell. Two different semivertex angles such as

30 and 45 and four different boundary conditions are taken into consideration. In order to discuss the

influences of h/R2 on the frequency characteristics for S-S boundary conditions, Fig. 6 is obtained for

two different cone angles, i.e., α = 30 and α = 45. With the increase of ratio h/R2, frequency parameter

Ω increases rapidly. Generally, the decreasing magnitude of cone angle decreases the frequency

parameter Ω. Fig. 7 show the effect of h/R2 on the frequency. It is concluded that, the frequency

Fig. 2 Effect of s = E
x
/Eθ ratio on frequencies with the S-S boundary condition (a) α = 15 (b) α = 30 (c) α = 45
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parameter is uniformly increase with increasing the ratio h/R2.

For ratio L/R2 = 0.5, the influence of geometric ratio h/R2 on the relation between frequency

parameter Ω is shown in Fig. 8 for four different cone angle, α. It can be concluded that the influence of

h/R2 ratio on the relation between frequency parameter Ω and the cone angle is significant. It is shown

that the increasing value of α always increases the frequency parameter Ω.  It is also observed that the

influence of boundary condition on the frequency parameter Ω with h/R2 is significant. Frequency

parameters of (0/90/0) laminated conical shells with S-S boundary conditions for the ratio L/R1 = 5 is

given in Fig. 9. The layer material properties are ν 12 = 0.25, ν 22 = 0.25, E11/E22 = 25, G12/E22 = 0.5;

G22/E22 = 0.2 These figures show the effects of the ratio h/R1 on the values of Ω . The variation is only

marginal for larger value of n, irrespective of cone angles. For the cases under consideration,

axisymmetric frequencies (n = 0) are not the lowest frequencies. The lowest frequencies occur for a

higher value of n.

Fig. 3 Variation of frequency for various cone angles for S-S boundary condition ( Lsinα /R2=0.25, h/R2=0.01)
(a) s = Ex/Eθ = 3 (b) s = Ex/Eθ = 10

Fig. 4 Effect of extension-bending coupling on frequency parameter for C-C1 conical shells (a) α = 30 (b) 45
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5. Conclusions

The numerical solution of partial differential equations plays a considerable role in the areas of

engineering. In many cases all that is desired is a moderately accurate solution at a few points which

can be calculated rapidly. Therefore, an effective numerical technique for the solution of partial

equations is very desirable. In seeking a more efficient numerical method that requires fewer grid points

yet achieves acceptable accuracy, the method of DSC was introduced by Wei (1999).

The present paper focusses on the application of DSC method. Hence, free vibration of orthotropic

conical shell problem is chosen. In conjunction with the DSC method, the free vibration of orthotropic

laminated conical shells is presented. Typical numerical results are presented illustrating the effect of

various geometric and material parameters. Convergence tests are performed to validate the proposed

approach for handling various combinations of two types of boundary conditions. The cone angle α,

Fig. 5 Effect of extension-bending coupling on frequency for C-C2 conical shells (a) α = 30 (b) 45

Fig. 6 Variation of frequency versus geometric ratio h/R2 for S-S conical shell (a) α = 30 (b) α = 45
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Lsinα/R2 ratio and orthotropic parameter s has been found to have significant influence on the

frequency parameters of the conical shell. It is also shown from numerical examples that the boundary

condition has a great effect on the frequency characteristics of orthotropic conical shell and that such

effect is significant for the case of small circumferential wave number or low rotating geometric

parameter or orthotropic parameter.

Several test examples have been selected to demonstrate the convergence properties, accuracy and

simplicity in numerical implementation of DSC procedures. This has verified the accuracy and

applicability of the DSC method to the class of problem considered in this study. The discretizing and

programming procedures are straightforward and easy. Furthermore, the known boundary conditions

are easily incorporated in the DSC. Numerical results indicate that the DSC is a simple and reliable

method for free vibration analysis of isotropic and orthotropic conical shells. 

Fig. 7 Variation of frequency versus geometric ratio
h/R2 for C-S conical shell (α = 30, Lsinα /
R2 = 0.25)

Fig. 8 Variation of frequency versus geometric ratio
h/R2 for various cone angles of S-S conical
shell (L/R2 = 0.5; h/R2 = 0.01; ν = 0.3)

Fig. 9 Frequency parameters of (0/90/0) laminated conical shells with S-S boundary conditions ( L/R1=5;
α = 30)
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