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Abstract. This paper presents a novel analytical formulation for the analysis of composite beams with
partial shear interaction stiffened by a bolted longitudinal plate accounting for time effects, such as creep and
shrinkage. The model is derived by means of the principle of virtual work using a displacement-based
formulation. The particularity of this approach is that the partial interaction behaviour is assumed to exist
between the top slab and the joist as well as between the joist and the bolted longitudinal stiffening plate,
therefore leading to a three-layered structural representation. For this purpose, a novel finite element is derived
and presented. Its accuracy is validated based on short-and long-term analyses for the particular cases of full
shear interaction and partial shear interaction of two layers for which solutions in closed form are available in
the literature. A parametric study is carried out considering different stiffening arrangements to investigate the
influence on the short-and long-term behaviour of the composite beam of the shear connection stiffness
between the concrete slab and the steel joist, the stiffness of the plate-to-beam connection, the properties of the
longitudinal plate and the concrete properties. The values of the deflection obtained from the finite element
simulations are compared against those calculated using the effective flexural rigidity in accordance with EC5
guidelines for the behaviour of elastic multi-layered beams with flexible connection and it is shown how the
latter well predicts the structural response. The proposed numerical examples highlight the ease of use of the
proposed approach in determining the effectiveness of different retrofitting solutions at service conditions. 
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1. Introduction

In the second half of the last century, there has been an increasing trend towards the use and development

of composite materials which, combining the advantageous mechanical and structural properties of

different materials, lead to composite enhanced characteristics. In the field of civil engineering, one of

the most significant contributions in this sense is certainly the one of composite steel-concrete construction.

Despite its first applications are dated back to 1894, (Cosenza and Zandonini 1999) there is still an

ongoing intense research activity related to this form of construction.

In the case of composite beams, the interaction between the reinforced concrete slab and the steel

joist is provided by means of shear connectors (Oehlers and Bradford 1995). Already in the late 40’s

and 50’s, it was highlighted that their high deformability needed to be accounted for to provide an

adequate modelling of the composite response, i.e., partial interaction behaviour; among these first

†Lecturer, E-mail: G.Ranzi@civil.usyd.edu.au

DOI: http://dx.doi.org/10.12989/scs.2006.6.3.237



238 Gianluca Ranzi

studies, the one by Newmark et al. (1951) is one of the most cited papers in this area and, due to its

popularity, their analytical formulation is usually simply referred to in literature as Newmark model.

Since then several studies have focussed on the behaviour of composite steel-concrete beams (two-

layered members) in the linear-elastic range (Ranzi et al. 2004, Seracino et al. 2004, Faella et al.

2002, Wu et al. 2002, Cosenza and Mazzolani 1993), in the nonlinear range (Čas et al. 2004,

Dall’Asta and Zona 2004, Loh et al. 2004, Faella et al. 2003, Ayoub 2001, Salari and Spacone 2001,

Ayoub and Filippou 2000, Fabbrocino et al. 2000, Gattesco 1999, Nguyen et al. 1998, Oehlers and

Sved 1995), accounting for time effects (Virtuoso and Vieira 2004, Fragiacomo et al. 2002, Kwak and

Seo 2002, Dezi et al. 1998, 1996, Gilbert and Bradford 1995) and including shear-lag effects (Amadio

and Fragiacomo 2002, Dezi et al. 2001). Nevertheless, it is outside the scope of the present paper to

provide an extensive literature review. 

Goodman and Popov (1968) further extended Newmark model to account for composite beams

formed of three layers accounting for the deformability of the shear connection between adjacent

layers. They considered equal and rectangular cross-sections and applied their formulation to the

instantaneous analysis of determinate structures, in particular of simply supported three-layered wood

beams subjected to a point load applied at mid-span and to two point loads applied at third points.

This paper proposes a novel analytical model for the analysis of three-layered composite beams

with partial shear interaction accounting for time effects, such as creep and shrinkage, and the analytical

representation is derived for the particular case of a composite beam stiffened by a longitudinal plate in

which the partial interaction occurs between the slab and the steel joist as well as between the joist and

the stiffening plate. The formulation is derived by means of the principle of virtual work in which the

problem is expressed using a specified displacement field. 

Based on this proposed model, a novel 13dof finite element is derived. Its nodal freedoms include the

axial displacements of each layer, the vertical displacements and the rotations at the ends of the

element. The accuracy of this modelling technique is assessed for both short-and long-term analyses

against solutions available in closed form for the cases in which both shear connection stiffnesses tend

to infinity (Gere 2001, Ranzi and Bradford 2005), and where only one connection stiffness is infinitely

high, thus degenerating into the conventional two-layered composite with partial interaction (Ranzi and

Bradford 2006).

A parametric study is then presented which considers different stiffening arrangements and highlights

the influence on the short-and long-term behaviour of the composite beam of the shear connection

stiffness between the concrete slab and the steel joist, the stiffness of the plate-to-beam connection, the

properties of the longitudinal plate and the concrete properties. The values of the deflection obtained

from the finite element simulations are compared against those calculated using the effective flexural

rigidity based on the EC5 guidelines provided in Annex B for the behaviour of elastic multi-layered

beams with flexible connection (EC5 1995).

2. Basic assumptions

A prismatic beam formed by three layers (here representing a steel-concrete composite beam

stiffened by a longitudinal plate) is considered and shown in Fig. 1. In its undeformed state, it

occupies the cylindrical region V=A×[0, L] generated by translating its cross-section A, with

regular boundary ΩA, along a rectilinear axis orthogonal to the cross-section, and assumed to be

parallel to the Z axis of the ortho-normal reference system {O; X, Y, Z}. For generality, the
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formulations are derived for a beam segment of length L and about an arbitrary coordinate system

as shown in Fig. 1. 

The composite cross-section A is assumed symmetric about the plane of bending, the coordinate

plane YZ being taken as the plane of symmetry. For the composite cross-section considered, A1

consists of the reinforced slab, further sub-divided into Ac and Ar , the concrete component and the

reinforcement respectively, A1= ; A2 represents the cross-section of the steel joist and it is

denoted as Ab; while A3 represents the cross-section of the longitudinal steel plate referred to

as Ap. 

It is assumed that Euler-Bernoulli beam theory applies to all three layers and therefore plane sections

are assumed to remain plane except for discontinuities at the connection interfaces. 

Ac Ar∪

Fig. 1 Typical composite beam and cross-section

Fig. 2 Displacement field
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3. Kinematic model

The position of a generic material point P can be expressed in the undeformed state of the beam by

the vector p as 

p = P − O = xi + yj + zk        (1)

in which i,j,k represent the unit vectors parallel to the axes of the adopted ortho-normal reference

system {O; X, Y, Z}. The composite action is provided by the two shear connections assumed to be

uniformly distributed along rectilinear lines at the interfaces between the three layers, whose domains

consist of (x, y) = (0, yc1) and (x, y) = (0, yc2), with ; yc1 and yc2 are defined in Fig. 1 and

denote the locations of the two interfaces. These shear connections allow relative displacements to

occur in the longitudinal direction between adjacent layers usually referred to as slip. 

The kinematic behaviour of the composite beam is expressed in terms of w1(z; t), w2(z; t), w3(z; t) and

v(z; t) which are the axial displacements of the three layers and the vertical deflection respectively as

shown in Fig. 2. Therefore, the adopted displacement field can be expressed as d(z; t) = [w1(z; t), w2(z; t),

w3(z; t), v(z; t)]T. Differentiating the deflection v with respect to the coordinate z along the beam length

yields the expressions for the rotation θ (= -v') and curvature κ (= -v''), in which the prime represents a

derivative with respect to z.

The admissible displacement of a generic point in the composite beam is shown in Fig. 2 and defined

by vector r(x, y, z; t) as (with i = 1, 2, 3)

r(x, y, z; t) = v(z; t)j + [wi(z; t) − (y − yi)v'(z; t)]k       (2)

The vectors expressing the slips at the interfaces between the top two layers and the remaining two

respectively are defined as 

(3a)

(3b)

in which sz1 and sz2 are the slips at the interface between layers 1 and 2 and between 2 and 3 respectively,

h1 = y2 − y1 and h2 = y3 − y2. 

The only non-vanishing strain components of the partial interaction problem is εz which is defined as

(with i = 1, 2, 3)

 (4)

4. Material properties

The time-dependent behaviour of the concrete is modeled accounting for creep and shrinkage effects

based on the integral-type creep law (CEB 1984) as 

(5)
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where t is the time from casting of the concrete (equal to tk), t0 is the time of first loading, time t is

subdivided by discrete times t0, t1, t2, ... ti, ... tk, σc(ti) (also referred to as σci) is the concrete stress

calculated at time ti, εtot(t) is the total axial strain which combines both stress-dependent and stress-

independent strains, εsh(t) is the shrinkage strain (while other stress-independent strains, e.g. thermal

dilatation, could be modelled in a similar manner), and J(t, τ) is the creep function defined as the

strain at time t due to a constant unit stress acting from time τ to time t. The superposition integral

of Eq. (5) is here approximated by means of the step-by-step procedure, applying the trapezoidal

rule; (CEB 1984) this approximation implies that: (Moin 2001)

(6)

and substituting Eq. (6) into Eq. (5) yields 

(7)

where εck is the total axial strain which combines both stress-dependent and stress-independent strains,

εshk is the shrinkage strain, and J(tk, ti) is the creep function which is defined as the strain at time tk
caused by a constant unit stress acting from time ti to time tk.

It is also assumed that the time-dependent behaviour of the concrete is described by Eq. (7) in both

compression and tension. This is acceptable for stress levels in compression less than about one half of

the compressive strength of the concrete, and for tensile stresses less than about one half of the tensile

strength of the concrete, as recommended by Gilbert (1988) and Bažant and Oh (1984); and so the

results obtained using the proposed approach are assumed to be acceptable from a qualitative and

quantitative viewpoint when the calculated stresses remain in this stress range. Nevertheless, when the

calculated stresses are outside this range the results might still be meaningful from a qualitative viewpoint,

for example in comparing the effects of different cross-sectional properties, while other nonlinearities,

i.e., concrete cracking, might need to be accounted for to yield quantitatively acceptable results. 

It is assumed that the reinforcing bars, the steel joist and the additional longitudinal plate behave in a

linear-elastic fashion, and Er, Es and Ep are the relevant elastic moduli for the reinforcement, steel joist

and longitudinal plate respectively. 

It is also assumed that both shear connections, i.e., the one between the reinforced concrete slab and

the steel joist and the one between the joist and the additional longitudinal plate, are uniformly spread at

the interfaces between adjacent layers and behave in a linear-elastic fashion; their constitutive

relationships can be expressed as 

(8a)

(8b)

in which the connection stiffness kz1(kz2) relates the longitudinal force per unit length gz1(gz2) to the

corresponding slip sz1(sz2).
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5. Global equilibrium condition

The principle of virtual work is applied to obtain the weak formulation of the partial interaction

problem for each kinematically admissible virtual displacement as 

 (9)

in which i = 1, 2, 3 represent the three layers, j = 1, 2 denote the two interface connections, ΩAi

represents the contour of the domain Ai, σzi represents those stresses which produce internal work,

i.e., active stresses, gzj is the shear flow which occurs at the j-th connection interface, and the third

integral on the right hand-side of the equation represents the work done by the surface forces applied at

the cross-section at the ends of the beam segment considered. Virtual displacements and strains have

been identified by means of a hat “^” placed above the variable considered. 

The solution of the problem is then sought at each time step in the spaces of the regular functions

fulfilling the kinematic boundary conditions.

For generality, both quasi-static body and surface forces have been considered. These have been

referred to as b and q respectively and have been collected in the following vectors as 

f = ; Q0,L = (10a,b)

where f, Q0 and QL represent the vectors of actions applied at time tk along the beam and at the

cross-sections at the ends of the beam segment considered, i.e., at z = 0, L. 

The time-dependent behaviour of the concrete at time tk requires the stresses resisted by the concrete

at time ti (i = 0, ..., k-1) to be accounted for as defined in Eq. (7). This is accomplished by recording the

concrete stress resultants at time tk as follows 

(11)

in which σzci is the longitudinal active stress resisted by the concrete at time ti and ∆2ki is defined in

appendix. 

Taking account of the constitutive relationships, Eq. (9) can be re-written to highlight the different

variables of the problem in the following compact form 
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         (12)

in which fsh is the vector related to the shrinkage strain εshk at time tk defined as 

(13)

and the stiffness transformation matrix T, the formal differential operators A and B and the

relevant cross-sectional and material properties are defined in appendix and are calculated at each

time step accounting for the time-dependent behaviour of the concrete. 

The step-by-step procedure requires several analyses to be carried out to complete the time analysis,

each relying on the results of the previous analyses as described by Eq. (7) and recalculating fc based on

Eq. (11). 

6. Finite element formulation 

A novel finite element is derived to model the partial interaction behaviour of a three-layered beam

whose freedoms are depicted in Fig. 3 and include the axial displacements of the three layers observed

at the levels yi (with i = 1, 2, 3), vertical displacements and rotations at both element ends. The shape

functions adopted for the 13dof proposed element include a cubic function to approximate the vertical

displacement and parabolic functions for the axial displacements of the layers; internal nodes related to

the axial displacements have been introduced to achieve these polynomials. This element includes the

minimum number of freedoms to provide a robust and stable element which does not suffer from

curvature locking problems. Mathematically, the adopted displacement field d is then approximated by

Ne de, where de is the vector of the nodal displacements (Fig. 3) and Ne is the interpolation matrix

collecting the relevant shape functions. The finite element is then derived based on the weak

formulation expressed by Eq. (12) adopting the approximated displacement field as 

(14)

where all notation is defined in appendix. Conventional finite element procedures are then utilized

to assemble the vectors and matrices for the whole structure and to perform the structural analysis.

(Cook et al. 2001).
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Fig. 3 Freedoms of the proposed three-layered 13dof finite element 
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7. Validation against closed form solutions

The accuracy of the proposed 13dof element depicted in Fig. 3 is validated against solutions

available in closed form for the extreme cases in which firstly both shear connection stiffnesses

tend to infinity (full shear interaction, FSI) using the expressions presented by Gere (2001) for the

short-term analysis and those by Ranzi and Bradford (2005) for the long-term one and, secondly,

for the short-and long-term analyses where only one infinitively rigid shear connection exists,

degenerating into the case of partial shear interaction (PSI) of two-layered beams (Ranzi and

Bradford 2006). These solutions approximate the concrete time-dependent behaviour expressed by

the superposition integral of equation (5) by means of the algebraic methods, such as the age-

adjusted effective modulus method (AEMM), the mean stress method (MS) and the effective

modulus method (EM) (CEB 1984, Bažant 1972).

The comparisons have been carried out based on the composite cross-section already extensively

used in literature and first proposed by Tarantino and Dezi (1992) which is formed by a rectangular slab

(2300 mm × 200 mm), a fabricated steel joist with top flange 300 mm × 20 mm, web 1550 mm × 15 mm,

bottom flange 450 mm × 30 mm. For the validation process, the bottom flange of the specified steel

joist was “shared” in the three-layered representation between the bottom flange of the steel joist (i.e.,

layer 2) and the additional plate (i.e., layer 3) while adopting an infinite stiff shear connection between

the two. The elastic modulus adopted for the reinforcement, joist and longitudinal plate was 210 000 MPa

and the one for the concrete was 34 219 MPa. For the long-term analysis a creep coefficient of 2 and a

shrinkage deformation of 200 × 10
−6 

were specified. The creep effects due to external loads have been

modeled by means of the AEMM method while shrinkage effects have been calculated using the MS

method as recommended by Dezi et al. (1996, 1998); for this reason, aging coefficients of 0.8 and 0.5

have been utlised in the modeling of external loads and of shrinkage effects respectively. The AEMM

and MS methods require two analyses to fully complete the time-dependent analysis, which are an

instantaneous analysis (i.e., at time t0, where t0 is defined as the time of first loading) and an analysis

that is performed at one step in time (at the prescribed time t). The applicability of these models to

describe the concrete behaviour is affected by the same limitations (i.e., related to cracking and other

nonlinearities) already outlined for the step-by-step procedure. 

For clarity, two dimensionless stiffness parameters γj L ( j = 1, 2) are introduced to better describe the

rigidity of the two shear connections; these are equivalent to the dimensionless αL coefficient identified

by Girhammar and Pan (1993) for the case of two-layered beams. The proposed γj L ( j = 1, 2) parameters

are defined as 

(15)

The validation has been carried out for the case of a 25 m simply supported beam subjected to a

uniformly distributed load of 64.56 kN/m and, for clarity, the results from the instantaneous

analysis, the ones due to creep and the ones accounting for shrinkage effects have been presented

separately. 

The results obtained for the full interaction analysis using the proposed modeling technique with

γ1L →∞  and γ2L→∞ (i.e., infinitely rigid shear connection) and those from the closed form solutions
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are shown in Fig. 4 to perfectly match. Similar agreement with the solutions available in closed form

has been noted for the partial interaction analysis of a two-layered beam modeled using the proposed

formulation with γ1L→1 and γ2L→∞ as depicted in Fig. 5. The plotted variables have been non-

dimensionalised for clarity; in particular, for the case of the deflection, all values have been non-

dimentionalised against the short-term values calculated at mid-span, while for the slip the short-term

values at the roller support have been used as reference. 

Fig. 4 Short-term and long-term deflection of a simply supported beam subjected to a uniformly distributed
load for γ1L→∞  and γ1L→∞ (Full shear interaction)

Fig. 5 Short-term and long-term analyses of a simply supported beam subjected to a uniformly distributed
load for γ1L = 1 and γ2L→∞ (Partial shear interaction of conventional 2-layered beam)
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8. Parametric study 

A parametric investigation has been carried out by means of the proposed 13dof element (Fig. 3) on a

case study for which different retrofitting solutions have been considered based on the beam layout and

cross-sectional properties introduced for the validation process. 

The influence of the shear connection stiffness between the concrete slab and the steel joist, the

stiffness of the plate-to-beam connection, the properties of the longitudinal plate and the concrete

properties on the short-and long-term behaviour of the composite beam has been investigated; for

clarity, creep and shrinkage effects have been considered separately. Four different stiffening arrangements

have been considered which include: (i) no additional longitudinal plate (this arrangement has been

referred to Arrangement 1 or simply A1); (ii) the longitudinal plate extends over the middle quarter

span of the beam (referred to as A2); (ii) the longitudinal plate is placed over the middle half of the

Fig. 6 Stiffening arrangements considered in the parametric study
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beam (referred to as A3); (iv) the longitudinal plate spans over the full length of the beam (referred to as

A4). For clarity, these arrangements are illustrated in Fig. 6. 

The time-dependent behaviour of the concrete has been modelled by means of the step-by-step

procedure subdividing the time domain into 80 intervals. The age of concrete at the beginning of

shrinkage has been taken as 4 days and the external uniformly distributed load has been assumed to be

applied at 28 days. All material properties have been calculated in accordance with guidelines (CEB-

FIB 1993); for this purpose, a relative humidity (RH) of the environment of 80%, a concrete strength of

32 MPa, the use of normal and rapid hardening cements N and R, i.e., s = 0.25, have been adopted

unless noted otherwise. (CEB-FIB 1993) Regarding the cross-sectional properties, a 450 mm × 50 mm

longitudinal plate has been specified for the different stiffening arrangements unless noted otherwise

and, recalling the constitutive model introduced for the shear connection in Eqs. (8), several

combinations of their stiffnesses have been considered; nevertheless, in the following only the most

significant results are presented and these relate to the shear connection stiffnesses outlined in Table 1. 

8.1. Effects of the stiffnesses of the two interface shear connections 

The four arrangements (Fig. 6) considered in this parametric study lead to different structural

responses depending on the combinations of stiffnesses adopted for the shear connection. Figs. 7 and 8

depict the variation of the mid-span deflection and the slip at the bottom shear connection calculated at

the extremes of the longitudinal plate; therefore, depending on the arrangement considered, the latter

slip is calculated at different locations. 

Fig. 7 highlights how for higher stiffness values of the bottom shear connection the short-term

deflection can decrease up to approx. 30% (Fig. 7(b)) when compared against the unstiffened solution,

while the top shear connection stiffness can reduce the deflection more than 40% (Fig. 7(a)). Creep

effects tend to slightly reduce the influence of the top shear connection while no significant change is

noted in time for the bottom shear connection. As expected, stiffer shear connection rigidities between

the slab and the steel joist produce greater shrinkage loading and, also in this case, the rigidity of the

bottom shear connection plays an important role in the overall behaviour. 

In general, the end slip of the top shear connection, i.e., sz1, is mainly affected by the rigidity of the

top interface, except for low values of γ1L where both γ2L and the type of stiffening arrangement

adopted affect the top slip values with variations of the order of 10%; similar behaviour has been noted

also for the long-term analyses. 

The slip calculated at the plate-to-beam connection is primarily affected by its rigidity and by the

stiffening arrangement considered. For all arrangements, the slip calculated at the extreme of the

longitudinal plate tends to decrease while increasing γ2L; it is worth noting that for arrangement A4, the

values of the slip calculated at the support (i.e., the stiffening occurs throughout the beam length) are

greater than those determined for the other two arrangements, i.e., A2 and A3, at high values of γ2L,

Table 1 Stiffness values for the two shear connections γjL ( j = 1, 2)

γ1L k1(kN/m2) γ2L k2(kN/m2)

100 32681684.72 100 34377206.84 

1 3268.16 10 343772.06 

1 3437.72 

0.1 34.37 
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while this trend is inverted for low γ2L values as shown in Fig. 8. As the short-and long-term (due to

creep) slip values were observed to follow a very similar trend, only the long-term results have been

reported. 

8.2. Effects of dimensions of the additional longitudinal plate 

The size of the plate significantly affects the overall response as outlined in Table 2 which illustrate

the increase of the mid-span deflection and of the bottom slip calculated at the extreme of the additional

Fig. 7 Deflection at mid-span 
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longitudinal plate when reducing the thickness of the bottom plate (i.e., layer 3) from 50 mm

(considered in Figs. 7 and 8) to 10 mm. 

Higher mid-span deflections are obtained while increasing γ1L for both short-and long-term analyses

(creep effects only), while, for a given γ1L, these tend to drop while decreasing γ2L. Despite these

increases in the vertical deflection, the values calculated for the bottom slip, i.e., sz2, tend to decrease

due to slight movements of the neutral axis locations which occur due to the changes in cross-sectional

properties; on the other hand, this change produces a slightly increase in the top slip, i.e., sz1. 

Even if the deflections due to shrinkage tend to decrease while reducing γ1L, the relative change in the

results obtained using a 10 mm longitudinal plate are noted to increase when compared against those

calculated with a 50 mm stiffening plate. 

8.3. Effects of concrete strength 

The influence of the concrete strength becomes more apparent when considering the time-dependent

behaviour as outlined in Table 3. Reducing the concrete strength from 32 MPa to 25 MPa increases the

instantaneous deflection by approx. 2% and the long-term one due to creep by up to 5.5%. Shrinkage

deflections increase by a greater amount (up to nearly 9%) even if this is partly due to the fact that

Fig. 8 Slip at the interface between the steel joist and the longitudinal plate. Values calculated at the extremes
of the longitudinal plate 
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shrinkage induced strains increase while decreasing concrete strengths; similar considerations apply to

the values of the bottom slip. 

Table 2 Variations (%) between the results obtained reducing the longitudinal plate thickness from 50 mm to
10 mm 

Deflection at mid-span

γ1L γ2L
Instantaneous values at t0 Values at time t (creep effects only) Values at time t (shrinkage effects only) 

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

100 
100 0.00%  17.57% 36.46% 50.26% 0.00% 14.73% 29.48% 39.60% 3.22%  5.97% 8.39%   3.22% 

1 0.00% 0.08% 0.54% 2.60% 0.00%  0.08% 0.47% 2.28% 0.02% 0.13% 0.68%   0.02% 

1 
100 0.00% 11.60% 22.31% 29.20% 0.00% 11.68% 22.49%  29.47% 4.96%  8.85% 11.08%   4.96% 

1 0.00%  0.07%  0.42% 1.93% 0.00%  0.07%  0.42%  1.95% 0.04% 0.20% 0.91%   0.04% 

Slip between the steel joist and the longitudinal plate (calculated at the extremes of the longitudinal plate)

γ1L γ2L
Instantaneous values at t0 Values at time t (creep effects only) Values at time t (shrinkage effects only) 

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 

100 
100 n/a -3.31% -3.39% -4.67% n/a -3.27% -3.33% -4.34% n/a -7.56% -7.60% -7.69% 

1 n/a -1.49% -1.54% -1.77% n/a -1.84% -1.88% -2.06% n/a -6.08% -6.12% -6.27% 

1 
100 n/a -3.08% -3.17% -3.31% n/a -2.95% -3.03% -3.10% n/a -6.26% -6.34% -6.41% 

1 n/a -2.77% -2.79% -2.83% n/a -2.77% -2.78% -2.81% n/a -6.06% -6.06% -6.09% 

NOTE: the variation (%) has been calculated specifying a concrete strength of 32 MPa, a relative humidity of
80% and reducing the longitudinal plate from 50 mm to 10 mm:
Variation(%) = [solution(with 10 mm)-solution(with 50 mm)]/solution(with 50 mm)

Table 3 Variations (%) between the results obtained reducing the concrete strength from 32 MPa to 25 MPa

Deflection at mid-span

γ1L γ2L
Instantaneous values at t0 Values at time t (creep effects only) Values at time t (shrinkage effects only) 

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

100 
100 1.56%  1.78%  2.01%  2.17% 4.42% 4.84% 5.25% 5.54% 5.48% 5.43% 5.38% 5.34%

1 1.56%  1.57%  1.57%  1.59% 4.42% 4.42% 4.42% 4.44% 5.48% 5.48% 5.48% 5.46%

1 
100 0.09% 0.08% 0.07% 0.07% 0.09% 0.08% 0.07% 0.07% 8.29% 8.29% 8.27% 8.26%

1 0.09% 0.10% 0.10% 0.09% 0.09% 0.09% 0.09% 0.08% 8.29% 8.29% 8.29% 8.29%

Slip between the steel joist and the longitudinal plate (calculated at the extremes of the longitudinal plate)

γ1L γ2L
Instantaneous values at t0 Values at time t (creep effects only) Values at time t (shrinkage effects only) 

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 

100 
100 n/a 0.37% 0.37% 0.34% n/a 1.27% 1.27% 1.18% n/a 5.51% 5.50% 6.32% 

1 n/a 0.40% 0.40% 0.40% n/a 1.36% 1.36% 1.35% n/a 5.58% 5.57% 5.60% 

1 
100 n/a 0.08% 0.07% 0.06% n/a 0.06% 0.06% 0.05% n/a 8.37% 8.39% 8.43% 

1 n/a 0.09% 0.09% 0.09% n/a 0.07% 0.07% 0.07% n/a 8.38% 8.39% 8.40% 

NOTE: the variation (%) has been calculated specifying a 50 mm thick longitudinal plate, a relative humidity
of 80% andreducing the concrete strength from 32 MPa to 25 MPa:
Variation(%) = [solution(with 25MPa)-solution(with 32MPa)]/solution(with 32MPa)
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8.4. Effects of relative humidity

The time-dependent behaviour of the concrete is highly affected by the relative humidity of the

ambient. This is depicted in Table 4 where the results based on a relative humidity (RH) of 80% have

been compared against those calculated using a RH of 50%. There is a significant increase in the long-

term deflections accounting for both creep and shrinkage effects; nevertheless, this is mainly attributed

to the different concrete behaviour at these different humidity levels. Looking at the general trend it can

be noted that decreasing the relative humidity mainly affects the response for higher values of γ1L

leading to increased displacements. 

Table 4 Variations (%) between the results obtained reducing the relative humidity from 80% to 50%

Deflection at mid-span

γ1L γ2L
Values at time t (creep effects only) Values at time t (shrinkage effects only) 

L1 L2 L3 L4 L1 L2 L3 L4

100 
100 7.75% 8.49% 9.21% 9.71% 71.12% 70.99% 70.86% 70.76%

1 7.75% 7.76% 7.78% 7.86% 71.12% 71.12% 71.12% 71.08%

1 
100 0.15% 0.14% 0.13% 0.12% 78.62% 78.60% 78.56% 78.55%

1 0.15% 0.15% 0.14% 0.14% 78.62% 78.62% 78.62% 78.61%

Slip between the steel joist and the longitudinal plate (calculated at the extremes of the longitudinal plate)

γ1L γ2L
Values at time t (creep effects only) Values at time t (shrinkage effects only) 

L1 L2 L3 L4 L1 L2 L3 L4 

100 
100 n/a 2.22% 2.22% 2.07% n/a 71.16% 71.14% 73.30% 

1 n/a 2.38% 2.38% 2.36% n/a 71.35% 71.34% 71.41% 

1 
100 n/a 0.10% 0.10% 0.08% n/a 78.81% 78.84% 78.97% 

1 n/a 0.12% 0.12% 0.12% n/a 78.85% 78.86% 78.88% 

NOTE: the variation (%) has been calculated specifying a 50 mm thick longitudinal plate, a concrete strength
of 32 MPa and reducing the relative humidity from 80% to 50%:
Variation(%) = [solution(with 50%)-solution(with 80%)]/solution(with 80%)

Table 5 Variations (%) between the mid-span deflections calculated using the effective flexural rigidity determined
following guidelines EC5 Annex B and those obtained based on the proposed finite element 

Mid-span deflection calculated at time t0 

γ1L γ2L

Additional longitudinal plate: 450 mm×50 mm Additional longitudinal plate: 450 mm×10 mm 

Concrete strength: 32MPa Concrete strength: 32MPa 

Relative humidity: 80% Relative humidity: 80% 

EC5 − v(L/2) in m    FEM − v(L/2) in m error EC5 − v(L/2) in m   FEM − v(L/2) in m error 

100 
100 0.01970 0.01970 -0.01% 0.02960 0.02959 -0.01% 

1 0.03327 0.03326 -0.02% 0.03413 0.03413 -0.01% 

1 
100 0.06311 0.06310 -0.02% 0.08154 0.08152 -0.02% 

1 0.08827 0.08824 -0.03% 0.08997 0.08995 -0.02% 

NOTE: the error (%) has been calculated comparing the results obtained based on the flexural rigidity calcu-
lated in accordance with EC5 Annex B and those determined by means of the proposed finite element:
Error(%) = [solution(FEM)-solution(EC5)]/solution(FEM)
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8.5. Comparisons with results obtained by means of EC5 Annex B 

The accuracy of available design guidelines EC5 (1995) dealing with the behaviour of multilayered

beams with flexible shear connection have been evaluated. EC5 (1995) provides an expression to

determine the effective flexural rigidity of a multi-layered member with flexible connection which has

been utilized to calculate the mid-span deflection based on full interaction theory considering the 25 m

simply supported beam utilised in the previous parametric study with stiffening arrangement A4.

Table 5 highlights the adequacy of the EC5 approach which yields an error less than 1% for all

combinations of shear connection stiffness (Table 1) and for different thicknesses of the

longitudinal plate.

9. Conclusions 

This paper described a novel analytical model for the analysis of three-layered beams with partial

shear interaction. In particular, the analytical formulation has been outlined considering the case of a

composite beam stiffened by means of a longitudinal plate bolted to the bottom flange of the steel joist.

The analytical model has been derived using the principle of virtual work relying on a specified

displacement field. For numerical applications, a novel finite element with 13 degree-of-freedom has

been derived, whose nodal freedoms include the axial displacements of each layer, the vertical

displacements and the rotations at each element ends. The accuracy of this element has been validated

against known short-and long-term solutions with full shear interaction, assuming that both shear

connection stiffnesses tend to infinity, and with partial shear interaction of only two layers, in which

case only one shear connection is assumed to be infinitively stiff. 

A parametric study has been carried out to investigate the influence on the short-and long-term

behaviour of the composite beam of the shear connection stiffness between the concrete slab and the

steel joist, the stiffness of the plate-to-beam connection, the properties of the longitudinal plate and the

concrete properties. For this purpose, four different stiffening arrangements using an additional longitudinal

plate have been considered. The proposed numerical examples have highlighted the general applicability of

the proposed approach and its ease of use in determining the structural response at service level for

different retrofitting solutions. 

The accuracy of EC5 guidelines to depict the behaviour of elastic multi-layered beams with flexible

shear connection has been validated and it has been shown that for the cross-sectional properties

considered the calculation of the mid-span deflections for a simply supported structural system remains

within a negligible error, i.e., less than 1%, when compared to the finite element solutions. For this

purpose, the effective flexural rigidity calculated in accordance with EC5 guidelines was utilised to

determine the deflection based on full interaction theory. These comparisons have been carried out for

different combinations of the two shear connection stiffnesses. 
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