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Abstract. The deformation and dynamic behavior mechanism of submerged shell-like lattice structures 
with membranes are in principle of a non-conservative nature as circulatory system under hydrostatic pressure 
and disturbance forces of various types, existing in a marine environment. This paper deals with a 
characteristic analysis on quasi-periodic and chaotic behavior of a circular arch under follower forces with 
small disturbances. The stability region chart of the disturbed equilibrium in an excitation field was calculated 
numerically. Then, the periodic and chaotic behaviors of a circular arch were investigated by executing the 
time histories of motion, power spectrum, phase plane portraits and the Poincare section. According to the 
results of these studies, the state of a dynamic aspect scenario of a circular arch could be shifted from one of 
quasi-oscillatory motion to one of chaotic motion. Moreover, the correlation dimension of fractal dynamics 
was calculated corresponding to stochastic behaviors of a circular arch. This research indicates the possibility 
of making use of the correlation dimension as a stability index.

Keywords: dynamic stability; non-conservative nature; circular arch; follower force; instability region; 
correlation dimension; chaotic behaviors.

1. Introduction

The development of marine resources and the utilization of marine space have shown progress in recent

years. The homeo-thermal property of an underwater environment is especially useful for stocking 

provisions, such as a surplus of agricultural produce in a year of good harvest. To fulfill this purpose, a 

structure is needed which is both large-scale and constructed of comparatively flexible material for 

reasons of cost efficiency. One structure which satisfies these conditions is a shell-like structure 

composed of circular arches and membranes, provided that it can protect the underwater loads from 

downward hydrostatic pressure.

The deformation and dynamic behavior mechanisms of submerged shell-like lattice structures 
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(Fig. 1(a)) with circular arches and membrane are in principle of a non-conservative nature (Thompson 

and Stewart 1986, Jackson 1991) like a circulatory load system, because the working force is of the follower 

type, namely hydrostatic pressure, which works perpendicular to the deformed surface at all times. 

Also, disturbance forces of various types existing in a marine environment lead the structure to exhibit 

dynamic instabilities at a much earlier stage than could be predicted by a static stability criterion. 

Herein, it can be assumed that the membrane covered shell-like lattice has the role of receiving hydrostatic

pressure and transferring it to the composed arches. 

First of all, it is necessary to investigate the dynamic behavior of the circular arch that is the basic 

structural element of a shell-like lattice undergoing large deflections and small disturbances. 

Accordingly, the characteristics of non-periodic oscillation and the unstable state of a circular arch in 

the exciting forces of the circulatory load system should be grasped qualitatively. For that purpose, the 

governing equations for finite deformation and dynamic behavior of an arch are defined using 

monoclinic particle coordinates. Then, the stability region chart of the disturbed equilibrium in an 

excitation field is obtained numerically by analyzing the dynamic states of an arch. 

From the previous study (George and Fukuchi 1993), the existence of transient regions of dynamic 

stability with non-periodic behavior before shifting to an unstable state has been proven. Therefore, 

the chaotic behaviors of a circular arch were investigated using the time intervals of motion, the 

power spectrum, the phase plane portraits and the Poincare section in the loading stage, before 

shifting to an unstable state. Moreover, the correlation dimension of fractal dynamics was calculated 

corresponding to the stochastic behaviors of a circular arch. This research clarifies that the 

correlation dimension related to dynamic behavior may show signs of changing from quasi-

oscillatory motion to chaotic motion, and this fact indicates the possibility of making use of the 

correlation dimension as a stability index. 

2. Dynamic equations for a circular arch under a fluctuating follower force

The equilibrium of a circular arch undergoing deformation is always prone to exhibit certain unstable 

behavior depending on the various disturbances that accompany changes of state or loading, due to 

either internal or external excitations, which are omnipresent in any physical situation.

Fig. 1 Shell-like lattices and circular arch definition in monoclinic particle coordinated
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2.1. Equilibrium equations for finite deformations

The definition of an arch, in monoclinic particle coordinates (r, ϕ), where r, ϕ are respectively the 

radius and the tangential angle of the arch, is shown in Fig. 1(b). The finite deformation process is 

assumed herein to obey the Kirchhoff-Love hypothesis, and the arch displacements are denoted as (u, w) 

depicted in Fig. 1. The general equilibrium equations of an arch (Fukuchi, Tanaka and Okada 2000) can 

be induced mainly from the equations for a thin shell structure (George and Fukuchi 1993) subjected to 

follower forces.

(1)

(2)

where D, K are respectively the extensional and bending stiffness; X, Z denote the tangential and 

normal loads of the follower type, respectively.

2.2. Dynamic stability equations for an arch subjected to small disturbances

The dynamic stability of a deformed arch on its equilibrium path under follower loads can be examined

by superposing small vibration upon static deflection components. The modified governing equations 

of an arch, including the effect of small disturbances on the equilibrium displacement, are presented 

by formulating the incremental forms of Eqs. (1)~(2) and considering d’Alembert’s principle of 

parametric influences due to excitation force Zf
* as shown in the following formulas. These formulae 

represent stability in a disturbed state of equilibrium.

(3)

(4)

where (*) shows the incremental quantity of displacements or forces in a momentarily disturbed 

state, and ρ, A are respectively the mass density and sectional area. Moreover, Eu and Ew are the 

damping coefficients which represent the motion frequency of arch material in both axes.
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2.3. Numerical calculation method

A displacement control-type incremental load way formulated by the Galerkin method was employed 

for numerical analysis of the finite deformation and dynamic behavior of an arch. Here, we adopt the 

following truncated Fourier series to represent the deflection components .

,  (5)

Herein,  are the trial functions that are trigonometric series which satisfy the 

boundary conditions, and Uj, Wj are respectively the displacement coefficients at static state and Uj
*, 

Wj
* are displacement coefficients in a momentarily disturbed state. In the case of hinge edges as 

boundary conditions, the trial functions for displacement can be used as follows:

,  (6)

From several trial calculations, the number of expanding terms in a series was determined to be m=9. 

The resonances related to an outbreak of unstable state at only low frequency modes ( j=1,2) were 

investigated herein. Then, an arch with a subtended angle of 60o, as a numerical example, is assumed to 

be hinge edges.

Furthermore, the dynamic stability equations of an arch subjected to a sinusoidal load (Zf
*=Z* sin ωt) 

as one of the small disturbances, may be calculated numerically by using the Runge-Kutta-Gill method. 

For different pairs of values for the excitation amplitude Z*(N) and frequency ω (rad/s), the dynamic 

stability calculations are performed using the Runge-Kutta-Gill method on the initial condition of 

w*(0)=ε, *(0)=0 (ε :  infinitesimal).
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Fig. 2 Deformed configurations of the circular arch with loading stages
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3. The dynamic behavior of the circular arch

3.1. Large deflections of a circular arch under hydrostatic follower force

The numerical results of deformed configurations for a circular arch with a subtended angle of 60o, a 

sectional slender ration of 100, a Young’s modulus of 1.96×1011 N/m2 and a density of  7.85×103 kg/m3, 

are shown in Fig. 2. This arch, with a square projection, was subjected to uniform hydraulic pressure 

acting perpendicularly to the on arch axis. The arching effect of this structure tends to decrease by 

forming inflection points along the arch axis.

In this case, the snapping phenomenon occurred at load Zcr, that is the critical point (Zmax) of static 

stability, and the loading stage Zx hereafter denotes x percent of the critical static load. 

A previous study (George and Fukuchi 1994) clarified the existence of the stability threshold, 

meaning the shift point of phenomena from the heteronomous stage to the autonomous stage of self-

sustained motions. It was suggested that the loading stages for design should be chosen within the 

stable region, and the loading stage of 70% was chosen herein for investigating dynamic behaviors 

during change of state from quasi-oscillatory motion to chaotic motion. 

3.2. Stability regions in the excitation force field

For various sinusoidal loads (Z* sin ωt) which work perpendicular to an arch axis, the dynamic 

stability of the circular arches was investigated. The state of an arch is judged to be unstable at the point 

when the response amplitude caused by an excitation of disturbances goes beyond one hundredth of the 

arch chord length within 50 periods. 

The stability region on plane (ω, Z*/Zmax) of disturbed equilibrium at the load stage Z70 is plotted in 

Fig. 3, the unstable border region of which makes many complex peninsular shapes (George and 

Fukuchi 1993), depending heavily on the amplitude and frequency of disturbance. These fractal 

structures (Moon 1987, Judd 1992) are mainly caused by resonance with natural frequencies. In 

general, the natural frequency gradually moves downward the lower positions of the excitation force 

Fig. 3 Stability region of the circular arch in an excitation field [Loading stage: 70%]
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field as the static load increases. The corresponding forces on a Form-resistant structure are changed by 

the variations of arch curvature, following the increase of follower force, and the arching effect tends to 

be especially decreased by the “M”-shaped deformation of arch configuration. 

In a marine environment, there are many kinds of disturbance force with various frequencies and 

magnitudes. A submerged space structure receives possibly the influence of disturbances by the sound 

wave with a huge energy for geological survey or probing into seabed resources. As the generator of 

sound wave, Air-gun (5~500 Hz, 0.4~400 KJ), Water-gun (1~1000 Hz, 3~80 KJ) and Sparker (50~4000 Hz,

0.05~20 KJ) are generally used, and these frequencies are within the range of the stability region chart 

shown in Fig. 3.

Judging from the results of power spectrum analysis, there are three main peaks of instability in the 

resonance range, being nearly equal to natural frequencies ωRn=2240(rad/sec), 4710(rad/sec) and 

10220(rad/sec) within the range of less than 12000 (rad/sec).

The instability regions of the neighboring ωR0 = 4710(rad/sec) and ωR1 = 2240 (rad/sec) are named 

respectively the main instability region and the low-frequency instability region with which the 

resonances of bending vibration in mode-1 and mode-3 are mostly constituent. Also, the instability 

region at the neighboring ωR2=10220(rad/sec) is named the high-frequency instability region with 

which the coupling vibrations of in-plane motion in modes-3,1,5 and the bending motion in mode-5 are 

prominent. 

Fig. 4 Power spectra and Poincare sections [Loading stage: 70%, Z' = 1.00×10−6]
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3.3. Quasi-periodic motions corresponding to the frequency of disturbance

The response motions of a circular arch under the disturbances having the small load amplitude 

Z' = 1.0×10−6 and circular frequencies of the neighbor of instability regions were investigated using the 

analytical means of power spectrum and Poincare section. Fig. 4 is the results on the condition of 

{disturbance frequencies: ωf = 2000, 4000 and 10000(rad/sec)} in which the power spectra show 

respectively four peaks for three natural frequencies and each forced frequency. As according to the 

frequency of disturbance, Poincare sections make the change such that the ring-like aggregate points at 

frequency ωf = 4000(rad/sec) of the neighbor of main instability regions became a thin ellipse that 

shows to occur simple quasi-periodic motion, and the others shape a semi-geometric aggregate of 

discrete points that means to disappear gradually periodic property. These dynamic responses at a small 

load amplitude are regarded to be quasi-periodic motions in which Poincare section shows a elliptical 

aggregate of discrete points, for the composed frequencies of response motion are irrational numbers 

without reflexive.

3.4. Non-periodic motions in the main instability region

The response aspects of a circular arch subjected to small disturbances, having a frequency coinciding

with the natural frequency ωR0 = 4710(rad/sec) of the main instability region, were investigated with an 

increasing load amplitude Z' . The analytical results of the power spectrum, the response of phase 

Fig. 5 Power spectra and responses of phase modes [Loading stage: 70%, ωf = 4710 rad/sec]
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modes, the phase portrait and the Poincare section on the condition of {load: Z70, circular frequency: 

ωf = 4710(rad/sec)} are shown in Fig. 5 and Fig. 6.

When the load amplitude Z' is small, for instance Z' =1.0×10−6, there are only a few peaks 

corresponding to the main bending resonance, the regular bending resonance (with twice the frequency 

of main resonance and resonance of the coupling vibrations of in-plane motion) and the bending motion 

in the power spectrum chart. As the excitation amplitude increases, the number of peaks in the low and 

high-frequency resonance regions increase, and many peaks appear in the neighboring parts of 

resonance frequencies. These phenomena may be brought about by flickering motions of neighboring 

frequencies around the prominent motions of variations of the Arch effect, followed by exciting 

movements. Then, a large number of discrete peaks exhibit chaotic behavior within a broadband-lump 

of spectra, just before shifting to an unstable state.

With the increase of exciting amplitude, the response of phase modes alternates from periodic 

oscillation (with low frequency) to non-periodic motion, and period doubling may occur, accumulating 

periods and sub-critical bifurcation (Moon 1992). Moreover, the Poincare section is changed from a 

warped, single circle into a non-geometric aggregate of discrete points, because the periodic properties 

of dynamic motion gradually disappear, and non-oscillatory behavior become more prominent.

It was found that, going beyond a certain threshold of excitation force, a rapid expansion of non-

periodic motion with large amplitudes occurs, and lastly, phase jumping may induce the outbreak of 

catastrophic phenomena (Thompson and Stewart 1986). 

Fig. 6 Phase portraits and Poincare sections [Loading stage: 70%, ω f = 4710 rad/sec]
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4. Judgment of stochastic motion by correlation dimensions

When the dynamic behavior of an arch is shifting from a quasi-periodic state to stochastic motion with 

increasing exciting forces, the following methods can be used to identify the chaotic and fractal dynamics.

4.1. Evaluation of chaotic dynamics 

4.1.1. The phase plane portrait and the Poincare section

The phase plane portrait is defined as the trajectory of a set of points (w*, *) which represent the 

angular position and velocity at times synchronous with the phase of the exciting force, and when the 

motion is chaotic, the trajectory tends to fill up a portion of the phase space. Also, the Poincare section 

is a synchronous point map that refers to a discrete time sampled sequence of motion data (w*, *), and 

the phase plane portrait corresponds to the accumulation of the shifted Poincare sections at whole phase 

angles (Moon 1987, 1992).

4.1.2. Fourier power spectrum 

One way to identify chaotic vibrations is to inspect the broadband response in a frequency spectrum 

of arch dynamics when the input is a single-frequency harmonic motion. However, in multi-degree-of-

freedom motion systems, the Fourier power spectrum may have a difficult time detecting chaotic 

behaviors, unless one can observe changes in the spectrum as one varies parameters such as driving 

amplitude or frequency (Thompson and Stewart 1986). 

4.2. Fractal dynamics and correlation dimensions

For recognizing chaotic behavior, the most widely used criteria are the Lyapunov exponent and the 

fractal dimension. These two indices are currently construed as follows: 1) Positive Lyapunov exponents

denote chaotic dynamics, and 2) The fractal dimension of the trajectory in phase space denotes the 

existence of a strong attractor only in dissipative systems. Herein, an attractor denotes a set of points in 

a phase plane toward which a time interval approaches after transient states die out. 

The dynamic motion response of an excited arch to some disturbances is apt to be characterized by 

self-similarity, that is a fractal structure, with stretching and folding of the attractor in the directions of 

positive Lyapunov exponents, such as the Cantor set. This characteristic can be expressed using fractal 

dimensions (Moon 1987, Judd 1992). 

4.2.1. Embedding phase-space using single variable measurements

Since an attractor is generally the diagram of a complicated dissipative system with many state-

variables, the observation of all variables tends to be difficult complicating the realization of the 

attractor in an objective phase space. Accordingly, it is more practical to examine the dynamic 

behavior at one specified point of the arch structure. Then, using the time series data of an 

observation point embedded into a phase space, the attractor is reconstructed and its fractal 

dimension is calculated. Moreover, the embedding dimension can be estimated using the saturated 

values of the fractal dimension. 

For example, when the time series data at an observation point are given as x1, x2, x3, ..., xt, ..., these 

data are embedded into Dem-dimensional phase space and the state variables are reconstructed as 

follows;

w·

w·
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,

(7)

where Dem denotes the embedding dimension and τ is the time interval. Then, the fractal dimension 

can be obtained from the reconstructed attractors.

4.2.2. The correlation dimension

In a chaotic dynamic system, the regions of phase-space may seem to be stretched, contracted or 

folded, and remapped onto the original space. This remapping of dissipative systems leaves gaps in the 

phase space, and these motion orbits tend to fill up the phase space with less than an integer of 

subspace. If the space is divided into n(ε)-cubic box with edges of size ε and the existence probability 

of the attractor orbit in i-th box is assumed to be pi, a non-integer dimension of the filled subspace can 

be measured by the generalized fractal dimension Dq which is defined in the following formula. 

(8)

in which Dq of q = 0 and 1 correspond respectively to be Capacity dimension and the Information 

dimension. Also, Dq of q = 2 is called the Correlation dimension, which can be obtained using the 

accumulate distribution function between two observation points as follows; 

(9)

This formula is used herein as a sign of changing state, from quasi-oscillatory motion to chaotic 

motion. It is practically useful to apply the Grassberger-Procaccia method (Moon 1992) to calculate 

the formula (9).

A correlation dimension can be obtained using interrelation integration CD
em along orbital points Xi on 

the reconstructed attractor in the phase space of embedding dimension Dem.

(10)

where H[ξ] is the Heviside step function defined as H[ξ] = 1(ξ ≥ 0) or 0(ξ<0), and ||•|| means the 

Euclid norm. When the following equation is defined, pi = Ci
D
em(ε) is valid. 

(11)
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(12)

Therefore, a correlation dimension is expressed as the following formula.

(13)

When the following relation is valid in a suitable domain of ε, the term d(Dem) is called the 

Correlation exponent.

(14)

Then, the term logCD
em(ε) is proportional to the term logε, based on the relation obtained from the 

logarithm of Eq. (14). According to the dimension Dem of the reconstructed phase space, when Dem

is smaller than the dimension of actual attractors, the term d(Dem) approaches D2 for the reconstructed

phase space covered with attractors. 

pi

2

i 1=

n ε( )

∑ piCi

D
em

ε( )
i 1=

n ε( )

∑ Ci

D
em

ε( )〈 〉 C
D
em

ε( )= = =

D2  
ε 0→
lim

C
D
em

ε( )log

εlog
--------------------------  =

C
D
em

ε( ) ε
d D

em
( )

∝

Fig. 7 The values of correlation integral and distributions of inter-point distances for embedding dimensions 2 to 8

Fig. 8 Estimating correlation exponents for embedding dimensions 2 to 8



98 Nobuyoshi Fukuchi and Takashi Tanaka
4.3. Attractors and correlation exponents of dynamic behaviors

Using the results of dynamic analysis of the circular arch, the relation between the Correlation 

integral logCD
em(ε) and distributions of inter-point distances for the embedding dimensions: Dem=2 to 8 

are obtained using the Grassberger-Procaccia method (Moon 1992) as shown in Fig. 7. A gradient of 

the correlation integral in this figure denotes Correlation exponent, and Fig. 8 shows the relation 

between the estimated correlation exponents and the embedding dimensions. This relationship indicates 

that the correlation exponent is almost converged over Dem=2 similar to other numerical examples. 

Consequently, the dynamic characteristics of attractors can be calculated using Dem=3.

As the embedding dimension increases, the reconstructed attractors (shown in Fig. 9) exhibit very 

similar dynamic aspects, regardless of Dem. Accordingly, the dynamic characteristics of attractors 

can be grasped in a two-dimensional phase plane. Further, in the case of Dem=4, the projection of a 

4-dimensional hyper-cube reflects that of a 3-dimensional space.

Fig. 9 Reconstructed attractors [Z’=1.00×10−6]
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5. A scenario of chaotic behaviors and fractal dynamics

5.1. The change from quasi-periodic oscillation to chaotic motion

When a forced frequency of disturbances nearly coincides with a natural frequency, the process of 

dynamic behaviors toward chaotic motion is as follows;

1) The quasi-periodic oscillation associated with a forced frequency which exhibits a hauling 

phenomenon, occurs because of the difference between the two frequencies.

2) As the excitation amplitude Z' increases, an oscillation with many spectral peaks breaks out, 

because of combined oscillations and flickering motions around the distinguished motions.

3) Then, chaotic behavior appears with broadband-lump of discrete spectral peaks, and the non-

periodic motions shift to an unstable state.

This phenomenon, in which a single periodic motion develops into double periodic motion by Hopf-

bifurcation and finally shifts to chaotic motion, is called the Ruelle-Takens-Newhouse scenario (shown 

conceptually in Fig. 10). This scenario seems to be the same as Benard’s heat conduction (Martin and 

Leber 1984) and the dynamic behavior of a nonlinear vibrator (Buskirk and Fefferis 1985), but it is 

different from the Feigenbaum scenario, in which the chaotic state is caused by period-bifurcations and 

the final state becomes unstable by flip-bifurcation (like the Duffing dynamic system) (Buskirk and 

Jeffries 1985, Libchaber and Maurer 1982).

5.2. The correlation dimensions of the process toward chaotic motion 

While the load amplitude Z' was gradually increased, the correlation dimensions in the case of a 

circular arch subjected to small disturbances which have a frequency coinciding with the natural 

frequency ωR0 = 4710(rad/sec) (as in paragraph 4.4) were calculated. Fig. 11 is respectively the variation

of power spectra and the estimated correlation dimension D2 as the excitation amplitudies increases. 

Considering these results combined with those of Fig. 5 and Fig. 6, the varying aspects of the correlation

dimension can be found as follows:

1) When the excitation amplitude Z' is below 2×10−6, the arch is in a quasi-periodic state of oscillation,

with few spectral peaks corresponding to the bending resonances, and the estimated correlation 

Fig. 10 A concept of Ruelle-Takens-Newhouse route
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dimension is almost constant at about 0.86 and the correlation exponent disperses within about 0.03. 

2) As the excitation amplitude increases, the correlation dimension fluctuates deeply because of 

flickering motions with neighboring frequencies around the distinguished motions according to the 

variation of Form-resistance by excitation movements. But the dynamic motion depends considerably

upon prominent spectral peaks, and the dispersions of the correlation exponent remain nearly 

constant.

3) When Z' is over 3×10−4, a large number of discrete peaks with a broadband-lump of spectra appear, 

and the motion shifts to chaotic oscillation. The estimated correlation dimension fluctuates wildly 

because of the uneven correlation exponent associated with stochastic motions. As the exciting 

amplitude increases, the non-periodic properties also increase, and the correlation dimension finally 

reaches a maturity of disturbance. 

Fig. 11 Variation of power spectra and estimated correlation dimensions D2 as enlarging excitation amplitudes
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Consequently, when disturbances are fully-developed and the fractal aspect converges upon the 

ultimate condition, the dynamic motion is denoted as be chaotic behavior. Hence, the variation of the 

correlation dimension can be generally expressed using a logistic curve like as D2=a/{1+b·exp(−c·Z')}.

6. Conclusions

The dynamic behaviors of a circular arch under hydraulic follower forces with small disturbances 

were investigated by using the time interval of motion, the power spectrum, the phase plane portraits 

and the Poincare section in the resonance region. According to these results, the change of state from 

quasi-oscillatory motion to chaotic motion and the correlation dimension in fractal dynamics of a 

circular arch can be clarified with the following items. 

1) In the case that a forced frequency of disturbances nearly coincides with a natural frequency, the 

process toward chaotic motion is based on the Ruelle-Takens-Newhouse scenario in which a single 

periodic motion develops into double periodic motion by Hopf-bifurcation and finally shifts to 

chaotic motion.

2) As the excitation amplitude increases, a large number of discrete peaks with a broadband-lump of 

spectra appear, and the motion shifts to chaotic oscillation. The correlation dimension fluctuates 

wildly because of the uneven correlation exponent associated with stochastic motions, and the 

correlation dimension finally reaches a maturity of disturbance.
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