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Abstract. Buckling and post-buckling of cold-formed steel members are rather difficult to predict due to
material and geometrical non-linearity. However, numerical techniques have reached a level of maturity such
that many are now successfully undertaking ultimate strength analysis of cold-formed steel members. In
numerical non-linear analysis, both geometrical and material imperfections, have to be estimated and properly
used. They must be codified in terms of shape and magnitude. The presented paper represents a state-of-art
report, including relevant results obtained by the authors and collected from literature, on that problem.
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1. Introduction

Due to the local and distortional instability phenomena, and their coupling with overall buckling

modes, the post-critical behaviour of thin-walled cold-formed steel members is highly non-linear, being

very difficult to predict using analytical methods. Numerical non-linear analysis is successfully used to

simulate the real behaviour of cold-formed steel sections and to evaluate their effective properties. Two

general reports presented by Rasmussen (1996) and Sridharan (2000) during the 2nd and 3rd International

Conferences on Coupled Instabilities in Metal Structures, reviewed numerical simulations and

computational models used for coupled instability problems. Also, Bakker and Peköz (2003) summarised

the basic principles of FEM analysis of thin-walled members. However, the first condition to succeed in
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numerical simulations is not the accurate theoretical formulation nor highly performance solution

techniques, available by commercial software like ANSYS, ABAQUS, NASTRAN and others, but the

knowledge of the initial state of member subjected to analysis. Particularly, in case of cold-formed steel

sections, accurate characterisation of geometrical imperfections and residual stresses is largely

unavailable, and the distribution of the yield strength along the perimeter of the cross-section is non-

uniform due to cold-forming process. A good knowledge of these fundamental quantities is absolutely

necessary for reliable completion of advanced numerical simulation of cold-formed steel members, and

the presented paper attempts to show how it can be managed.

2. Mechanical properties of cold-formed steel members

2.1. Influence of cold-forming

Thin-walled steel sections are fabricated by means of cold-rolling of coils or press-braking of plates

made by carbon steel. However, for these members, frequently used in modern steel constructions, the

initial σ-ε relation of the steel is considerably changed by the cold-straining due to the manufacturing

processes. Fig. 1(a) shows the modification of the σ-ε diagram when a carbon steel specimen is first

strained beyond the yield plateau and then unloaded. For modern steel the strain aging effect is now

very rare, or at least limited. Therefore, only the cold-forming effect has to be considered in the

computation and on this purpose the apparent σ-ε diagram (see Fig. 1(b)) can be used.

Due to the forming process strain-hardening can vary considerably along the cross-section as shown

in Table 1 and Fig. 2.

Karren (1967) and Karren and Winter (1967) have proposed the following equation for the corner

yield strength:

Fig. 1 Effects of cold straining and strain aging on σ-ε characteristics of carbon steel: (a) Global σ-ε diagram;
(b) Apparent σ-ε diagram for a cold-formed member
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(1)

with g = 0.945 - 1.315 · q (2)

h = 0.803 · q (3)

where t is the thickness of the sheet, r is the inside bend radius, k and q are the parameters of the

hardening law which are given by:

k= 2.80 · fu- 1.55 · fyb (4)

(5)

where fu is the virgin ultimate strength and fyb the virgin yield strength of the sheet.

With regard to the full-section properties, the average tensile yield strength may be approximated by

using a weighted average as follows (Karren and Winter 1967):

fyc
k g⋅

r t⁄( )
h

---------------=

q 0.225
fu

fyb
----- 0.120–⋅=

Table 1 Influence of manufacturing process on the basic strengths of hot and cold-formed profiles (Rondal 2005)

Forming process Cold rolling Press braking

Yield strength (fy)
Corner high high

Flat faces moderate --

Ultimate strength (fu)
Corner high high

Flat faces moderate --

Fig. 2 Influence of manufacturing process on yield strength (Batista 1986)



518 Dan Dubina, Viorel Ungureanu and Jacques Rondal

fya=Ac · fyc+ (1 +Ac) · fyb (6)

where Ac is the ratio of corner area to total cross-sectional area.

Eurocode 3-Part 1.3 gives the following formula to evaluate the average yield strength, fya, of the full

section. This formula is, in fact, a modification of Eq. (6) where a zone closed to the corner is

considered as fully plastified:

fya = fyb+ (C · n · t 2/Ag) · ( fu - fyb) (7)

where Ag is the gross cross sectional area and n is the number of 90° bends in the section, with an

internal radius r < 5t. In this formula, C=7 for cold-rolling and C=5 for other methods of forming.

fya≤ 0.5 · ( fyb+ fu) (8)

or

fya≤ 1.25 · fyb (9)

The average yield strength, fya, can be used in numerical analysis when a bilinear stress-strain model

approximates the material behaviour. However, if test results are available, the input parameters for

material model are needed to describe the stress-strain behaviour, directly obtained from tensile coupon

tests from different portions of the member cross-section.

2.2. Material modelling

Material modelling represents one of the most important aspects of the FE simulation. If tests results

are not available, an idealisation of the material model, that is elastic-plastic with strain hardening, can

be conveniently approximated by Ramberg-Osgood or Powell equations. Using ANSYS, the ideally

elastic-plastic material model can be implemented by means of bilinear isotropic plastic model (BISO),

and Ramberg-Osgood model by means of multi-linear model (MISO).

In Table 2 and Fig. 3 are shown the numerical results obtained with ANSYS large-deformation

elastic-plastic analysis using the two material models (Dubina et al. 1997). One can see that both

characteristic values and the shape of load-deflection curves do not differ significantly in the models.

An important role plays the corner properties. Due to the manufacturing process the material exhibits

significant strain hardening in corner regions of the cold-formed section. They are characterised by an

yield strength much higher than in the flat zone, and simultaneously by a reduced ductility. In case of

standard carbon steel, Eq. (1) can be used for corner’s F.E. strips. For stainless steel, Gardner and

Nethercot (2004) proposed a simple model which can be applied to all types of corners to predict σ0.2,c

by knowing the ultimate strength of virgin material, σu,v, i.e., σ0.2,c=0.85 ·σu,v.

Table 2 Limit loads in kN

Specimen Tests
ANSYS with bilinear material model ANSYS with R-O model

measured imperfections equivalent imperfections measured imperfections

L36P0280- 83.5 - 85.87 81.41

L36P0815+ 67.9 70.5 72.08 69.8

L36P1315- 41.1 41.42 38.56 40.75
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Also, Put, Pi and Trahair (1998) have proposed different material models for flat zones and the

corners in the case of thin-wall cold-formed sections.

However, as Szabo (2004) showed in case of sections formed by press braking, which usually have

small bent radius, the role of corner properties is insignificant. Fig. 4 displays the material curves used

by Szabo in the analysis, on which he based his previous remark : material 1 and material 2 represent

the alternative average σ-ε curves for the flat portions of the cross-section, while material 3 represents

the average σ-ε curve used for corners.

Fig. 3 Load versus mid-length deflection about minor axis and deformed shapes at the limit load
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3. Geometrical imperfections

3.1. Shape of geometrical imperfections

When a geometrical non-linear analysis is performed, some kind of initial disturbances (e.g.

imperfection) are necessary when the strength of the member is studied (Dubina 2000). In case of cold-

formed steel sections, two kinds of imperfections are characteristic, i.e.,:

- geometrical imperfections, sectional and along the member;

- residual stress and change of yield strength due to cold forming effect.

When initial imperfections are used to invoke geometric non-linearity, the shape of imperfections can

be determined with an eigenbuckling analysis and must be affine with the relevant local, sectional or

overall buckling modes of the cross-section. Consequently, until now the geometrical imperfections are

introduced in numerical models using equivalent sine shapes with half-wavelength corresponding to

relevant instability modes. Rasmussen and Hancock (1988) and Schafer and Peköz (1998) proposed

numerical models to generate automatically geometrical imperfection modes. Schafer et al. (1998) used

the probabilistic analysis in order to evaluate the frequency and magnitude of imperfections.

Maximum measured imperfections can be conservatively used as amplitude in sine shape to predict

by analysis lower bound strength (Rasmussen and Hancock 1988). While it is true that larger

imperfections do not always mean lower strength, if the eigenmode shape used in the analysis does not

characterise the most unfavourable imperfect shape of the member, generally the strength decreases as

the magnitude of the imperfection increases. However, different shapes of local/sectional imperfections

have different effect on the buckling strength of the member and, not always, the sine shape of

geometrical imperfections represents the most relevant mode to be considered in the analysis. Since

maximum imperfections are not periodic along the length, using the maximum amplitude of

imperfection as for the buckled shape is rather conservative. Despite these drawbacks, the maximum

imperfection approach is simple to apply and provides a reasonable criterion for a lower bound strength

analysis. At this point, it is also useful to underline a conclusion by Bernard et al. (1999), who

demonstrated statistically that a significant influence of geometrical imperfections exists in thin-walled

members at short and medium wave-lengths, leading to reduction of the load carrying capacity. This

means the sectional buckling modes, singly or coupled with overall ones, are mainly affected.

Fig. 4 Material models for numerical analysis
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3.2. Codification of geometrical imperfections

Geometric imperfections refer to the deviation of member from the perfect or nominal geometry.

Imperfections of cold-formed steel members include bowing, warping, and twisting as well as local

deviations. Local deviations are characterised by dents and regular undulation on the plate. Collected

data on geometric sectional imperfections are sorted by Schafer and Peköz (1998) in two categories

(see Fig. 5): type 1, maximum local imperfection in a stiffened element (e.g. local buckling type

imperfection), and type 2, maximum deviation from straightness for a lip stiffened or unstiffened flange

(e.g. distortional type imperfection) .

Based on statistical analysis of actual measurements, Schafer and Peköz (1998) proposed the

following simple rules to apply when width/thickness (b/t) less than 200 for type 1 imperfections, and

(b/t) less than 100 for type 2 imperfections, respectively.Thickness should be less than 3 mm. For type 1

imperfections, a simple linear regression based on the plate width yields to the approximate expression

(10)

where b is width or depth of the web.

An alternative rule based on an exponential curve fits to the thickness (t)

(11)

For type 2 imperfections the maximum deviation from straight is approximately equal to the plate

thickness:

(12)

In what concern the overall sinusoidal imperfections (bar deflection), with the maximum amplitude

of 1/1500 times the member length, (L), which corresponds to statistical mean of imperfections of

carbon steel columns, as suggested by Bjorhovde (1972), can be used, or more conservatively, L/1000,

as proposed by ECCS Recommendation (1978).

d
1

0.006 b⋅≈

d1 6 t e
2t–

d1 and t in mm( )⋅ ⋅≈

d2 t≈

Fig. 5 Sectional imperfections
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In case of lateral-torsional buckling of thin-walled beams, both initial deflection and initial twisting

may be significant. On this purpose, the Australian Standard AS 4100 proposes recommendations for

the initial deflection, ( fo), and initial twist, (φo), as follows:

(13)

(14)

where:

  Ncr = column elastic critical buckling (Euler) load about minor axis;

  Mcr = elastic critical moment for lateral-torsional buckling;

  = flexural-torsional slenderness;

  L = length of the member.

3.3. Influence of the shape of sectional geometrical imperfections on the value of α-

imperfection factor in European buckling curves

Based on numerical simulations Dubina and Ungureanu (2002) have systematically studied the

influence of size and shape of sectional geometrical imperfections on the ultimate buckling strength of

plain and lipped channel sections, both in compression and bending.

In the FE model used by authors, the maximum aplitudes proposed by Schafer and Pekoz (1998) for

sectional imperfections of types 1 and 2 have been used. Different shapes of these imperfections, over

the section and along the member, were considered into the elastic-plastic FEM simulations.

Tables 3 and 4 show the shape of sectional imperfections used for compression and bending members

and the corresponding sectional ultimate buckling strengths.

With the sectional imperfections in Tables 3 and 4, the erosion of theoretical buckling strength, due to both

the imperfections and interaction of sectional (e.g. either local or distortional) buckling mode with the overall

one (either flexural or flexural-torsional), has been evaluated using the ECBL approach (Dubina 2001).

Assuming the two simple theoretical instability modes, which are coupling, the Euler bar theoretical

instability mode, NE=1/λ2, and the theoretical local-sectional instability one, NL,th, the erosion coefficient

can be computed for four different imperfection cases (see Fig. 5), i.e.,

ec,th =  theoretical erosion due to coupling effect only;

eL =  actual erosion due to local imperfections only;

ec =  actual erosion due to coupling effect and global imperfection;

e =  actual total erosion due to both coupling and imperfections.

The following notations were used in Fig. 6:

N = N/Npl, where N is the ultimate strength of the member; Npl represents its corresponding full

plastic strength;

NL,th = NL,th/Npl, with NL,th, the ultimate theoretical short column strength;

NL = NL/Npl , NL being the ultimate strength of imperfect stub column;

, the reduced slenderness of the member.

1000 fo L⁄⋅ 1000 φo Mcr NcrL⁄( )⋅ ⋅ 1 for λLT 0.6≥–= =

1000 fo L⁄⋅ 1000 φo Mcr NcrL⁄( )⋅ ⋅ 0.001 for λLT 0.6<–= =

λLT

λ NL Ncr⁄=
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Maximum erosion of theoretical interactive buckling strength, e, is calculated in regard with the

theoretical interaction point, M( ), and is defined as:

(15)

The total erosion can be associated with the α imperfection factor used in European buckling curves

for members in compression, by means of ECBL formula:

(16)

In case of members in bending the αLT formula given by ECBL approach is:

(17)

λint 1 NL th,
⁄=

e NL th,
N– λ 1 NL⁄=( )=

α
e
2

1 e–
-----------=

NL

1 0.2 NL–
---------------------------⋅

αLT

eLT

2

1 eLT–
----------------=

ML

1 0.4 ML–

----------------------------⋅

Table 3 Shape of sectional (local or distortional) imperfections for compression members

Case 
No.

Plain Channel
(U96x36x1.5)

Nu,L 
(kN)

Lipped Channel
(C96x36x12x1.5)

Nu,L 
(kN)

L1
- local buckling PL1 

(symmetric sine shape)
44.97

- local buckling LL1 
(symmetric sine shape)

91.34

L2
- local buckling PL2 

(asymmetric sine shape)
46.15

- local buckling LL2 
(asymmetric sine shape)

91.81

L0
- local buckling PL3
(stub column without 

imperfections)
74.70

- local buckling LL3
(stub column without 

imperfections)
91.91

D1
- distortional buckling PD1 
(the imperfection is constant 

on the whole length)
66.73

- distortional buckling LD1 
(the imperfection is constant 

on the whole length)
80.33

D2
- distortional buckling PD2 
(the imperfection is constant 

on whole length)
66.43

- distortional buckling LD2 
(the imperfection is constant 

on whole length)
94.81

D3
- distortional buckling PD3 

(symmetric sine shape)
41.04

- distortional buckling LD3 
(symmetric sine shape)

76.63

D4
- distortional buckling PD4 

(asymmetric sine shape)
39.29

- distortional buckling LD4 
(asymmetric sine shape)

61.70

D5
- distortional buckling PD5 
(the imperfection is constant 

on the whole length)
73.02

- distortional buckling LD5 
(the imperfection is constant 

on the whole length)
74.52

D0
- distortional buckling PD6 

(stub column without imper-
fections)

74.38
- distortional buckling LD6 

(stub column without 
imperfections)

95.12
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The N and M values can be computed for perfect and imperfect shapes of both cross-section and

member. Therefore, the erosion can be evaluated for different imperfection cases. If no imperfections,

the evidence of interactive buckling effect only will be observed.

Further, the values of α (αLT) imperfection sensitivity factor used in European buckling curves have

been evaluated for all these imperfection shapes.

Table 4 Shape of sectional (local or distortional) imperfections for bending members

Case 
No.

Plain Channel 
(U96×36×1.5)

Mu,L 
(kNm)

Lipped Channel 
(C96×36×12×1.5)

Mu,L 
(kNm)

D0
- distortional buckling PD1 

(short beam without 
imperfections)

2.396
- distortional buckling LD6 

(short beam without 
imperfections)

4.518

D1
- distortional buckling PD2 
(the imperfection is constant 

on the whole length)
2.332

- distortional buckling LD1 
(the imperfection is constant 

on the whole length)
4.484

D2
- distortional buckling PD3 
(the imperfection is constant 

on whole length)
2.323

- distortional buckling LD2 
(the imperfection is constant 

on whole length)
4.463

D3
- distortional buckling PD4 
(the imperfection is constant 

on the whole length)
2.355

- distortional buckling LD5 
(the imperfection is constant 

on the whole length)
4.513

D4
- distortional buckling PD5 
(the imperfection is constant 

on the whole length)
2.304

- distortional buckling LD5 
(the imperfection is constant 

on the whole length)
4.420

D5
- distortional buckling PD6 

(symmetric sine shape)
2.386

- distortional buckling LD3 
(symmetric sine shape)

4.493

D6
- distortional buckling PD7 

(asymmetric sine shape)
2.383

- distortional buckling LD4 
(asymmetric sine shape)

4.388

Fig. 6 The interactive buckling model based on the ECBL theory
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For the bar buckling modes the flexural imperfection of L/1000 and lateral-torsional imperfections

given by Eq. (13) and Eq. (14) have been used.

The results of this analysis are summarised in Tables 5 and 6. In these tables NL,th and ML,th are the

dimensionless (e.g. normalized with full sectional plastic strength) sectional strengths of members in

compression and bending respectively; Nu and Mu are the dimensionless ultimate buckling strengths of

Table 5 “α” imperfection sensitivity factor for members in compression

Plain channel 96×36×1.5

Imperfection mode NL,th Nu α Buckling curve

PL1 0.551 0.101 0.322 b

PL2 0.551 0.109 0.304 b

PD1 0.549 0.207 0.155 a

PD2 0.549 0.204 0.158 a

PD3 0.549 0.083 0.354 c

PD4 0.549 0.078 0.365 c

PD5 0.549 0.248 0.113 ao

Lipped channel 96×36×12×1.5

Imperfection mode NL,th Nu α Buckling curve

LL1 0.633 0.347 0.109 ao
LL2 0.633 0.350 0.105 ao
LD1 0.655 0.281 0.215 b

LD2 0.655 0.371 0.109 ao
LD3 0.655 0.163 0.461 c

LD4 0.655 0.251 0.265 b

LD5 0.655 0.263 0.244 b

Table 6 “αLT” imperfection sensitivity factor for members in bending

Plain channel 96x36x1.5

Imperfection mode ML,th Mu αLT Buckling curve

PD1 0.518 0.207 0.140 a

PD2 0.518 0.214 0.132 a

PD3 0.518 0.213 0.134 a

PD4 0.518 0.208 0.137 a

PD5 0.518 0.211 0.137 a

PD6 0.518 0.206 0.142 a

Lipped channel 96x36x12x1.5

Imperfection mode ML,th Mu αLT Buckling curve

LD1 0.886 0.532 0.292 b

LD2 0.886 0.539 0.277 b

LD3 0.886 0.545 0.267 b

LD4 0.886 0.522 0.310 b

LD5 0.886 0.490 0.391 c

LD6 0.886 0.476 0.422 c
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slender members in compression and bending, respectively.

The values of α factor prove the higher sensitivity of distortional-overall interactive buckling to

sectional imperfections. This fact can be explained by the lower post-critical strength reserve of

distortional mode if compared with the local one. 

Recently, based on a refined non-linear simulation with a GBT (e.g. General Beam Theory) model, a

similar conclusion was drawn by Silvestre and Camotim (2004). The authors rigorously demonstrate

the pure distortional imperfection shapes are the most detrimental ones, since they correspond to the

lowest column strength. They also shown in case of members in bending the influence of local-

sectional imperfection is low, while the initial unfavourable twist, combined with initial deflection, can

significantly affect the ultimate strength.

4. Residual stresses

Residual stresses in cold-formed steel sections are due to cold-forming manufacturing process as well

as to coiling and uncoiling of steel strips.

4.1. Membrane and flexural residual stresses

Adequate computational modelling of residual stresses is troublesome for the analysis. Inclusion of

residual stresses (at the integration points of the model for instance) may be complicated. Selecting an

appropriate magnitude is made difficult by a lack of data. As a result, residual stresses are often

excluded altogether, or the stress-strain behaviour of the material is modified to approximate the effect

of residual stresses.

In hot-rolled steel members residual stresses do not vary markedly through the thickness, which means

the membrane residual stresses are dominant, while in cold-formed steel members residual stresses are

dominant by a “flexural”, or through thickness variation. This variation of residual stresses may lead to

early yielding on the faces of cold-formed steel plates and can influence their local buckling strength.

Residual stresses can be idealised as a summation of two types: flexural (FRSs) and membrane

(MRSs) (see Fig. 7).

Experimental evidence shows more complex actual distributions of residual stresses. Fig. 8 presents

the distribution of measured residual stress for a cold-formed steel lipped channel section (Rondal et al.

1994), while Fig. 9 provides evidence for residual flower for plain and lipped channel sections

(Ungureanu 2003, Szabo 2004, Bivolaru 1993).

Fig. 7 Idealisation of residual stresses (Schafer and Peköz 1998)
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4.2. Codification of residual stresses

Schafer and Peköz (1998) collected and processed the statistically measured values for both

membrane and flexural residual stresses. The results of their analysis are shown in Tables 7 and 8,

expressed in percentage of yield strength of basic material.

However, some commentaries about the results of Tables 7 and 8 are necessary (Schafer and Peköz

1998), i.e.,

Membrane residual stresses. MRSs are more prevalent in roll-formed members than press-braked.

Membrane residual stresses cause a direct lose in compressive strength. Significant MRSs exist

primarily in corner regions. Opposing this effect, the yield stress (fy) is elevated in corner regions due to

significant cold work of forming. If large MRSs are modelled in the corners or other heavily worked

Fig. 9 Residual flower for plain channel and lipped channel sections

Fig. 8 Measurement of residual stresses in a cold rolled C profile:
(a) Residual “flower”; (b) Slicing method; (c) Curvature method (Rondal et al. 1994)
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zones, then increased yield stress in these regions should be modelled as well. Conversely, if MRSs are

ignored, the elevation of the yield stress should not be included. More study is needed to show how

much these two effects counteract one another.

Flexural residual stresses. FRSs are much more significant in cold-formed steel sections than MRSs

ones. For member buckling (overall modes) the influence of FRSs is of lower importance, if compared

with MRSs. However, local buckling can be significantly influenced by FRSs. Large magnitude

flexural residual stresses in cold-formed sections are regularly observed - residual stresses equal to

50%fy are not uncommon. Measured FRSs also show a large degree of variation.

For the purpose of numerical analysis, Schafer and Peköz (1998) proposed the following approximate

and conservative average distribution of flexural residual stresses (see Fig. 10).

Ungureanu (2003) used the curvature method (Rondal 1992) to evaluate the residual stresses for plain

channels and “omega” sections obtained by press braking and suggested the following codification for

flexural residual stresses (see Fig. 11). Hat section is in fact similar to a lipped channel.

Table 7 Membrane residual stresses as (%fy)

Element
Roll-formed Press-braked

Mean Variance Mean Variance

Corners 6,8 1,1 5,2 0,4

Edge stiffened 3,9 1,0 0,9 1,0

Lip 7,9 1,5 0,2 0,3

Stiffened -1,7 1,2 0,9 0,1

Table 8. Flexural residual stresses as (%fy)

Element
Roll-formed Press-braked

Mean Variance Mean Variance

Corners 26,8 5,0 32,7 3,3

Edge stiffened 23,5 1,0 8,0 2,5

Lip 6,7 6,4 56,0* 11,6

Stiffened 38,9 6,2 16,9 4,5

*Some lips are flame-cut, thus distorting this value.

Fig. 10 Average flexural residual stress as (% fy)
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To compare this codification, the one suggested by Abdel-Rahman and Sivakumaran (1997), which is

shown in Fig. 12, can be considered, too.

Therefore, flexural residual stresses can influence the local buckling mode which could start earlier.

The overall modes can be influenced by the membrane stresses (these is the case of hot rolled sections),

but they are small in case of cold-formed sections.

The increase of yield strength at the corners is around (60-80)% and is of contrary sign compared to

residual stresses. This means, when ultimate strength of the member is evaluated, considering the actual

strength of the corners and the effective area of the walls, the effect of increased yield strength could be

really stronger than residual stresses.

Particular cases are SHS and RHS sections, obtained by cold-forming, longitudinally welded.

Gardner and Nethercot (2001) proposed a residual stress distribution to be used for numerical

modelling of cold-formed stainless steel with such a type of section. According to their proposal, only

the membrane stress introduced through welding needs to be explicitly defined in a finite element

model. Gardner and Nethercot (2004) have shown that the effect of the residual stresses causes a small

reduction in stiffness of the analysed stub and long columns but heaving little influence on their overall

behaviour or ultimate load carrying capacities.

Fig. 11 Average flexural residual stress as (% fy) for plain channels and “omega” sections

Fig. 12 Average flexural residual stress for a lipped channel as (% fy) proposed by Abdel-Rahman and
Sivakumaran (1997)
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Rasmussen and Hanckock (1993) observed that the tension and compression coupons cut from

finished tubes curved longitudinally as a result of the through-thickness bending residual stresses.

However, straightening of the coupons as part of the testing procedure approximately reintroduces the

flexural residual stresses. Therefore, provided that the material properties of the cross-section are established

from coupons cut from within the section, the effects of flexural residual stresses will be inherently present,

and do not have to be explicitly defined in the finite element model (Gardner and Nethercot 2001).

The authors of this paper observed a similar situation in the case of thin-walled cold-formed

members. Based on experimental research (Ungureanu 2003), and using the codification proposal of

residual stresses, also sustained by Yiu and Peköz (2001), the behaviour of thin-walled cold-formed

members was numerically simulated with and without the presence of residual stresses. The results

obtained for plain channels and hat sections obtained by press braking are presented in Table 9.

where:

NFEM1 – ultimate load obtained with no initial imperfections, no flexural residual stresses and the

yield strength of the material cut from flat zones, fy = 228.61 N/mm2;

NFEM2 – ultimate load obtained with initial imperfections, no flexural residual stresses and the yield

strength cut from flat zones, fy = 228.61 N/mm2;

NFEM3 – ultimate load obtained with initial imperfections, flexural residual stresses (codification from

Fig. 11) and the yield strength cut from flat zones, fy  = 228.61 N/mm2;

NFEM4 – ultimate load obtained with initial imperfections, no flexural residual stresses and the average

yield (Eq. 7), fya = 240.98 N/mm2;

NFEM5 – ultimate load obtained with initial imperfections, flexural residual stresses (codification from

Fig. 11) and the average yield strength (Eq. 7), fya= 240.98 N/mm2.

NFEM6 – ultimate load obtained with initial imperfections, flexural residual stresses (codification from

Fig. 11), increased two times, and the average yield strength (Eq. 7), fya = 240.98 N/mm2.

It can be observed there is no significant influence of flexural residual stresses as Gardner and

Nethercot (2004) have shown.

5. Conclusions

1. If test results are available, the input parameters for material model are needed to describe the

stress-strain behaviour directly obtained from tensile coupon tests from different portions of the

member cross-section, including the corner properties. If test results are not available, an idealisation of

the material model, which is elastic-plastic with strain hardening, can be conveniently approximated by

Table 9 Influence of flexural residual stresses on the ultimate load

Specimen h (mm) b (mm) c (mm) t (mm) L (mm)

UC8S1/1 151.1 99.5 - 1.98 360

HC9S1/1 147.6 79.90 24.60 1.98 360

Specimen
Nexp

(kN)
NFEM1

(kN)
NFEM2

(kN)
NFEM3

(kN)
NFEM4

(kN)
NFEM5

(kN)
NFEM6

(kN)

UC8S1/1 77.95 92.94 76.95 76.77 80.20 79.95 79.87

HC9S1/1 119.6 130.5 116.0 116.3 122.3 121.7 121.67
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Ramberg-Osgood or Powell equations. Using ANSYS, the ideally elastic-plastic material model can be

implemented by means of bilinear isotropic plastic model (BISO), and Ramberg-Osgood model by

means of multi-linear model (MISO). One can see that both characteristic values and shape of load-

deflection curves do not differ significantly for the two models. In what concerns the influence of the

increase of yield strength at the corners of a given section on its ultimate strength, a crucial point is the

ratio between the corner areas and the total area of that cross-section. A larger bent radius generates a

larger area of the corners. Some authors (Karren and Winter 1967, Abdel-Rahman and Sivakumaran

1997) recommend to include in the “corner area” some adjacent parts from the flat walls. More increase

the “corner area” larger is the increase of ultimate strength of the section (Ashraf et al. 2004). However,

for thin-walled cold-formed steel members obtained by press-braking, with small bent radius, the role

of corner properties is negligible (Szabo 2004). For the case when sections with small corner radii are

modelled, the corner properties do not need to be introduced explicitly into the model, while for bigger

corner radii, the shape and afferent properties must be introduced in numerical model. Also, the analyst

has to take into account the fabrication technology of modelled member (cold rolling or press braking

process).

2. In a two-mode interacting buckling (e.g. local-overall interaction) different shapes of local-

sectional imperfections have different effects on the ultimate strength of the member. The higher

sensitivity of the distortional-overall interactive buckling to sectional imperfections is generally

confirmed. This can be explained by the lower post-critical strength reserve of the distortional mode,

compared with the local one. Therefore, this is understandable, because the local buckling strength

formula is based on the plate buckling model, characterised by a stable bifurcation and a higher post-

critical reserve compared with the bar bifurcation, which is used in the calculation model of distortion.

Thus, the appropriate identification and selection of imperfection shape and size associated to the

relevant instability mode are crucial for analysis.

3. In thin-walled cold-formed steel members the residual stresses induced by cold-forming are

predominantly of flexural type, while the membrane stresses are negligible. Inclusion of residual

stresses in numerical analysis is generally complicate because selection of their appropriate magnitude

is difficult by the lack of systematic data. However, numerical studies performed by the authors of this

paper and other researchers showed that there is no significant influence of flexural residual stresses on

the ultimate strength of the sections. Moreover, Rasmussen and Hanckock (1993) observed that the

tension and compression coupons cut from finished tubes curved longitudinally as a result of the

through-thickness bending residual stresses. However, straightening of the coupons as part of the

testing procedure approximately reintroduces the flexural residual stresses. Therefore, when the

material properties of the cross-section are established from coupons cut from within the section, the

effect of flexural residual stresses is inherently present, and no need to be explicitly defined in the finite

element model (Gardner and Nethercot 2001).

4. Therefore, for thin-walled cold-formed steel sections, the effect of geometrical imperfections is

significantly greater than residual stresses and the change of yield strength . Consequently, special care

has to be paid to geometrical imperfections and, among them, accounting for the actual performance of

fabrication technology, the sectional imperfections are the most important.

5. However, if a good practice guide is intended to be produced for numerical simulations, as a basis

of further design codes in this matter, supplementary research is necessary in order to identify and

codify the critical imperfection modes, accounting for forming process, material properties, technology

and the shape of cross-sections.
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