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Inelastic lateral-distortional buckling of continuously 
restrained continuous beams
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Abstract. The inelastic buckling behaviour of continuously restrained two and three-span continuous
beams subjected to concentrated loads and uniformly distributed loads are studied in this paper. The restraint
type considered in this paper is fully restrained against translation and elastic twist applied at the top flange.
These types of restraints are most likely experienced in industrial structures, for example steel-concrete
composite beams and half through girders. The buckling analysis of continuous beam consists of two parts,
firstly the moment and shear distribution along the member are determined by employing force method and
the information is then used for an out-of-plane buckling analysis. The finite element method is incorporated
with so-called simplified and the polynomial pattern of residual stress. Owing to the inelastic response of the
steel, both the in-plane and out-of-plane analysis, which is treated as being uncoupled, extend into the
nonlinear range. This paper presents the results of inelastic lateral-torsional and lateral-distortional buckling
load and finally conclusions are drawn regarding the web distortion.

Key words: buckling; continuous restraint; lateral-distortion; plasticity; finite elements; load-height;
monosymmetry.

1. Introduction

The majority of research on buckling behaviour of steel structures have been limited to an
unrestrained beam, which is restrained at the supports but unrestrained along the length of the member.
Most industrial steel structures experience some sort of restraint, for example in continuous composite
concrete-steel beams, and roof sheeting attached to industrial portal frames. These restraints are
essentially continuous and furthermore the bucking load of the member may increase by the presence
of these continuous restraints.

Limited research work has been conducted on both elastic and inelastic lateral-torsional buckling of
restrained two and three-span continuous beams. Hancock and Trahair (1979) considered the elastic
lateral-torsional buckling of continuously restrained two and three-span beams subjected to a uniformly
distributed load using a line element with 8 buckling degrees of freedom. Bradford and Trahair (1986)
studied the inelastic lateral-torsional buckling of restrained continuous beam-columns using a finite
element method and verified it with an experimental study conducted by Cuk et al. (1986). The main
assumption of lateral-torsional buckling is that the flange displaces and twists as a rigid body without
web distortion, but this assumption is questionable when the beam is restrained, where the cross-section
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necessarily experiences web distortion if it is buckle out-of-plane. Essa and Kennedy (1994) examined
a collapsed roof structure in Canada. The roof structure was a concrete-steel composite section where
the metal deck, which acted compositely with the concrete slab, was supported by cantilever-suspended
span steel I-beams and open web steel trusses. The metal deck acted as restraint to prevent lateral
displacement and twist of the beam. The region of the roof structure that collapsed was subjected to
negative bending. Essa and Kennedy (1994) analysed the collapsed roof structure incorporating
residual stress and lateral and torsional restraint, and they also included the effects of the load height.
Essa and Kennedy (1994) have shown that the reductions of the lateral-torsional buckling load due to
web distortion for restrained I-section members are significant, and furthermore neglecting the effect of
web distortion of beam subjected to a continuous restraint may cause a premature ultimate failure of the
structure. However, the inelastic lateral-distortional buckling of I-sections has not received as much
attention due to the complexity of the analysis.

Lee and Bradford (2002, 2003) studied the inelastic lateral-distortional buckling of continuously
restrained simply supported beams subjected to a uniform bending and a cantilevered beam
respectively. Johnson and Bradford (1983) and Bradford and Johnson (1987) considered composite
cross-sections, while Bradford and Gao (1992) considered the elastic lateral-distortional buckling of
continuous composite beams. Dekker et al. (1995) considered the factors influencing the strength of
composite beams in negative bending and a theoretical model was developed by introducing an
equivalent spring system to account for the effect of the web distortion. A finding of Dekker et al.
(1995) was that the flexural resistance of the steel beam is controlled by lateral-distortional buckling for
the case of inelastic buckling. Kemp et al. (1995) considered the inelastic buckling behaviour of
continuous steel and composite beams by considering two-span continuous beams subjected to
uniformly distributed loads.

This study considers inelastic lateral-torsional and lateral-distortional buckling of two and three-span
beams under a transverse load applied at the top flange, which is fully restrained against translation and
elastic twist restraint applied at the top flange. The line-element deployed in this study is a 16-degree of
freedom per element. Kitipornchai and Trahair (1975) found from their experimental study that the
maximum compressive residual stress at the flange tip is relatively small but the maximum tensile
residual stresses in the flange-web junction are high for slender I-section beam, while the compact
I-section has shown that the maximum compressive residual stress at the flange is higher than the
maximum tensile residual stresses in the flange-web junction. Therefore the residual stresses adopted in
this study are the polynomial and the well-known simplified pattern. The distribution of polynomial
residual stress is quartic in the flange and parabolic distribution in the web, which satisfies the compact
and slender I-sections. The numerical study of inelastic lateral-torsional and inelastic lateral-distortional
buckling of continuous beam is undertaken by considering two I-sections to illustrate the lateral-
distortion buckling behaviour of the I-sections. Furthermore, these inelastic buckling results are
compared with the ‘design by buckling analysis’ of AS4100 (1998).

2. Finite element method

2.1. General

Fig. 1(a) shows a beam element with reference axis system located at mid height of the web. Figs. 1(b)
and 1(c) show the applied moment M1,  M2 and shear force V1, V2 of the element. The beam element is
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also subjected to a concentrated load P1 at node 1 positioned P and a uniformly distributed load w
positioned w above the reference axis. The buckling analysis of restrained continuous beams consists
of two phases: firstly, an in-plane bending analysis to establish the applied curvature and elastic and
yielded, and strain-hardened region of the cross-section. The determination of the applied bending
moment along the beam is not easy because of indeterminacy due to continuity of beam. An in-plane
bending analysis is performed using the well-known force method (Hall and Kabaila 1986) to
determine the reaction at the internal supports, and simple statics is then used to determine the moment
and shear force along the beam. The second phase of analysis is an out-of-plane buckling using the line-
element. The line element adopted in this study is 16 degrees of freedom. A detailed method of the out-
of-plane buckling analysis is given in Lee and Bradford (2003) and Lee (2004). Figs. 2(a) and 2(b)

a
a

Fig. 1 Beam element and loading
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show the polynomial pattern of residual stress for slender I-section and for compact I-section
respectively, while the simplified pattern of residual is shown in Fig. 2(c). The distribution of residual
stress in the flange and the web with maximum residual stresses in the flange and the flange-web
junction is given in Lee (2004).

2.2. In-plane analysis

This study considers the two and three-span continuous beams subjected to a central concentrated
load at mid span of all spans and a uniformly distributed load. The method adopted in this study to

Fig. 2 Residual stress models
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determine the internal reactions is well-known force method (Hall and Kabaila 1986). The determination
of the internal support reactions is given as:

For a two-span continuous beams

(1)

For a three span continuous beams

(2)

where the internal displacements are denoted as u1, u2 at the supports, and x1, x2 are redundant actions.
The determination of internal reaction for a two-span continuous beams subjected to a central

concentrated load is shown in Fig. 3(a). The moment due to the applied load on the primary structure
and the moments due to unit values of the redundant actions is represented as Mo and m1 respectively as
shows in Figs. 3(b) and 3(c). The integral Eqs. (1) and (2) are to determine by two-point Gaussian
quadrature. The distribution of the moment and shear force along the beam can be determined from
simple statics. 

For a two-span continuous beams subjected to a central concentrated load:

(3)

and for a three-span continuous beams subjected to a concentrated load:
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Fig. 3 (a) Two-span continuous beam subjected to a concentrated load, (b) moment diagram for Mo, (c) moment
diagram for m1
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(4)

while for a two-span continuous beams subjected to a uniformly distributed load:

(5)

and for a three-span continuous beams subjected to a uniformly distributed load:

(6)

where the Macaulay bracket  term is taken as zero when the quantity inside the Macaulay bracket is
not positive.

The determination of the major axis flexural rigidity EIx in inelastic buckling analysis of continuous
beams is more complicated than those of elastic analysis. The flexural rigidities EIx along the beam are
depended on the applied load and are not constant along the member due to the variation of the degree
of yielding along the beam. The flexural rigidities about the major axis is determined using secant
modulus theory as 

(7)

where ρ is applied curvature.
Due to the initially unknown quantity of flexural rigidity EIx, an iterative method is employed to

perform an in-plane analysis. A trilinear idealisation of the stress-strain curve is assumed in this study
as shows in Fig. 4. This study assumes that the shear does not influence the yielding of the member. The
curvature and the distribution of the elastic and inelastic regions of the cross-section are determined
iteratively. Firstly, discretised the beam into number of elements and assumed the value of applied load,
and flexural rigidity EIx (elastic value of flexural rigidity is taken initially) at each node. The internal
support reactions can be calculated using the force method (Eq. 1 for two-span continuous beams and
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Fig. 4 Trilinear stress-strain idealization



Inelastic lateral-distortional buckling of continuously restrained continuous beams 311

Eq. 2 for three-span continuous beams) and the distribution of the moment and shear force along the
beam can be determined using simple statics as shows in Eqs. (3) to (6). The elastic and inelastic
regions of the cross-section and curvature can be determined using the non-linear moment-curvature
relationship (Lee and Bradford 2002, 2003) with the predetermined moment along the beam. The
flexural rigidity EIx can then be calculated again using Eq. (7) with the known value of curvature and
moment distribution along the beam. If the difference between the assumed value of EIx and calculated
value of EIx is more than 0.002% of the elastic major axis of flexural rigidity, a new value of EIx is
chosen and the process repeated until a tolerance within 0.002% of the elastic major axis of flexural
rigidity is obtained.

2.3. Out-of-plane analysis

An out-of-plane buckling deformation of the cross-section shows in Fig. 5 and the buckling
deformation and twist of the flange expresses as u and φ respectively. The subscript T and B are
represented as the top and the bottom flange respectively. The displacement of the flange {u} = <uT,  uB,
φT, φB> for element assumes to be cubic polynomial in z direction, and the buckling deformation of the
element {δ} can be expressed as {uT1, uT1' , uB1, uB1' , φT1, φT1' , φB1, φB1' , uT2, uT2' , uB2, uB2' , φT2, φT2' ,φB2, φB2' }.
The web buckling deformation uw assumes the cubic curve in y direction. The buckling displacement of
the web can be expressed in terms of buckling deformation of the elememt using the compatibility
condition between flange-web junctions.

The strain energy stored in the beam element can be written as

(8)

where UF and UW is the strain energy due to the flange and the web respectively, and UR is the strain
energy due the continuous elastic restraint.

U UF UW UR+ +=

Fig. 5 Buckling deformations of a cross-section
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The stiffness matrices of flange [kF] can be determined as was done by Trahair and Kitipornchai (1972),
and Lee and Bradford (2002, 2003) by employing tangent modulus theory. A detail description of the
method to determine the minor axis flexural and the torsional rigidities is given in those papers. The
stiffness matrices of web [kW] can be determined using isotropic plate theory (Timoshenko and
Woinowsky-Krieger 1959) for the elastic region and orthotropic plate theory based on flow theory (Dawe
and Kulak 1984, Haaijer 1957) is used for the inelastic region. The patterns of residual stresses considered
in this study are the polynomial and the simplified pattern. The simplified pattern of residual stresses was
used by number of researchers (Fukumoto and Galambos 1966, Trahair and Kitipornchai 1972, Abdel-
Sayed and Aglan 1973) to study the inelastic buckling behaviour of the I-section beam. The simplified
pattern of residual stresses satisfies the static equilibrium condition but not that with axial torque and

Fig. 6 (a) Elastic restraints, (b) Restraining actions applied at the flanges
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therefore the torsional rigidity of the cross section alters to  as was noted by
Trahair (1993).

The continuous elastic restraint is augmented in this study as was done by Lee and Bradford (2002,
2003). Figs. 6(a) and (b) show the continuous restraints which act on a beam. The translation restraint
applied at the top and the bottom flange is denoted as ktT and ktB respectively. The minor axis rotational
restraints on the top and the bottom flange represents as kryT and kryB respectively. These restraints act at
distance yt and yB above the top flange and below the bottom flange respectively. The torsional and
warping restraints represent as krz and kzz respectively. 

The strain energy stored in the beam element can be expressed in stiffness matrix of the element 

(9)

It must be note that the stiffness matrices of the flange [kF] and the web [kW] are not constant due to
monosymmetric effect caused by combination of the applied curvature and the residual stresses. 

The loss of total potential energy due to the applied bending moment and shear force and height of
application of the load can be written as

(10)

where WF and WW is the work done by the flange and the web respectively, and  is the work done by
height of the load above the reference axis.

The loss of total potential energy in element can be expressed in terms of stability matrix of the
element as:

(11)

where [gF] and [gW] is the stability matrices of the flange and the web respectively, and [ ] is the
stability matrix due to the height of load above the reference axis.

2.4. Buckling solution

The element stiffness matrix [k] and stability matrix [g] can be assembled into global stiffness matrix
[K] and stability matrix [G] and is give as;

(12)

where {q} is the buckling deformation (eigenvector). The stiffness and stability matrix is function of
the applied curvature and the global stiffness and stability matrix is therefore adjusted at a value of
applied curvature. Thus an iterative method is employed to determine the buckling solution until the
determinant of equation 12 vanishes.

3. Inelastic lateral-distortional buckling of restrained continuous beams

This study considers two and three-span continuous beams subjected to a concentrated load at the
mid point of all spans and a uniformly distributed load applied at the top flange, which is fully
restrained against translation with an elastic twist restraint applied at the top flange. The number of
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element used in this study is 8 per span. The material properties are E (Elastic modulus) = 200 GPa, ν
(Poisson’s ratio) = 0.3, h'(E/Est) = 33 and s(εst /εy) = 11, and σy (yield stress) = 250 MPa. The cross-
sections used in this study are 200UC46.2 (which has similar dimensions to the widely researched
8WF31) and 610UB125 (BHP 1988). The results are plotted in figures with the dimensionless buckling
load (MI/MP), as a function of the dimensionless length . MI is inelastic buckling moment
and MP is plastic moment, and MEL is the elastic lateral-torsional buckling moment which can be
obtained high value of yield stress without residual stress. The figures also show buckling curves
derived from the ‘design by buckling analysis’ of AS4100 (1998). The inelastic lateral-torsional buckling
results are also shown in the figures. The elastic and inelastic lateral-torsional buckling results can be
obtained by suppressing an out-of-plane web distortion as was done by Bradford and Trahair (1982). 

(13)

where Dw = E tw
3 /12(1−ν 2) and γr is set to a large value (say 108).

A dimensionless torsional parameter αz is used in this study and is given as;

(14)

where GJ is the torsional rigidity, L is length of the beam and kz is the torsional restraint.

3.1. Two-span continuous beams

This study considers equal length and unequal length continuous beams subjected to a central
concentrated load and a uniformly distributed load that is applied at the top flange. The inelastic
buckling results for an equal span continuous beams subjected to a central concentrated load on both
spans with the dimensionless torsional parameter αz equal to 0, 1, 100 and 1000 are shown in Figs. 7 to
10, while Figs. 11 and 12 are for unequal span subjected to a central concentrated load in both span at a
value of αz equal to 100 and 1000. The buckling results for the equal span continuous beams under a
uniformly distributed load at a value of αz equal to 0, 1, and 100 are shown in Figs. 13, 14 and 15, while
Figs. 16 and 17 are for unequal span at a value of αz equal to 100 and 1000. As would be expected, the
buckling mode of two-span beams is lateral-torsional when the beam is subjected to a translational
restraint only (αz = 0). Generally speaking, as the dimensionless torsional parameter αz increases from
0 to 1000 the buckling mode becomes lateral-distortional rather than a lateral-torsional. The severity of
web distortion is greatest when αz = 1000. The result for the 200UC46.2 cross-section show that the
reduction of lateral-torsional buckling loads due to web distortion is insignificant. 

It can be seen in the figures that the ‘design by buckling analysis’ in AS4100 (1998) is generally
unconservative for both slender and compact I-sections. The beam becomes more unconservative as the
dimensionless length  is decreased for slender (610UB125) beam at a lower value of
torsional stiffness (αz = 0 and 1). When the torsional stiffness αz is 100 and 1000, the disparity between
‘design by buckling analysis’ in AS4100 (1998) and inelastic buckling load is increased. The inelastic
buckling moment of compact I-section (200UC46.2) reaches its plastic moment at lower value torsional
stiffness (αz = 0 and 1).
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Fig. 7 Inelastic buckling of two-span continuous beam with elastic twist restraint (αz = 0) 

Fig. 8 Inelastic buckling of two-span continuous beam with elastic twist restraint (αz = 1)
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Fig. 9 Inelastic buckling of two-span continuous beam with elastic twist restraint (αz = 100)

Fig. 10 Inelastic buckling of two-span continuous beam with elastic twist restraint (αz = 1000)
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Fig. 11 Inelastic buckling of two-span continuous beam with elastic twist restraint (αz = 100)

Fig. 12 Inelastic buckling of two-span continuous beam with elastic twist restraint (αz = 1000)
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Fig. 13 Inelastic buckling of two-span continuous beam with elastic twist restraint (αz = 0)

Fig. 14 Inelastic buckling of two-span continuous beam with elastic twist restraint (αz = 1)
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Fig. 15 Inelastic buckling of two-span continuous beam with elastic twist restraint (αz = 100)

Fig. 16 Inelastic buckling of two-span continuous beam with elastic twist restraint (αz = 100)
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Fig. 18 shows the buckling shape {q} obtained from the eigensolver for an equal length two-span
610UB125 continuous beams subjected to a concentrated load at the mid point of both spans with
L/h = 160. The dash and dotted lines indicate lateral-torsional and lateral-distortional buckling
respectively. It can be seen in the Fig. 18 that the lateral-torsional buckling behaviour of two-span
continuous beams is not affected by web distortion when the top flange is fully restrained against
translation only (αz = 0). As αz is increased the buckling mode of the two-span beams becomes a
lateral-distortional one rather than a lateral-torsional one.

Fig. 17 Inelastic buckling of two-span continuous beam with elastic twist restraint (αz = 1000)

Fig. 18 Buckling mode of restrained two span continuous beam
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Fig. 19 Inelastic buckling of three-span continuous beam with elastic twist restraint (αz = 0)

Fig. 20 Inelastic buckling of three-span continuous beam with elastic twist restraint (αz = 1)
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Fig. 21 Inelastic buckling of three-span continuous beam with elastic twist restraint (αz = 100)

Fig. 22 Inelastic buckling of three-span continuous beam with elastic twist restraint (αz = 1000)
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Fig. 23 Inelastic buckling of two-span continuous beam with elastic twist restraint (αz = 0)

Fig. 24 Inelastic buckling of three-span continuous beam with elastic twist restraint (αz = 1)
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Fig. 25 Inelastic buckling of three-span continuous beam with elastic twist restraint (αz = 100)

Fig. 26 Inelastic buckling of three-span continuous beam with elastic twist restraint (αz = 1000)
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3.2. Three-span continuous beams

The buckling results for three-span continuous beams subjected to a concentrated load at the mid
point of each spans at a value of αz equal to 0, 1, 100 and 1000 are shown in Figs. 19 to 22, while Fig.
23 to 26 are for a continuous beams under a uniformly distributed load with αz equal to 0, 1, 100 and
1000. In all cases, the loading is at the top flange level.

Similar results can be observed from this study as in two-span beams. As would be expected, when αz
is equal to zero the buckling mode for three-span continuous beams is lateral-torsional. The lateral-
distortional buckling loads and lateral-torsional buckling loads are almost identical. The results also
again show that as the dimensionless torsional parameter increases, the significance of web distortion is
increased. At a value of αz equal to 100 the buckling mode of the longer span continuous beams is
lateral-torsional and as the dimensionless length decreases the buckling mode becomes lateral-
distortional. At a value of αz = 1000, the reduction of the lateral-torsional buckling load due to web
distortion is significant. The results for the compact I-section 200UC46.2 show that the lateral-torsional
buckling loads are not affected by web distortion, and the buckling solutions for lateral-torsional and
lateral-distortional buckling are almost identical. 

At a lower value of torsional stiffness (αz = 0 and 1), the ‘design by buckling analysis’ in AS4100
(1998) is generally conservative except for short span of continuous beams subjected to a central
concentrated load but as the torsional stiffness is increased the prediction of ‘design by buckling
analysis’ in AS4100 (1998) is unconservative. The results of beam under a uniformly distributed loads
show that the prediction of the ‘design by buckling analysis’ in AS4100 (1998) is generally
unconservative. As αz is increased disparity between ‘design by buckling analysis’ in AS4100 (1998) and
lateral-torsional buckling load is increased.

4. Conclusions 

The inelastic buckling behaviour of continuously restrained two and three-span continuous beam
subjected to a concentrated load and a uniformly distributed load applied at the top flange is
investigated using the finite element method. The buckling results show that when the continuous
beams are fully restrained against translation only, the buckling mode of beam is lateral-torsional with
insignificant distortional effects. As the dimensionless torsional restraint stiffness increases the buckling
mode beam became lateral-distortional. At a higher value of αz, the results show that the cross-section
displayed significant distortion, which results in a reduction of the lateral-torsional buckling load due to
web distortion being significant. Furthermore, the nominal buckling load obtained from ‘design by
buckling analysis’ in AS4100 has been compared with the inelastic buckling results obtained from this
study. This study has found that ‘design by buckling analysis’ in AS4100 (1998) is generally
unconservative. 
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