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Non-linear analysis of composite steel-concrete 
beams with incomplete interaction

Bojan Čas†, Sebastjan Bratina†, Miran Saje‡ and Igor Planinc‡†

University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2, SI-1115 Ljubljana, Slovenia

Abstract. The flexibility of the connection between steel and concrete largely influences the global
behaviour of the composite beam. Therefore the way the connection is modelled is the key issue in its
structural analysis. Here we present a new strain-based finite element formulation in which we consider non-
linear material and contact models. The computational efficiency and accuracy of the formulation is proved
with the comparison of our numerical results with the experimental results of Abdel Aziz (1986) obtained in a
full-scale laboratory test. The shear connectors are assumed to follow a non-linear load−slip relationship
proposed by Ollgaard et al. (1971). We introduce the notion of the generalized slip, which offers a better
physical interpretation of the behaviour of the contact and gives an additional material slip parameter. An
excellent agreement of experimental and numerical results is obtained, using only a few finite elements. This
demonstrates that the present numerical approach is appropriate for the evaluation of behaviour of planar
composite beams and perfect for practical calculations.

Key words: steel-concrete composite beam; shear connection; interlayer slip; non-linear analysis; finite
element method.

1 Introduction

Steel-concrete beams are widely used for floor constructions in buildings and bridges due to their

economy of construction and good bearing capacity. The theoretical analysis of the mechanical

behaviour of these structures is rather complex. A number of theoretical and numerical models for the

steel-concrete beams have been proposed in literature. Razaqpur and Nofal (1989) and Wegmuller and

Amer (1997) employed the 2D and 3D analyses to model the behaviour of steel-concrete structures.

Such analyses are computationally very demanding. The 1D analyses model concrete and steel layers

as the beams connected together in such a way that their transverse displacements are fully compatible,

see, e.g., the pioneering works by Newmark et al. (1951) and Adekola (1968) or the recent work by

Ayoub (2001). Since 1988 when Robinson and Naraine demonstrated that the delamination of the

concrete and steel layers had a negligible effect on behaviour of the composite structure, most

researchers have assumed that the layers slip over each other without any transverse separation.

After many experiments (e.g., Aribert and Abdel Aziz 1985, Abdel Aziz 1986), it is now recognized

that the behaviour of the composite steel-concrete structures is inherently non-linear. The corresponding
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490 Bojan Čas,  Sebastjan Bratina, Miran Saje and Igor Planinc
mathematical models must also be non-linear, which requires numerical solution methods to be used,

although some rare analytical solutions of simplified linear models are also of great value (e.g.,

Girhammar et al. 1993, Ranzi et al. 2003). One among more important numerical solution methods

found in literature is the finite element method. Various finite element formulations have been proposed

for the solution of steel-concrete composite structures, which differ in the way the variational principles

and the basic variables are chosen. Dall’Asta and Zona (2002), Daniel and Crisinel (1993) and Gattesco

(1999) proposed the displacement-based formulations; Salari et al. (1998) proposed the finite element

formulation, where the forces are basic variables, while Ayoub and Filippou (2000) and Ayoub (2001)

employed both the displacements and the forces. 

In the present paper we introduce a new finite element model of a layered composite beam, which

we prove to be both reliable and computationally efficient. As pointed out by Fabroccino et al.

(1999), any solution must necessarily consider the slip between the concrete slab and the steel girder,

and the non-linear constitutive relationship for shear connectors. Therefore, we consider the slip

between the layers and assume that the behaviour of materials and the shear connectors is non-linear.

We assume that the transverse separation between the layers is not possible and that the interaction

between the layers is fully driven by the load–slip characteristic of the connector. We further assume

that the beam is planar and that each layer suffers small deformations so that the geometrically linear

beam model is sufficient. The mathematical model of the composite beam is described by a set of

algebraic-differential equations and boundary conditions, which we solve numerically by the finite

element method.

Our finite element formulation employs a modified principle of virtual work, in which the basic

unknown functions are strains, not displacements or forces. We use the concept of the consistent

equilibrium of constitutive and equilibrium-based stress-resultants (Vratanar and Saje 1999), and

employ the Galerkin type of the finite element formulation (Planinc 1998). Displacements and rotations

are not interpolated in our formulation.

In a composite structure, the upper layer is constrained to follow the deformation of the lower layer.

When deforming, the layers slip over each other, but the transverse separation between them does not

occur. The slip is traditionally understood as the actual slip between the two materials, concrete and

steel, see, e.g., Gattesco and Giuriani (1996) or Ollgaard et al. (1971). By contrast, the slip in the

present paper is defined in a generalized way as an ‘average slip’ over a thin sublayer of the softer

material layer rather than at the actual contact. Such a ‘generalized slip’ takes place over a concrete

sublayer neighbouring the steel girder. The thickness of the sublayer depends on the stiffness of the

connector and on the strength of concrete, and must be found experimentally. Once obtained, the

generalized slip is used in the force-slip relationship of Ollgaard et al. (1971). The introduction of the

generalized slip offers a better physical interpretation of the slip and adds a new material parameter to

the mathematical model.

We verify the present formulation by comparing our numerical results to the results of a fullscale

experiment on a composite beam made from a reinforced concrete slab and a steel girder connected

together by the Nelson studs (Abdel Aziz 1986).

2. Basic equations of composite beam

We assume that the planar beam is made from two layers, connected together in such a way that slip

of one layer over the other is possible, while the transverse separation is not. Each layer modelled by
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the linearized beam theory, in which plane cross-sections remain planar during deformation, and shear

strains are neglected.

We consider an intially straight composite beam of undeformed length L: The beam lies in the (x, z)-

plane of the Cartesian coordinate system (x, y, z) with the unit base vectors ex, ez and ey = ez × ex. The

common reference axis of the layers is taken to lie in their contact plane. The composite beam is

subjected to the action of the distributed load p = pxex + pzez  and the distributed moment load m = myey
along the reference axis of layer b, and to concentrated generalized loads  and  (i = 1, 2,..., 6) at its

ends. The loading is assumed to be deformation-independent.

Let two particles, one from layer a and the other from layer b, be in contact in the underformed state

and occupy the same point (x, y, z) in space. After the deformation takes place, the positions of these

particles become different and are described by the position vectors (Fig. 1)

Ra(x, z) = (x + ua(x) + zϕ a(x))ex + (z + w
a(x))ez (1)

Rb(x, z) = (x + ub(x) + zϕ b(x))ex + (z + w
b(x))ez (2)

Functions ua and wa denote the components of the displacement vector of the reference axis of layer

a with respect to base vectors ex and ez. Similarly, components ub and wb belong to the displacement

vector of the reference axis of layer b. Functions ϕa and ϕb are the rotations of reference axes of

layers a and b, respectively. For the later convenience, we also introduce the notations for the

components of the displacement vectors of a generic particle (x, z) of layers a and b:

U a(x, z) = u a(x) + zϕ a(x), Ub(x, z) = ub(x) + zϕb(x) (3)

Wa(x, z) = w a(x),              Wb(x, z) = wb(x) (4)

Si
a

Si
b

Fig. 1 Undeformed and deformed shapes of the two-layer composite beam
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The basic equations of the composite beam consist of kinematic, equilibrium and constitutive

equations with boundary equations for each of the two layers, and the constraining equations that

assemble layers into a composite structure. In what follows, we list these equations without going into

details of their derivations.

2.1. Kinematic equations

We assume that the plane cross-section of each layer remains planar and perpendicular to its

deformed reference axis. We further assume that strains and displacements are small. Then the

kinematic equations of the layers read:

u a' - ε a = 0, u b' - ε b = 0  (5)

w a' + ϕ a = 0, w b' + ϕ b = 0  (6)

ϕ a' - κ a = 0, ϕ b' - κ b = 0 (7)

ε a, ε b are the extensional (membrane) strains, and κ a, κ b are the bending strains (pseudocurvatures)

of the reference axes of layers a and b, respectively. In Eqs. (5)-(7) and throughout the text, the

prime (') denotes the derivative with respect to x.

2.2. Equilibrium equations

The equilibrium equations read:

Na' +  = 0, N b' +  + px = 0 (8)

Qa' +  = 0, Qb' +  + pz = 0 (9)

Ma' − Qa = 0, Mb' − Qb + my = 0 (10)

In these equations, Na, Nb, Qa, Qb, Ma and Mb denote the equilibrium axial forces, shear forces

and bending moments in layers a and b; , ,  and  are the x- and z-components of the

contact traction in the plane of contact between the layers.

2.3. Constitutive equations

In addition to the equilibrium axial forces and moments, we also introduce the constitutive axial

forces and moments, ,  and , , of layers a and b. These are the cross-sectional stress-

resultants determined from strains with the help of the constitutive equations. We know that these two

sets of internal forces and moments must coincide:

N a = , N b = (11)

Ma = , Mb = (12)

2.4. Boundary equations

As the kinematic and the equilibrium equations are differential, we need the boundary conditions for

each layer. These are either the natural (force) or the essential (displacement) boundary conditions. For
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layer a they read:

x = 0 :  or (13)

or (14)

     or (15)

x = L :  or  (16)

 or  (17)

 or (18)

In Eqs. (13)–(18)  (i = 1, 2,..., 6) mark the given values of the generalized boundary displacements

and Si
a (i = 1, 2,..., 6) the given values of generalized forces at the edges x = 0 and x = L of layer a.

An analogous set of the boundary conditions holds for layer b.

2.5. Constraining equations

Once the layers are connected together, the upper layer is constrained to follow the deformation of the

lower layer in such a way that the layers can slip over each other, but the transverse separation between

them is not possible. The ‘slip’ here is understood in a generalized way. When the layers are relatively

stiff compared to the connector or if they are not connected at all (as in dry friction), then the slip occurs

along the contact. When one of the layers is much softer than the other, the major part of the ‘slip’

occurs in the layer of the softer material. This case takes place in composite beams made from steel and

concrete connected by steel shear studs; there, due to the strong steel shear studs, the slip at the contact

between concrete and steel is practically negligible, and realizes only over a concrete sublayer

neighbouring the steel beam. The thickness of the sublayer depends on the stiffness of studs and the

strength of concrete, and is roughly equal to the length of the stud. The sublayer will be called the ‘slip

sublayer’, while the average slip in the sublayer will be called the ‘generalized slip’. The generalized

slip is defined as the tangential displacement between the deformed positions of an ‘average’ particle

P b inside the slip sublayer and steel particle D a on the contact surface, which - in the undeformed state-

lies in the same cross-section as particle P b (see Fig. 1 for the precise definition of the particles). It is

denoted by ∆ and evaluated as ∆ = s a-S b, where s a is the deformed arc-length of the reference axis of

layer a, and S b is the deformed arc-length of the curve through particle P b, parallel to the axis of layer

b, and being ‘e’ away from the reference axis (Fig. 1). Thus:

(19)

D b is extensional strain at P b, which is related to the x-displacement component of the particle by

the kinematic equation

Db = Ub' (20)

Inserting ε a and D b from Eqs. (5a) and (20), integrating and considering relations s a(0)=u a(0),

S b(0) =U b(0) and ∆(0)=u a(0)−U b(0) in Eq. (19), gives:
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(21)

The condition that there is no transverse separation between the layers requires that the two particles

D a and D b which are in contact in the deformed shape, have equal position vectors. Thus,

r a(x)=r b(x*), or in the componential form

x + ua(x) = x* + ub(x*) (22)

wa(x) = wb(x*) (23)

Here x* ∈ Ib* denotes the undeformed coordinate of that particle D b of layer b which, in the

deformed state, coincides with the particle D a of layer a having coordinate x ∈ I a. I a and I b*

denote the effective regions of contact between layers a and b.

The layers act onto each other with the tractions, which will be denoted by qa and qb. Since we have

assumed that the rotations are small (sin ϕ ≈ ϕ), the traction components with respect to the tangent and

the normal of the contact surface, , ,  and , are related to the components with respect to the

(x, y, z)-system with the following equations:

(24)

(25)

(26)

(27)

The normal traction component satisfies the equation

(28)

In view of the small strain and small slip assumptions, the further simplifications

(29)

(30)

(31)

are acceptable. Inserting Eqs. (28)-(29) and (30)-(31) into (24)-(27) yields

(32)
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2.6 Constitutive equations of the connection

In the light of the discussion in the subsection Constraining equations, we assume that the tangential

contact traction qt depends on the generalized (average) slip, whose action takes place in the fibre e

away from the actual contact surface (see Fig. 1). We then have

 (34)

Here F(∆) is a non-linear functional of ∆(x) to be determined by an experiment. The tangential

contact traction depends on an experimentally evaluated position of the generalized slip, therefore

the position of the generalized slip, e, and the resultant tangential contact traction have to be

measured in this experiment.

Constraining Eqs. (21)–(23), (28), (29) and (34) represent additional six equations for the six

unknown functions: ∆, , , ,  and x*. In what follows qt will be denoted by q.

2.7. Further simplifications and the final form of the governing equations of the compos-

ite beam

When strains, displacements, rotations and slips are small quantities, we can assume that

(35)

(36)

which yields the fact that the bending strains of the layers are equal: κ a(x) = κ b(x*). This implies

the equality (•)b(x*) (•)b(x) for any mechanical quantity of layer b. Consequently, the kinematic,

equilibrium and constitutive equations become very simple. First, as a consequence of assuming

w a(x) = w b(x*) = w b(x) in Eq. (23), we derive ϕ a(x) = ϕ b(x*) = ϕ b(x) and κ a(x) = κ b(x*) = κ b(x).

Hence Eqs. (6) of both layers become identical and reduce to one equation

(37)

where w(x) = w a(x) = w b(x) and ϕ (x) = ϕ a(x) = ϕ b(x): Similarly, Eq. (7) can be replaced by

 (38)

where κ (x) = κ a(x) = κ b(x) is the bending strain of the composite beam. Next, by combining Eqs.

(25), (27) and (28), we obtain

 (39)

We find it convenient to introduce the equilibrium shear force, Q, and the equilibrium bending

moment, M, of the composite cross-section. Q is defined as the sum of the equilibrium shear forces of

layers a and b: Q =Q a+Q b. The differentiation of Q with respect to x and the consideration of Eq. (9)

yields
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Q' + pz = 0 (40)

Similarly, from the moment quilibrium Eqs. (10) we obtain

 (41)

Here M=Ma+Mb is the bending moment of the composite cross-section of the beam.

The final governing differential and algebraic equations of the composite beam are displayed in

Box 1. For a given external loading, Eqs. (43)-(56) constitute a system of 14 algebraic-differential

equations for 14 unknown functions ua(x), ub(x), w(x), ϕ (x), ε a(x), ε b(x), κ(x), N a(x), N b(x), Q(x),

M(x), ∆(x), q(x) and x*(x) along with the natural and essential boundary conditions (57)-(64). Eq. (55)

appears to be fully separated and can thus be solved after the analysis has been completed.

As some of the governing equations are non-linear (see Eqs. (51)-(53) and (56)), we solve the

equations numerically with the finite element method, as described in the next section.

3 Finite element method

3.1. Modified principle of virtual work

The starting point of our numerical formulation is the principle of virtual work, which says that the

difference of virtual works of internal and external forces is zero 

(42)
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(52)0

(53)0

Constraining equations:  (54)0

x + ua = x* + ub (55)0

q = F(∆) (56)0

Natural and essential boundary conditions:

x = 0 : or (57)0

or (58)0

or (59)0

or (60)0

x = L : or (61)0

or (62)0

or (63)0

or (64)0

The principle given in Eq. (42) has been derived on the basis of the assumption that the kinematic and

deformation variables are constrained by the kinematic and constitutive Eqs. (43)-(46) and (11)-(12).

These constraints are released if we introduce the Hu–Washizu functional with Eqs. (43)-(46) and (11)-

(12) as the constraining equations of the functional. Assuming further that Eqs. (43)-(50) are identically

satisfied, and extending the functional with the boundary kinematic constraints, we derive the principle,

which we call the modified principle of virtual work (Planinc 1998):

δW* =

boundary terms = 0: (65)

The functional in Eq. (65) depends on the values of the forces and moment at x=0, i.e., Na(0),
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and the bending strain of the composite beam, κ (x). In the finite element implementation of the

principle, we need to interpolate three deformation functions, ε a(x), ε b(x) and κ (x).

3.2. Finite element method

The reference axis of the composite structure is divided into finite elements. Within each element, the

extensional strains ε a and ε b of layers a and b, and the bending strain κ are interpolated by Lagrangian

polynomials Li(x) (i=1; 2,..., N) of order N−1 with equidistant nodes:

(66)

(67)

(68)

εi
a, εi

b and κi (i=1, 2,..., N) are the nodal values of ε
a(x), εb(x) and κ(x). With the interpolations (66)–

(68) the kinematic Eqs. (43)–(46) can easily be analytically integrated to yield the displacements

and the rotation at any point of the beam:

(69)
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(71)

(72)

In the above equations, Pi(x) =  and Ii(x) =  (i = 1,2,..., N).

Once the displacements are known, the slip ∆(x) is determined from Eq. (54) and inserted into Eq.

(56) to obtain the traction q(x)=F(∆(x)). Putting q(x) into the equilibrium Eqs. (47)-(50) and integrating,

yields:
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The remaining Eqs. (51)-(53) are solved approximately by the finite element method using the
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,  j = 1,..., N (78)

,  k = 1,..., N (79)

(80)

(81)

(82)

(83)

(84)

(85)
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(87)

(88)

(89)

(90)
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For a given load factor, λ, Eqs. (77)-(91) constitute a system of 3N+12 non-linear algebraic

equations for 3N+12 unknowns. There are 3N+4 internal degrees of freedom, εn
a,εn

b, κn (n=1, 2,..., N),

N a(0), N b(0), Q(0) and M(0), and eight external degrees of freedom, i.e., nodal displacements and

rotations u a(0), u b(0), w(0), ϕ (0), u a(L), u b(L), w (L), ϕ (L) of the finite element. When F(∆), Nc
a,

Nc
b and Mc are non-linear functionals, the integrals in Eqs. (77)-(91) are evaluated numerically by

Gaussian or Lobatto’s integration. For the solution of the equations, we employ the iterative

Newton-Raphson method. After completing the linearization of Eqs. (77)-(91) and the construction

of the tangent stiffness matrix and the residual force vector of a finite element, we assemble the

global tangent stiffness matrix and the residual force vector of the structure in a classical way. Note

that at least one boundary displacement in the x-direction, belonging either to layer a or b (i.e., one

among u a(0), u a(L), u b(0) or u b(L)), must be prescribed.

4. Numerical example

The suitability of the present theoretical approach and its numerical solution method for the analysis

of real-life steel-concrete composite beams will be verified by the experimental results of a full-scale

laboratory test on a simply supported beam investigated by Abdel Aziz (1986) and marked as PI4. The

beam is composed from the reinforced concrete slab and the steel girder of the ‘I’ cross-section,
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connected to each other with standard steel shear studs. This beam collapsed due to the failure of the

critical cross-section, so that the lateral buckling of the steel girder, the local buckling of the steel girder

flange or the delamination of the concrete slab and the steel girder can safely be neglected. Next, the

experimental results show, that the deflections of the beam at about the failure load are not greater than

5% of the span. This suggests that the geometrically-linear theory as considered here suffices. We are

particularly interested in assessing the capability of our model to predict the load–carrying capacity and

the variation of the slip along the contact of steel and concrete. The descriptive data of the beam are

given in Fig. 2.

Fig. 2 Geometry, supporting and load of steel-concrete composite beam PI4

Fig. 3 Constitutive models. (a) structural steel and reinforcement bars, (b) contact between steel and concrete,
(c) concrete
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The constitutive models for steel, concrete and the contact are presented in Fig. 3 in the form of

graphs. All three models exibit a non-linear behaviour of materials and the connection. For structural

steel and the reinforcing steel bars, a three-linear stress-strain diagram is used (Fig. 3a). The reinforced

concrete slab and the steel girder are assumed to be connected with the standard Nelson studs having

the diameter φ 19 mmand being welded in pairs to the upper flange of the steel girder. The studs are

uniformly distributed along the contact. The generalized constitutive relation of the contact (in the

literature it is called the ‘shear flow-slip diagram’) is such as suggested by Ollgaard et al. (1971) (Fig. 3b).

The stress-strain diagram for concrete in compression of Desayi and Krishnan (1964) is used, and in

tension as shown in Fig. 3(c). The extension of concrete stress-strain diagram into the tensile zone is

taken from Bratina et al. (2004).

Abdel Aziz (1986) measured material parameters of structural steel, reinforcement bars and concrete

and his findings are given in Tables 1, 2 and 3. The thickness of the concrete cover was, however, not

given by Abdel Aziz (1986). We assumed that the distance between the centre of the reinforcement bars

and the surface of concrete was 1.5 cm.

In our first analysis, we assume that the slip occurs over the actual contact surface of concrete and

steel, in which case e=0. The concrete slab and the steel girder are connected with 9 pairs of the Nelson

studs (see Fig. 6). The distance between the pairs of studs along the axis of the beam is thus 65 cm. The

studs are modelled either as being continuously distributed along the axis (marked as ‘continuous’) or

as being discrete (‘discrete’). In the continuous case, the actual discrete placement of studs is replaced

by the continuous tangent traction along the whole axis. In the discrete, discontinuous case, the effect of

each stud is replaced by the constant tangent traction over the region occupied by the stud. This is

achieved by the use of a specially designed finite element mesh, in which one very short, 20 mm long

finite element is used to model the effect of each stud, and one or more long elements to model the

region between the studs. The connection law in short elements representing the studs is assumed to

follow the one by Ollgaard et al. (1971). No tangential connection between concrete and steel was

assumed between the studs. We used the mesh with ten or more finite elements of type E5-5 to model the

whole beam for the continuous studs, and 22 elements E5-5 for the discrete stud model (Ei-j denotes the

element type; i marks the number of interpolation points, and j the number of integration points in the

element). The analyses employing more than ten or 22 elements exhibited no greater accuracy. Note

Table 1 Material parameters of concrete

Beam fcm [kN/cm
2] Dmax Dct Dc1 Dcu

PI4 3:5 0 0 -0.00225 -0.021

Table 2 Material parameters of structural steel and reinforcement bars Es=21 000 kN/cm
2, Esh=0.008 Es

Beam fy
flange fu

flange fy
web fu

web fy
bars fu

bars Dsh

PI4 24.5* 36.1* 26.0* 37.2* 37.0* 37.5* 0.021

*kN/cm2

Table 3 Material parameters of contact between reinforced concrete slab and steel girder

Beam No. of Nelson’s studs α   β [cm−1] qmax [kN/cm]

PI4 18 0.800 7 4.68
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that 22 elements is the lowest possible number of elements to model the discrete placement of the studs.

The load-displacement curves for the midspan deflection, wC, are displayed in Fig. 4. A very good

agreement between the calculated and experimentally found load-deflection curves for both the

continuous and the discrete models can be observed. One can see that the results are also well in accord

with the numerical results of Fabbrocino et al. (1999). The experimentally determined critical midspan

deflection, wC;cr
exp

, is 15.7 cm at the critical load Pcr
exp

= 490 kN. The comparisons between the experimental

and numerical values of the critical force Pcr and the critical midspan deflection are presented in Table 4.

Fabbrocino et al. (1999) used the boundary element method and employed a very fine mesh to model

the beam. Their calculated critical load is very close to the measured one, while their calculated

midspan deflection wC;cr is overestimated for about 16% (Table 4). The error of our analysis is smaller:

for the continuous studs, the error in the critical load Pcr is only 0.45%, and even a little smaller (0.40%)

for the discrete studs. The midspan critical deflection error is null for the continuous model and 1.9%

for the discrete model.

Figs. 5(a) and 5(b) show the slip distribution along the reference axis of the beam for the two load

levels, λ=257 and λ=344. The slips, measured by Abdel Aziz (1986), those which were calculated by

Fabbrocino et al. (1999), and the slips obtained by the present method for the continuous and discrete

studs, are compared. Due to the symmetry of the geometry, supporting and the loading of the beam with

respect to its centre, the slips are antisymmetric and are therefore presented in the figures only for the

left half of the beam. The agreement between the results is good. Notice very small overall differences

Fig. 4 Load-deflection curves of steel-concrete composite beam (e=0)

Table 4 Comparisons between calculated and measured critical values of Pcr and wC, cr of steel-concrete composite
beam (e=0)

Pcr [kN] Pcr / Pcr
exp wC, cr [cm] wC, cr /wC, cr

exp

Experiment Abdel Aziz (1986) 490 1.000 15.7 1.000

Fabbrocino et al. (1999) 486.3 0.993 18.20 1.159

10 FE E5-5; continuous studs, e=0 cm 492.2 1.004 15.7 1.000

22 FE E5-5; discrete studs, e=0 cm 488.0 0.996 15.4 0.981

10 FE E5-5; no slip 452.8 0.924 4.6 0.293
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between the results of the continuous and discrete models, although in the discrete stud model, the

curves are somewhat oscillating due to the assumed smoothness of the contact in regions between the studs.

The maximum vertical displacement was measured to be about 3% of the beam span. This indicates

that the geometrically linear theory is sufficient for the analysis. The collapse of the beam, observed in

the experiment, was triggered by large plastic deformations in the steel flange and consequent crushing

of concrete at the point of application of the concentrated load. This indicates that the beam collapsed

due to the failure of the cross-section. A similar collapse mechanism was predicted by our numerical

analysis, in which highly localized plastic deformations in steel were followed by the softening of the

concrete cross-section.

The forces in the studs at various loading stages are depicted in Fig. 6. The values of forces are given

in relation to the ultimate bearing capacity of each stud. As you can see, the forces in studs at the

moment of the global collapse of the beam are as high as 97% of their bearing capacity.

Next we analyse the effect of the generalized slip on the response of the beam. In Figs. 7 and 8 we

show the variation of the generalized slip along the beam axis for e=0, 1, 2 and 3 cm for continuous

(Fig. 7) and discrete (Fig. 8) studs. The results are shown for two loading stages, λ=257 and λ=344. It is

apparent that parameter e somewhat effects the slip values. The comparison shows that e=2 cm offers

the best fit to the experimental slip data.

The effect of the use of the generalized slip on the load-deflection diagram, the internal forces and the

deformations in the beam is clearly very small. This is true for both continuous and discrete stud

models. This fact is further illustrated in Figs. 9(b) and 9(c), showing the stress and strain distributions

over the mid-point cross-section at P=452.8 kN.

It is instructive to show the results of analyses performed with the assumption that the righthand

support is pinned, not free (see Fig. 2b). The analyses included the continuous and discrete studs and

took e=0 cm. The results show that the pinning of the support has a negligible effect on the stiffness,

bearing capacity and ductility of the beam. On the other hand, the pinning significantly effects the

variation of the slip, see Fig. 5.

Finally, we show the results for the rigid connection between concrete and steel. The load-deflection

curve is shown in Fig. 4 and in Table 4. We see that such a beam is considerably stiffer, and has a

Fig. 5 Slip distribution along the composite beam axis for two load levels (e=0)
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smaller bearing capacity and a much smaller ductility than the beam with well designed shear studs.

The stress and strain distributions over the mid-point cross-section are displayed in Fig. 9. The figure

shows that a slightly bigger tension stresses develop in the lower steel flange and that a very large

Fig. 6 Forces in studs at various loading stages (relative to their ultimate bearing capacity, Qmax=130 kN)

Fig. 7 Continuous studs. Slip distribution along the composite beam axis for e=0, 1, 2, 3 cm
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compression stresses (compared to the rigid connection case) appear in the upper steel flange in the

case of the flexible connection.

Fig. 8 Discrete studs. Slip distribution along the composite beam axis for e=0, 1, 2, 3 cm

Fig. 9 Stress and strain distributions over the mid-point cross-section at P=452.8 kN
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5. Conclusions

We presented an effective, strain-based finite element method for the non-linear analysis of

composite beams with flexible connections experiencing interlayer slips. The method is capable of

modelling continuous or discrete connectors and makes it possible to account for the thickness of the

sublayer, over which the slips occur. The formulation uses the geometrically linear planar beam theory,

but its adaptation to the geometrically non-linear theory is also possible.

The accuracy and reliability of the method is demonstrated by the comparison of the results of our

analysis of the steel-concrete composite beam with the experimental results of Abdel Aziz (1986) and

the numerical results of Fabbrocino et al. (1999). The following conclusions can be drawn from these

comparisons and results:

• The newly derived finite elements are accurate, robust and computationally efficient, and can be

used to model both continuous and discrete studs.

• The numerical results show negligible differences between the results of continuous and discrete

studs for the simply-supported composite beam subjected to a point load, as analysed here. This

indicates that the model with continuously distributed studs probably suffices for the practical

analysis of the steel-concrete composite beams. The continuous model is computationally more

advantageous than the discrete one, because it needs much smaller number of finite elements to

model the composite beam.

• The notion of the generalized slip introduced as an average slip over the connecting sublayer

proved to be promising in determining the actual slip more accurately. Its effect on the stiffness,

bearing capacity and ductility of the simply-supported composite beam subjected to a point

force was found to be minor. Additional experimental and theoretical studies should be per-

formed to exploit the idea further.
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