Steel and Composite Structures, Vol. 3, No. 6 (2003) 439-450 439
DOI: http://dx.doi.org/10.12989/scs.2003.3.6.439

Buckling and vibration of symmetric laminated composite
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Abstract.  The finite strip transition matrix technique, a semi analytical method, is employed to obtain the
buckling loads and the natural frequencies of symmetric cross-ply laminated composite plates with edges
elastically restrained against both translation and rotation. To illustrate the accuracy and the validation of the
method several example of cross play laminated composite plates were analyzed. The buckling loads and the
frequency parameters are presented and compared with available results in the literature. The convergence
study and the excellent agreement with known results show the reliability of the purposed technique.
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1. Introduction

In recent years, laminated plates have been used in many industries e.g. in the civil, automotive,
aerospace, and marine industries. Determination of the critical loads and the vibration frequencies of
such plates are very important for the designer. Many researchers have considered the buckling and
vibration of such plates subjected to classical boundary conditions. In practical applications, many
boundary conditions in the design of such plates allow certain degree of rotation or translation or both.
It is well known that the classical boundary conditions represent an idealization of the elastic restraint
boundary conditions. Although there are a quite few publications regarding plates with edge restrained
in the literature, most of the plates considered are isotropic plates (Lee and Lin 1992, Zhou 1995,
Gorman 2000), Mindlin plates (Xiangt al 1997, Sahat al. 1996) and most of the boundary
conditions considered are elastically restrained against rotation only (Kobayashi and Soda 1991, Grossi
and Bahat 1995). The main aim of this paper is to provide some solutions of such plates with edges
elastically restrained against both rotation and translation.

For isotropic plates, Paik and Thayamballi (2000) investigated the buckling strength characteristic of
steel plating elastically restrained in two edges and simply supported at the other two edges by
analytical methods. Gorman (2000) used the superposition method to obtain the buckling loads and the
free vibration frequencies of rectangular elastic restrained isotropic plates subjected to uniform in plane
loading. Zhou (1995) used a set of static beam function in the Rayleigh Ritz method to determine the
natural frequencies of elastically rectangular plates. Xéarad (1997) used Mindline plates theory in
conjuction with Ritz method to study the free vibration of thick rectangular plates with edges restrained
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against both rotation and translation.

For composite plates, Rohani and Marcellier (1999) extended the small-deflection theorem for
orthotropic plates to investigate the buckling and vibration analysis of anisotropic rectangular sandwich
plates with edges elastically restrained against rotation. Cheung and Zhou (2000) used a set o static
beam function to analyze the vibration of orthotropic rectangular plate with elastic intermediate line
support. Bank and Yin (1996) discussed uniaxial buckling of an orthotropic plate, simply supported on
its loaded edges and free and rotationally restrained on its unloaded edges. They presented a parametric
study and buckling curves for typical composite materials for this special case of boundary conditions.

In this paper, we analyzed the buckling and vibration of elastically restrained symmetrically
laminated plates. The elastically restrained boundary conditions in this paper are satisfied exactly. The
finite strip transition matrix technique (Ashour 2001, Farag and Ashour 2000 and Farag 1994) is
employed to investigate the buckling and the elastically restrained boundary conditions. The convergence
and the accuracy of the method are investigated and compared with known results. The applied method
has been validated through the excellent agreement with other results in the literature.

2. The governing equation and the boundary conditions
2.1. The governing equation

Under the assumption of the classical deformation theory, the partial differential equation governing
the vibration of rectangular plates of mass demsitpd thicknesh (multiple unidirectional, symmetric
cross ply composite or single orthotropic ply) under in-plane forces, as shown in Fig. 1 is given in terms
of the plate deflectioW by
d'w a'w AW W W o W W
D110X4 +2(Dy, + ZDGG)dxzyz + D220y4 - NX&'XZ - Nydyz - ZN"yo'?xdy =-m P 1)

wherem= phy is the mass per unit area, is the thickness of the plati,, Ny, N,, are the in-plane
direct and shear forces per unit length &nhg D,,, D1, and Deg are the flexural rigidities of the
plate given by

¥ n

Fig. 1 Composite rectangular plate subjected to in-plane forces
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h/2
Dy = [ Qifdz i,j=1,26 )
-h72
where z is the distance from the midplane of the plate to the bottom dithhkyer and@ijk are
the plane stress transformed reduced stiffness. The plane stress reduced stiffness of tlﬁgklamina

are given by

_ E. Q,, = E,, Q, = 1=
(1—=ViVy) 2 (1=vyvyp)’ 12 (1—viVy)

Qu Qxn = Qi Qe = G, (3)

whereEy,, Ey; are the longitudinal and transverse Young's moduli parallel and perpendicular to the
fibers, respectively an,is the in plane shear modulus of elasticity, andv,; are the Poisson’s
ratios.

2.2. The boundary conditions

In this paper, the elastic restraint boundary conditions at edg6sand aix = a can be written as.

oW W d°wO *w *w
Rld_x - . 2 + V12D110_y2 E =0, T,W+ D110X3 + (4D66+V12D22)d 2 =0 (4)
atx =0,
ow O 9°w 9°'wl ’w ’w
de_X+%D110X2 +V12D110_y2 Ez 0, TZW_Dlldx3 + (4D66+V12D22)d 2 =0 ©)

at x =a, whereT; andT; are the translational stiffness per unit length of the erged andx=a
respectively;R; and R, are the rotational stiffness per unit length at the edge andx=a
respectively and the boundary conditions considered along-direction are any combinations of
the elastic restrained against both rotation and translation=A& the boundary conditions can be
described as:

oW | m’w ., wO _ I*w I W _
R30_y - Dzzgd_yz + VlZ%E =0, T;W+ DzzF +(4Dgs + VlZDZZ)é')(_Z)/ =0 (6)
and aty=hb
RM+D D)ZW+ a—ZWD—O T,W. D&V+ 4Dgg + V1,D 03—W—0 7
4o7y Zzgd_yz Vlzdxz E = U W= 220y3 (4Dgg *+ V1o zz)dxzy = (7)

where T; and T, are the translational stiffness per unit length of the edge® andy=b
respectively;R;s and R, are the rotational stiffness per unit length at the egge® andy="b
respectively.

3. Method of solution

For a striped plate in thedirection as shown in Fig. 1, the shape funcids, 1) may be assumed in
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the form

WEEM= S XalOYal) ®

where, & =x/a, £=y/b, Y(n) is unknown function to be determined axgd &) is chosen a priori,

the basic function ir€ - direction. The most commonly used is the eigenfunction obtained from the
solution of the differential equation of a beam vibration under the prescribed conditions of the stripe
at £=0 andé=1. The beam function in thedirection is considered as a strip element of the plate
and the flexural rigidityEl of the beam can replaced by<%?D,;, and forv=0.3, it can be just
approximated byEl =D,, . The free vibration of a beam of lergttan be described by the non-
dimensional differential equation.

d*x PA 4 2
— - —a wX, 9
df4 Dy ®)

and the boundary conditions for a beam elastically restrained against both rotation and translation are:

dx(é) Dd X(f) § ) _
Fr1 e D df D =0 F; X(f)+ =0 (20)
a T,a°
at& =0, where Fg, = D—l Fry = Dl_ and
11 11
FodX(&)  HIXDT_ o ¢ e —(—25 =0 (11)
ST
3
até =1, whereFg, = %ﬂ Fro = T;—a
11 11

The solution of the beam equation can be written as

Xi(&) = Asin(p;¢) + Beog(;€) + Csinh(y;§) + Deosh(p; &) (12)

4 _ PA 4 : . . .
where i = D_uw'a . One can obtain a system of homogenous linear equations by stratifying the

boundary conditions Egs. (10), (11)&t 0 and 1, the roots of the characteristic equation of this system
represent the eigenvalues and the corresponding eigenvectors can be obtained from the system of
equations. Thus, the shape function in xkdirection X; () can be obtained. Substituting the strip
function in Eq. (1), multiplying both sides b§(¢), and integrating from 0 to 1, one obtains

B4d4Y e E2D12+2D660| YinCom D, [DllEmm M Nya’Can

—Y,
dl7 D22 Cll’]2 AmmD "

Y_
DaoAnm ™ 2, Doz Ao

2 M
B dY 2 d 4 2
-2 52 Tm —-maw/D,Y, =0 n=1, 2, 3,..M 13
B D22 nz Ammdr] B D22 dr] 22'm ( )



Buckling and vibration of symmetric laminated composite plates with edges elastically restdaded

1
where w is the angular frequency an@=a/b is the aspect ratioA,~= 1[Xn(.f)xm(f)d.f, Bin=

128y )k, Con- gﬁ(—)x (£)0¢ . andEq giuxrn(f)df

It is to be noted that the orthogonality conditions yield andAfgr=0 andE,= 0 for m# n. By
transforming the fourth order differential Egs. (13) inkd-dumber of first order ordinary differential
equations, the following relation can be obtained at any nodgl ¢ihéhe divided plate:

dir]{F}j = [S]{F}; 1=L23..,N, (14)

%de Yd YD

i — 0
dndn®dn’ 0
solution of the above coupled system of equation is carried out using the transition matrix technique
[Zurmuhl 1976]

where, F};={Y, VoY Y}/, ¥ and {;is a 4M by 4M matrix, the

{F}i=[TI{F}i1 (15)

where [T]; is called the transition matrix of the stiipvhile {F}; and {};.; are the nodal vectors of
the boundaries andi-1. The solution of theM first order differential equations of motion (14) is
carried out using M-number of initial vectors ¥}, at n=0. Relation (15) is applied across the
divided plate until the final end at=1 is reached. ThereforeM2number of solution§, n=1,2,

., 2V can be obtained. The true solutioBsan be obtained as a linear combination of these
solutions as:

S = zl GS (16)

where C, are arbitrary constants. These constants can be determined by satiMymmBer of
boundary conditions aj = 1.

3.1. The boundary conditions atn =0andn =1

Using Eq. (8), the boundary conditions Egs. (6,#) at0, after some algebraic manipulation, can be
expressed as the folowing:

V12 M _ dY d Y l ﬂD66 Cnmd
,anz Amm = der] ﬁZDDzz 1252 A, dn =-F1Y,, a7)

b3T bR
where Fro=5— | andFpe=5- ® and &t=1

22 22

2

n V12 — dYn 1 ﬂDGG Cnmd
dr]2 B mz A R4d’7 BZDDzz 125”2 Anmdn

3
_bR,
, andr .
Dzz "Dy,

=—FnY,, (18)

where F;=—
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3.2. The eigenvalue problems

For the buckling problem, the matr&can be rewritten as a stander eigenvalue problem as:

[[K] =P [KgII[Y] = 0.0 (19)

where K] is the stiffness matrix K] is the geometric stiffness matrix due to the in-plane foregs,
andY are the eigenvalue and the eigenvector respectively. For the vibration problem, the eigenvalue
problem can be written as

[[K]-A’[MII[Y] = 0.0

where A is the natural frequency of the plate. An iteration method is used to calculate the buckling
loads and the frequency parameters.

4. Numerical results comparisons, and discussion

In order to establish a validation of our results, convergence and comparison studies are carried out.
In the following analysis, the designation CSCF means that the gdgesx=a, y=0,y=b are
clamped, simply supported, clamped and Free respectively. First, isotropic square plates with all edges
simply supported or all edges clamped are considered. Table 1 shows the convergence and the
comparison analysis of the buckling loads for all edges simply supported plates and clamped plates.
The buckling loads for SSSS and CCCC plates are shown for three cases, uniaxial bucklgng, biaxial

buckling anol2 pure shear buckling. The corresponding normalized buckling lodés, aré\_lrszhb,
N, hb 3 _ 3 _ _ 1D
Pob = —5—, Pcrsz&thb respectively, where) = l, v is the Poisson’s ration equal to
D D 12(1- V%)

0.3 in this case. It is very clear that the method has a stable and fast convergence only after few

terms. Also, the comparison with other numerical or exact solutions shows excellent agreement.
Second, orthotropic plates are considered for all edges are simply supported and all edges are

clamped. The material properties is giveryD,, = 10, D12 + Deg)/D22 = 1.67, and/ ;= 0.333. The

results are compared with those of Whitney (1987) for SSSS and CCCC plates and they are presented

Table 1 Buckling loads for isotropic simply supported (SSSS) and clamped (CCCC) plates

M SSSS CCcCcC

Uniaxial Biaxial Pure Shear Uniaxial Biaxial Pure Shear
1 4.0000 1.9999 10.4029 10.7043 5.3395 16.5411
3 4.0000 2.0002 9.3939 10.0929 5.3079 14.7780
4 4.0000 2.0002 9.3813 10.093 5.3079 14.7696
5 4.0000 2.0002 9.3494 10.0769 5.3047 14.7225
6 4.0000 2.0002 9.3470 10.0769 5.3047 14.7199
7 4.0000 2.0002 9.3426 10.0748 5.3041 14.6904

(Reddy 1995) 4.0000 2.0000 10.08

(Wang 1997a,b) 4.0000 9.3245 10.0740 5.3036 14.6421
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2
Table 2 Convergence of the shear buckling load for orthotropic [fajes Xyl

22

M CCcCcC (Whitney 1987) SSSS (Whitney 1987)
2 550.6842 768.0 332.152 392.9

3 504.5323 544.0 309.621 313.7

4 504.3081 309.157 310.2

5 503.474 505.2 308.592 309.0

6 503.4306 308.538

7 503.3612 503.6 308.471

TabIe3Convergence study of the natural frequencies of symmetric cross-play laminated (0/90/0) plates

_wa [P
A—hJ;

Ex/E11=20 Fr Fr A Az As A4 As As

20 20 20 2 25,9072 33.3291 69.4007 74.0579

20 20 20 3 25.9029 33.3291 49.5528 74.0579 69.3837

20 20 20 4  25.9029 33.3254 49.5528 74.0384 69.3837 74.5694
20 20 20 5 25.9025 33.3254 49.5506 74.0384 69.3815 74.5694
20 20 20 6  25.9025 33.3247 49.5506 74.5682 69.3815 74.0349
20 20 20 25.91*

*Rais-Rohani and Marcellier (1999)

in Table 2. The convergence is much faster than that obtained by Whitney (1987) for such plates.
Another convergence analysis for the natural frequencies of symmetric cross play laminated plates with
edges equally elastically restrained against rotakgirFr,=Frs=Frs=Fr) is considered in Table 3 and
compared of those by Rohani and Marcellier (1999). The material propertieS, #fg = 20,
Gi1/E11 = 0.5, vi,=.25. The convergence in this case is also fast and stable. In all cases, excellent
agreements are achieved.

In all calculation we usell = 6 andN =20. The biaxial buckling loads are presented in Table 4 for
different combinations of classical boundary conditions and compared with some of the exact solutions
(Lévy type solutions) 2obtained by Khedir (1988). The corresponding normalized buckling loads are

given by Pgs= N—gr% . The natural frequencies of elastically restrained against rotation of symmetric
mwn ke,
N A2
Table 4 Biaxial buckling loads for cross play laminated plates (0/€48,,=20 N, = N, andP, = —:%
1
B.C. Paro Exact (Khdeir 1988) B.C. Pero B.C. P
SSSS 9.591274 9.591 SCFS 3.433958 CCSS 11.33679
SSCS 14.02611 14.026 SCSC 15.07619 CCsC 17.90293
SSFS 1.981392 1.978 SCCC 21.92654 CCcCC 24.4725
SSCC 21.69436 21.709 SCFC 5.696648 CCFC 8.507665
SSFC 4.688254 4.683 SCSF 3.43304 CCFF 5.678682
SSFF 1.41948 1.420 SCCF 5.694448 SCSS 9.749077

SCFF 2.68544 SCCS 15.07619
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Table 5 Comparison of the natural frequency of symmetric cross-play laminated plate with edges elastically

2
restrained against rotation = wa L

Ey
Fri=Fre  Fre=Frs ExJEn A Ref* Az Az Ay As
0.25 0.25 10 11.059 11.06 18.963 34.503 37.431 43.016
0.25 0.25 20 14.542 14.54 22.234 38.992 51.827 56.399
0.25 0.25 30 17.24 17.34 25.087 43.032 63.017 98.527
0.25 0.25 40 19.745 27.05 46.727 72.5
20 20 10 19.133 19.14 26.987 42.556 49.868 55.468
20 20 20 25.902 25.91 33.325 69.382 49,551 74.035
20 20 30 31.239 31.24 38.64 55.684 82.784 84.503
20 20 40 35.788 43.309 61.208 97.302 90.103

*Rais-Rohani and Marcellier (1999)

cross-play plate Hpi=Fro=Frs=Frs=Fgr) are presented in Table 5. The results are compared with
those of Rohani and Marcellier (1999).

Tables 6 shows the natural frequencies of elastically restrained symmetric Cross play plates with
extreme values of the elastic restraints coefficients (classical boundary conditions) with some
comparison of results of exact solutions available in the literature. From the boundary condition
Egs. (10), (11), (17), (18), it can be seerras, «© andF; - ¢© we obtain clamped edges. When,

Fr—> 0 andFr -~ <© , the boundary condition approaches the simply supported case and when,
Fr - 0 andF; - 0, the boundary condition approaches the free case. In all cases, the results agree
very well with the corresponding cases. The material propertiegs; @&, = 0.5,v;, = .25 and for
different E»,/E;;. Table 7 shows the natural frequency of all edges equally restrained against
translation and rotation. The material properties are the same as in Table 6. In order to investigate
the effect of the elastic restrained against translation coeffiéieran the buckling loads of
symmetric cross play laminated plates under different combination of in-plane loads, parametric
studies are carried out and the results are presented in Fig. 2 for biaxial loads for different ratio of
r« = Nx/ Ny and in Fig. 3 fom, = n, and differentr,y

It can be concluded that the elastic restrained against translation codffidiesta significant effect
only in the range 0.1 Er< 100 and forFr < 0.1 the buckling loads are mainly affectedriyThe
effect of r, on the buckling are more significant at higher value&fFr > 100). Also, It can be
concluded the same for the other casgof

Finally, we investigated the effect of rotational and transversal restraints coefficients on the natural
frequencies of plates. Since there are numerous amounts of data for this case, we limited our self in this
paper for two cases, namely simply supported inxtd@gection while the other two directions are
elastically restrained against both rotation and translation (S-S-ER-ER) and clamped-clamped in the
x-direction while the other two edges are elastically restrained in both rotation and translation (C-C-ER-
ER) with equally elastic restraintsyet 0, andy = b. In Figs. 4(a, b), the frequency parameters surface
contours of the fundamental mode of S-S-ER-ER and C-C-ER-ER plate$#{,=Fr, Frz=F4=F7)
are plotted vs. the elastic restraint coefficients against translatiiadas and the elastic restraint
coefficients against rotation asaxis. We can observe that the frequency paramigtés almost
constant for small value &% (Fr< 1 for S-S-ER-ER anB+ < 10 for C-C-ER-ER), for moderate value
of Fr (1-10 <F+< 1000 and ) the frequency parameter is mainly controlldge,gnd for higher values
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Table 6 The natural frequency of elastically restrained cross-play laminated plates

Classical BC Fm Fri Fre Fro Frs Frs Fra Fra EsdEn A ('fggg)” A As As
SSCC 0 c©o 0 o o o oo oo 10 21.117 26.393 39.344 56.599
0 o 0 o ©o o oo oo 20 29.164 29.166 33.856 46.826 69.425
0 o 0 ©© o0 o o oo 30 35428 35431 39.949 53.27 97.114
0 o 0 o0 o o oo oo 40 40.741 40.743 45.229 59.015 84.622
Paik and 40.743 45.233 59.023
Thayamballi (2000)
SSFF 0 © 0 oo 0 0 0 o 10 3.294 5.884 22.795 29.668
0 oo 0 oo O O 0 O 20 3.722 3.721 14.888 30.405 37.947
0 oo 0 o 0O O O 0 30 4106 4.106 16.422 36.459 43.479
0 oo 0 oo 0 0 0 o0 40 4.457 4.457 17.826 42.68 48.38
Paik and 17.827 40.113
Thayamballi (2000)
SSFS 0O o 0 oo 0 0O 0 o 10 4.093 14.037 24.429 30.531
0 oo 0 oo 0 0 0 oo 20 4447 4.443 15.655 28.941 34.271
0 o 0 oo 0 0 0 o 30 4774 4770 17.124 37.653 49.596
0 oo 0 oo 0 0 0 oo 40 5.08 18.476 40.758 53.812
Paik and 5.076 18.473 40.761
Thayamballi (2000)
SSCF 0 o 0 © o o 0 O 10 5.425 14.684 21.767 28.982
0 oo 0 o o o 0 0 20 6.52 6.524 16.578 29.437 35.786
0 o 0 o o o 0 O 30 745 7.443 18.261 35.485 41.465
0 o 0 o o o 0 O 40 8.274 8.269 19.794 40.643 46.45
Paik and 8.269 19.789 41.505
Thayamballi (2000)
SSSF 0O @ 0 o© 0 o 0 O 10 3.296 7.859 17.291 29.681
0 o 0 o O o 0 O 20 3.722 14.892 33.507 37.371
0 o 0 o 0O o 0 O 30 4.106 16.424 36.954 40.827
0 o 0 o O o 0 0 40 4.457 17.827 40.109 55.342
SSSS 0 co 0 o O o 0 o 10 10.60 10.650 18.64 34.247 36.99
0 o 0 o O o 0 oo 20 13948 13.948 21.754 38.631 51.20
0 o 0 o O o 0 oo 30 16.604 16.605 24.482 42582 24.48
0 oo 0 o 0O o 0 o 40 18.891 26.936  46.2
SSCC 0 o 0 o o oo oo oo 10 21.116 21.118 26.393 39.344 56.598
0 o 0 o o o oo oo 20 29.163 29.17 33.856 46.826 69.424
0 c© 0 o o oo oo oo 30 35428 35.43 39.949 53.269 97.201
0 o 0 o o o o oo 40 40.74 45.228 59.014 84.622
CCCC ©© ©o© oo oo oo oo oo oo 10 22.308 31.077 48.243 63.327
© ©o o oo oo oo co oo 20 30.244 38.528 56.375 79.612
© ©o o oo oo oo oo oo 30 36494 44,758 63.482 92.843
© ©o o oo oo oo oo oo 40 41.82 50.222 69.872 101.251




448 Ahmed S. Ashour

Table 7 The natural frequency of symmetric cross-play laminated plate with edges equally elastic restrained
2
against rotation and translation (M=g)= & | £

h NE;;
Fr=Fr For=Fu1 A Az A3 A4 As

0.25 20 0.935 1.349 3.411 3.727 8.847
0.25 30 1.136 1.561 4.168 4.454 9.769
0.25 40 1.306 1.749 4.807 5.077 10.612

1 20 1.863 2.596 6.373 6.952 9.839

1 30 2.262 3.015 7.788 8.311 10.892

1 40 2.601 3.383 8.982 9.477 11.853

10 20 5.778 6.863 13.707 14.300 14.755

10 30 7.017 8.117 16.039 16.743 17.695

10 40 8.067 9.202 17.609 19.308 20.211
100 20 16.218 17.645 22.983 28.060 29.250
100 30 19.692 21.120 26.623 34.235 35.357
100 40 22.638 24.099 29.821 39.455 40.555
1000 20 27.438 32.308 39.875 51.656 61.603
1000 30 33.207 38.101 45,918 58.349 75.159
1000 40 38.112 43.121 51.253 64.341 86.616
1000000 20 30.245 38.529 56.380 79.615 83.601
1000000 30 36.495 44.759 63.486 92.846 96.986
1000000 40 41.821 50.223 69.875 101.253 111.687

80
+rx=0.1
—2-rx=0.3

D
(=}

Buckling Load
S
(=}

1.0E-05 1.0E-02 1.0E+01 1.0E+04

Elastic Restrained Against Rotation @,

Fig. 2 The buckling loads of symmetric cross play laminated plates under biaxialrloadik { N,)

of Fy the frequency parameter is mainly controlledRyFigs. 5(a, b) show the surface contours of the
second mode for the same two cases. It is observed that for this case for small values or higher values of

both Frand Fy, the second mode frequency parameter is almost constant while in the medium range
both Fr andFg affect the frequency parmater.
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Buckling Load

1.0E-05 1.0E-02 1.0E+01 1.0E+04

Elastic Restrained Against Rotation @,

Fig. 3 The buckling loads of symmetric cross play laminated plates under different combination of in-plane
loads (N = Ny, rxy = Nxy/ N,

(@ A

(b) A

Fig. 4 The frequency parametets for laminated plate with edges elastically restrained against both motatio
and translation (a) S-S-ER-ER (b) C-C-ER-ER

(a) A

Fig. 5 The second mode frequency parametgrfor laminated plate with edges elastically restrained against
both rotation and translation (a) S-S-ER-ER (b) C-C-ER-ER
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5. Conclusions

The vibration and buckling of cross-ply symmetrically laminated plates with edges restrained against
rotation and translation is investigated using the finite strip transition matrix technique. The numerical
results for isotropic plates and laminated plates with single orthotropic layer are presented and
compared with some available results. In all cases considered in this paper, fast and stable convergences
have been achieved after few terms of the series solution and the results agree very well with other
methods. Also, the effect of the edge restrained coefficients on the buckling loads and frequency
parameters for three layer cross-ply symmetrically laminated plates has been investigated.
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