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Abstract.  Truss members built-up with double angles back-to-back have monosymmetric cross-section
and twisting always accompanies flexion upon the onset of buckling about the axis of symmetry.
Approximate formulae for calculating the buckling capacity are presented in this paper for routine design
purpose. For a member susceptible only to flexural buckling, its optimal cross-section should consist of
slender plate elements so as to get larger radius of gyration. But, occurrence of twisting changes the situation
owing to the weakness of thin plates in resisting torsion. Criteria for limiting the leg slenderness are discussed
herein. Truss web members in compression are usually considered as hinged at both ends for out-of-plane
buckling. In case one (or both) end of member is not supported laterally by bracing member, its adjoining
members have to provide an elastic support of adequate stiffness in order not to underdesign the member. The
stiffness provided by either compression or tension chords in different cases is analyzed, and the effect of
initial crookedness of compression chord is taken into account. Formulae are presented to compute the
required stiffness of chord member and to determine the effective length factor for inadequately constrained
compressive diagonals.

Key words: truss; double-angle section; flexural-torsional buckling; width-thickness ratio; elastic
support; lateral stiffness; bracing; effective length.

1. Introduction

Trusses with members built-up with twin angles back-to-back are very popular in mill building
construction. These memberglwmonosynmetric section buckle in a flexural-torsional pattern about
their axis of symmetry. But, for a long period, this buckling problem has often been treated simply as
flexural buckling, leading to underdesign of these members.

Marsh (1997) pointed out the necessity of considering flexural-torsional buckling for single and double
angle struts and presented simplified formulae in this regard. But the simplification effort focused
mainly on two equal-leg angles in close contact with scare interconnection. This study presents
simplified formulaeready-to-use for routine design work that covers both equal- and unequal-leg
angles, with stitch plates in-between their backs.

When a member is susceptible only to flexural buckling, its constituent plate elements should be
slender so as to obtain larger radius of gyration. But, in case twisting interacts with flexion, sections
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with slender plate elements may no more be economic owing to their weakness in resisting torsion.
This is especially true when twisting is predominant in the buckling pattern. Advisable width-thickness
ratios for double-angle compression members are given in this paper.

It is a common practice to take the out-of-plane effective length of a truss compressive diagonal to be
equal to its geometric length. In so doing, it is taken for granted that both ends of this diagonal are
supported laterally. In the actual layout of the truss-bracing system, only a part of panel points is
provided with lateral bracing, and the chord members concurrent at the unsupported points have to act
as elastic support to the diagonal.

Fisher (1983) stressed for the first time on the importance of tension chord bracing to stabilize the
compression diagonal and analyzed the restraining effect of lower chord to web member. But the
benefit of the tensile force to stiffen the chord was overlooked in his study, thus leading to too stringent
requirement of bracing system.

Comprehensive analysis is carried out in the present work on the restraint provided by both
compressive and tensional chords, taking account of their axial force. The effect of geometric
imperfection on chordtiffness as well as that of twisting is discussed. Formulae are presented for
checking the adequacy of chord stiffness and for determining the effective length of web member in the
event of inadequate stiffness.

2. Practical formulae for flexural-torsional buckling
2.1. Equivalent slenderness ratio
The common approach to deal with flexural-torsional buckling is to find out an equivalent slenderness ratio

thus transforming the problem into a flexural buckling one. This equivalent slenderness as determined
by elastic stability theory is given by the following expressions

(1a)

and (1b)

where A, — slenderness ratio about the axis of symmgt, = o,/ iy (Fig. 1)

O el 0
Az — slenderness ratio for torsional bucklin?é,: ’E {%[Glﬁ 5 ‘*’[ﬂ
k- factor, k=1-eyi lo loy O

& — ordinate of shear center

io — radius of gyration about the shear cenigr €+ +i;
Gl - St. Venant torsional rigidity

El, — warping torsional rigidity

The above formulae (1a) and (1b) although different in format, are totally equivalent in themselves.
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Fig. 1 Equal-leg double-angle sections

They are preferable for use in casgs A, and Ay < A, respectively. The first criterion means that
flexural buckling is weaker than torsional one so thashould be calculated on the basegoOn
the other hand, when twisting governs at the onset of buckling, Eqg. (1b) has to be used.

2.2. Simplified formulae for design use

Formulae (1a) and (1b) are rather complicate for routine design work and can be simplified by
adopting approximate geometric properties of the section. For sections built-up with two equal-leg
angles, we can write (Fig. 1)

iy=0.30%, e,=0.236
and assuming a gap width of Ot T®tween angle backs
iy=0.44D
The St. Venant torsion constant of the two bare angles is equal to

ly = At/3

A being the total sectional area, whereas that of the sectiontitatin @ate is equal to

| _2(b-9t° b2.7%)°
t2 — 3 + 3

or approximatelyl, = 1.98A8 .
For the compound member, assuming that 15% of its lengtledWith gusset and stitch plate, the
St. Venant torsion constant will be the weighted mean

l,=0.85,,+0.19,,=0.58At"

Sections built-up with unequal-leg angles (Fig. 2) are treated similarly and the leg width ratio adopted
is b, :b,=1.55.
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Fig. 2 Unequal-leg double-angle sections

The warping constant, is neglected so that, reduces to

A, =5.070 /A1,

The above approximation leads to the following simplified expressions of equivalent slenderness ratios.
For double angles of equal legs (Fig. 1a)

0 a0
A=A A+24D 5 yhenwvi<o.58,,/b (2a)

0 1B¢ 0

O 12£0
Ap=3.920+—2F  whenb/t>0.58,,/b (2b)

t0 18.60"0

For double angles of unequal legs with short leg outstanding (Fig. 2a)

O 1.09,0
A= A+=—=*0 whenbyt<0.48,, /b, (3a)
O 12820
b,0 12t O
Ay,=5.1-1+—*— whenb,t>0.48,,/b (3b)
A 174000 v

For double angles of unequal legs with long leg outstanding (Fig. 2b)

O 0.1%;0
Ay, = Ad+=—5—0 whenby/t<0.56,,/b, (4a)
O g’ 0
b,0 12t° O
= 3.7+ —2— h . 4
Ay,=3 t%HSZ.?b‘E whenb,/t>0.56,,/b, (4b)
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2.3. Experimental verification

Kennedy and Murty (1972) reported experimental results of twelve sets of equal-leg double-angle
specimens subject to concentric compression. Seven of them failed by flexural-torsional buckling.
Except the set having unusual leg width-thickness ratio of 18.7, the remaining six sets, easingompr
three identical specimens, are compared with the bearing capacity calculated with equivalent
slenderness ratio of Egs. (2a) and (2b). Table 1 reveals that test results agree well with calculated one:
Comparison is carried out between strength reduction fagtdrise experimentap, is the ratio of the
buckling stress to the yield strength of specimen, namely

¢ = Teyr

fy

The calculated strength reduction facfpris obtained right away with equivalent slenderness ratio
Ay, from the specific table of the Chinese Code for Design of Steel Structures (GBJ 17-88). All the
ratios ¢ /¢ are larger than unity, with mean value 1.075 and standard deviation 0.059.

Table 1 Correlation between suggested formulae and testedatd-leg angles

Specimen set  Sectidmxt (mm) b/t f, (MPa) Ay Ayz o o o /P
DH2 51x3.2 15.6 315.8 53.2 62.2 0751 0.738 1.02
DH4 63.5%4.8 13.2 349.6 43.3 52.7 0.821 0.781 1.05
DH5 76.2x6.4 115 374.4 36.2 46.6 0849 0.814 1.05
DF1 44.5x3.2 13.0 333.7 29.6 53.2 0.890 0.789 1.13
DF3 51x4.8 10.5 320.6 25.8 42,6 0.882 0.857 1.03
DF5 76.2x6.4 11.3 393.7 17.8 488 0.932 0.798 1.18

Cao (1983) conducted a test program comprising five specimens of 75x50x6 double-angle struts with
short leg outstanding. The gap between angle backs was 6 mm and the yield strength of the materia
326.3 MPa. Table 2 shows the comparison of tested and calculated strength reductigh futgrs The
ratio ¢/¢. ranges from 1.13 to 1.25 with mean value 1.188 and standard deviation 0.039. The higher
bearing capacity of test specimens may be attributed to flat platens 25 mm thick welded to their ends
which enhanced the twisting resistance as explained by Marsh (1997).

Table 2 Correlation between suggested formulae and testdatqual-leg angles

SpeCimen Ioy (Cm) Ay Ayz ¢t ¢c ¢t /¢c
SJi-1 255 123 126.6 0.374 0311 1.20
SJ2-1 205 99 103.5 0.475 0.422 113
SJ2-2 205 99 103.5 0.492 0.422 117
SJ2-3 205 99 103.5 0.503 0.422 1.19

SJ3-1 155 75 80.9 0.734 0.585 1.25
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3. Selection of width-thickness ratio

The behavior of flexural-torsional buckling may be classified in two categories where either flexion
or twisting is the predominant mode of defation. Egs. (2) through (4) are thus divided into two
expressions, the first of which applies to the case where flexion prevails @tergywwhile the second
applies to the case vice versa.

It can be seen from Egs. (2) through (4) that the equivalent slendernedg, iati@ry sensitive to the
increase of the leg slenderndss in the range Eqgs. (2b)~(4b) apply. Fig. 3 depicts the strength
reduction factorp versus member length, of two sections of about the same cross-sectional area but
with quite differentb/t ratios. The section built-up with two angles £60 has higher bearing capacity
for larger value of unsupported lendgh This capacity keeps on increasing substantially with decreasing
loy up to 4.4 m. On the other hand, the section composed of two angki61dving smaller radius of
gyration, lags behind in capacity for larigg but exceeds the wider and thinner sectiolgyat3 m. The
turning point atloy=4.4 mm for angles 16Q0 is the boundary between Egs. (2a) and (2b), and can be
obtained fromb/t = 0.58l,,/b. This latter expression means actually the equllityA;, for twin equal-leg
section. In the cause of material saving, it is always advisable to choose angle size that fulfills the criterion

A< A (5)

The leg width-thickness ratios satisfying this expression are given in Table 3, for the three categories of
double-angle section.

0.8
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Fig. 3 Comparison of sections with wide and narrow leg

Table 3 Advisable width-thickness ratios of double angles section

A Equal-leg angle Unequal-leg angle
Y b/t Short leg outstandini,/t Long leg outstanding/t
=70 16 10 16
60 15 10 16
50 125 10 135
40 10 8 10.8

30 7.5 6 8.1
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4. Chord stiffness requirement for supporting web members
4.1. Elastically supported struts and effective length

Struts elastically supported laterally at both ends may be dealt with as hinged-hinged only when the
stiffness of the elastic supports satisfy the following condition (Simitses 1976)

S1S/(S1+$)2Nea/lg (6)

where S, and S, - stiffness of elastic support at upper and lower ends respectively
Neq — Euler critical load of the diagonalNe,= 77El,q/15
lya — moment of inertia of the diagonal for out-of-plane bending
ls — length of the diagonal

In case one of the ends is supported by lateral bracing, Eq. (6) reduces to

S> Ngq/ g (7)
If criterion (6) or (7) is not satisfied, the diagonal must have an effective length factor larger than 1.0,
namely
_mEly $i+S
== = 8
ol 1SS ©
or

_ 17 |Elyq
== | =X 8a
H Id/IdS (8a)

4.2. Support stiffness provided by chord members

Consider the compressive diagorfalsandBG of the truss shown in Fig. 4, which has lateral bracing
at jointsA, C andD, F, H. The end diagon®@E has hinged support at its lower end and an elastic lateral
support at its upper end while the diagoB@ has elastic lateral supports at both ends.

/D lateral bracing A )_%

Fig. 4 Web members in compression
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Fig. 5 Upper chord lateral stiffness

The stiffness of the lateral elastic supporEa&ndG provided by the upper chord can be calculated
according to the schemes of Fig. 5. Subject to a concentrated later® laladointsE and G, the

chordsDF andFH deflect out of the truss plane ldyand the relevant stiffness is given by
S=0Q/0
The analytical solution of the more general case (Fig. 5b) can be easily obtained as

w0 0 w0 ¢l

Q_8El ‘9t w0 19U w30 uf U o
0 @ i g lg Wip ©

us "~ tgu, u "~ tgu,0

_QF " _QF " _ejm
- — - — 3~ -
T20EL P 2El, 2\ Ely

A simpler solution by Rayleigh-Ritz method, adopting a deflection function

. TZ . 2TZ
X = §;Sin—+J,sin—
a a

where

IS
9 —L°1— oy - 32 10
2 { e o (P20 —1D) (10

The error of this expression is within 2% and can be further simplified by neglecting the last term of

minor importance. Thus
El
Se=" 12 |
2a°
This expression, corresponding to the case where equal and oppositéforég& act at the two

ends, can be used for routine design purpose.

(11)
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Fig. 6 Lower chord lateral stiffness

For the end pandF, P, =0 andP, =P (Fig. 5a), Eqg. (11) reduces to

4 2
= e C[l—z%} (12)
2a T

Similarly, the stiffness of the lateral elastic suppo g@irovided by the lower chordC is calculated
according to the scheme of Fig. 6 and the solutions obtained are:
by analytical approach

uy U

hu' P+= hu! /& 2 2' 2

SOI_8|5|ytt Uag wid s 0 wid ui uj 13
b’ g Yagln uip

_u’é _thulg D u’i _thui D

2 2 2 2
o, Us [ el UG, U

and by Rayleigh-Ritz approach with further simplification
4
mEl 2
= —ﬁ[1+—(2u’2+ u’ J (14)
S’Jt 2b3 I'F 1 2

, _b Ty , _b T, ,_b [T +T,
U1=— -, U2=— I U3 == [—
P 2)(El,, 2y El,

b being the distance between laterally braced points.
Trusses with longer span may have lower chord unsupported by a length of three panels as shown it
Fig. 7. To solve the lateral stiffness at pdnandC analytically will be too involved. The problem is
first solved by replacing chord tensi®n T, andT; by the average value= (T, + T, + T3)/3 in all the
three panels (Fig. 7b). The analytical solution in this case of symmetry is

where

El (3u')’shar
= S
a b® [u’shm’—shu’(shzu’ +shu')J (15)

where
b /T

3\Ely,
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Fig. 7 Lower chord of three panels

The Rayleigh-Ritz solution using a single half-wave of sine curve as deflection function is

4
El
S = _y_"3b3 11+0.10X 3r)?

and proves itself to be accurate enough by comparison to Eq. (15).

The above approximate solution is afterwards verified by the firdmezit method, with chord
tension increasing from, to Ts. It is found that the difference between deflections at [®artd point
C cannot be overlooked. Through parametric calculation and regression of results, it can be shown tha
the lateral stiffness at poit andC may be obtained from same Eq. (16), but with diffexént

for point B

u = D [0.65T,+0.35T,
® 73 Ely,

for pointC

o =D 05T+ Ty
73| El,
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Fig. 8 Compression chord with initial crookedness

4.3. Influence of imperfection

The foregoing analysis is based on perfectly straight members. As compression chordtaeteens
initial crookedness, due attention should be paid to its effect. Assuming an initial deflection in the form
of sine curve

s JIZ
Xg = 505"13

the deflection at mid-span of the member caused by simultaneous action of latef@ldnddaxial
compressiorP can be obtained by superposition (Timoshenko and Gere 1961) (Fig. 8).

3
-0 1,0 Qa 3(tgu-u)
0 5°Dl—P/PE 15 48EIyCLS B

or

wn)’ Qa’ 3(tgu—u)
_1—(2u/n)25°+48E|ch3 U3 (18)

alPp
u=z
2)Ely

The maximum allowable initial deflectia® is a/ 1000, whereas the deflectio@#®/ 48El,] due to
a concentrated loa@ is usually of the ordea/ 500, i.e., two times the initiah. Taking account of the
deleterious effect of residual stresses on the member stifiyessenlarge to

where

5= -8
0" 48El,,
and Eg. (18) becomes
_ Q& [Btgu-u)n, _(2wn)’
5= 48EIyC[D ¢ 01w mz} (29)

For a member devoid of imperfection, the second term at the right side of Eq. (19) vanishes. Therefore, the
initial imperfection magnifies the deflection by the factor
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_ (2w n)? u?
= 1+1_(2u/n)2%( =0 (20)

n

Double-angle trusses often keep constant cross-section in their compression (or tension) chord sc

that the latter is not fully stressed except at mid-spea2pP./3 = %TEZTEV-ZIC is deemed large enough

to be introduced into Eq. (20). The factprthus obtained is 1.67 and the imperfection reduces the
stiffness of member to 1/1.67 = 0.6 times that of a perfect §pen Egs. (11) and (12) should be
multiplied by 0.6 to obtain the upper support stiffn8ss

Tension in chord members reduces tli@iral bow in lieu of enlarging it and its fetct on stiffness
can be neglected. But, residual stresses still exist and a stiffness reduction factor of 0.85 is
recommended fogy of Egs. (14) and (16) to obtain the lower support stiffi®ss

In case a diagonal is laterally supported by rigid bracing at its top but by tension chord at the bottom,
Eq. (7) is still valid. The limiting value of chord unsupported length satisfying this criterion is given by

b<1,3/0-85y1,/1,q (21)

where
2(2uf+u’;
V%= %F{H %} for 2-panel pattern (Fig. 6)
and
_r 2 _
V= 5(1+ 0.91u'%) for 3-panel pattern (Fig. 7)

4.4. Example of calculation

The member forces and cross-section of a truss of 24 m span depicted in Fig. 9 are given in Table 4
The laterally braced points are shown in Fig. 9.

End diagonalD, is laterally supported at its lower end but elastically supported at the top. The
stiffness provided by the upper chord is calculated by Eq. (12) which is to be multiplied by 0.6. We

7
G G, Cy Va o%%

Jm

Q\ Q’\' Q"o

lateral bacing
6x4m=24m 7

Fig. 9 Example of calculation
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Table 4 Member forces and cross-section properties

Upper chord Lower chord Compression diagonal
C C Cs Ty T, Ts D, D,
+183.3 +450.0 +583.3
Forces 3667  -5333  -600.0 -330.6 -210.4
(kN) Mean: +405.5
Sections T 110x8 _ 100x7 I 125x80x¢ | 80x7
ly (cnf) 822.6 549.0 342.2 293.6

have successively

u=23/C —200/—3667 __pg3
2/El,, ~ 120600« 822.6

4 2
El
S = "—ﬂ[l—zlJ =10.6 kN/cm

and

2a° it

The stiffness required is

Neg _ 7By _ r£x20600x342.2
lg 13 360.6

=1.48 kN/cm<0.6x10.6=6.36 kN/cm

This end diagonal may be calculated with effective length factof.
DiagonalD, The stiffness provided by the upper chord is calculated by Eq. (11) wie@93 as

obtained above, and
U, = 200 |233.3- 366.7_y o7
20600x 822.6

substituting these pameters into Eqg. (11), one obtains
S = 7.35 kN/cm, an®, = 0.6 S = 4.41 kN/cm

The stiffness provided by the lower chord is calculated by Egs. (16) and (17a) as follows

P JO.GSX 183.30.35x 583.3 , 1,
20600x 549

4
§, = TEX20000¢ 349, | 6 101 3 2.1] = 1.10 kN/cm
3% 1200

S, = 0.85S, = 0.935 kN/cm
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The left side of Eq. (6) is

SS _4.41x 0.935
S,+S, 4.41+0.935

0.77 kKN/cm

While the right side is

Neq_ Elyq _ 7£x20600x293.6_ 1 5 N /emrs 077 ki/em
lg 13 360.6

The support stiffness provided by the lower chord is inadequate to ensure the stability of @agonal
if its effective length factor is taken as 1.0. Even though a lateral bracing is provided at diagonal top, the
lower chord is still too flexible becau&s= 0.935 cannot satisfy Eq. (7). Notice that the slenderness
ratio of the lower chord/iy, = 1200/4.46 = 269 does not violate the allowable or recommended value of
350 (Chinese Code GBJ 17-88) or 300 (American Code AISC LRFD-99). The minimum laterally
unsupported length of the lower chord required for this last caBe @dn be obtained form Eqg. (21)
with y = 7£/3(1+0.91x 2.1%)=17:

_ / 249 17—
b= 360.6x 3/ 0.85¢55-x17= 1083 cm

unless the unbraced length of the lower chord is reduced to 8 m, the diagonal should be given an

effective length factor
_mEly _m [20600¢ 293.6 1.29
Ko lWTs,~ 360.6) 360.6x 0.77

4.5. The influence of twisting on chord stiffness

In double-angle trusses, members intersect jaind with their centroidal axes (or working lines)
away from chord shear cent&rThe chord, subject to lateral lo& will twist about its shear center
axis simultaneously with bending out of the truss plane. The deflection at the cé&htwldbe
increased thereby. Denoting the distaB&by e and the average compressiei+ P,/2 by Py, the
additional deflection a€ for compression chord is (Fig. 10)

5 = Q€a
L A(G1-P,i2)
Q
e 5 I
Pm 5 Pm |
S _Z—S}:*F

|

a2 a2

x

Fig. 10 Influence of twisting
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Calculation reveals that the magnitude of this additional deflection is within 10% of the flexural
deflection. For tension chord this addition is still smallecduse tension enhances the torsional
rigidity.

Considering that the tension diagonal at the joint has some stiffening effect, the additional deflection
due to twisting may well be neglected.

5. Conclusions

Although the double angle truss is quite popular in use for a long period, not all its features are yet
well understood or carefully treated, especially regarding the out-of-plane buckling of component
members. Twisting at the onset of buckling about the axis of symmetry not only reduces member
capacity but also affects the selection of cross-section. Demand on the stiffness of chord members fou
providing adequate restraint to compressive web members should be given due consideration in desigt
work as well. Bracing system of lower chord laid-out in accordance with the recommended slenderness
ratio of tension members may be inadequate.

Making use of the simplified formulae of equivalent slenderness ratio presented in section 2.2 of this
paper, the problem of flexural-torsional buckling of double-angle struts can be easily solved in
combination with any national design code and Table 3 gives guidance to avoid too wide angle size for
short compressive members.

Whether a compression diagonal can be treated as hinged-hinged strut has to be verified with criteria Eq
(6) or (7). If the relevant criterion is not satisfied, Eq. (8) or (8a) is to be used to determine the effective
lengthfactor for the diagonal. Compression diagona&sddly braced only at thepper joint, need restraint
from the lower chord whose minimum unsupported length can be obtained directly from Eg. (21).
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