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Abstract. Truss members built-up with double angles back-to-back have monosymmetric cross-se
and twisting always accompanies flexion upon the onset of buckling about the axis of symm
Approximate formulae for calculating the buckling capacity are presented in this paper for routine de
purpose. For a member susceptible only to flexural buckling, its optimal cross-section should cons
slender plate elements so as to get larger radius of gyration. But, occurrence of twisting changes the si
owing to the weakness of thin plates in resisting torsion. Criteria for limiting the leg slenderness are disc
herein. Truss web members in compression are usually considered as hinged at both ends for out-o
buckling. In case one (or both) end of member is not supported laterally by bracing member, its adjo
members have to provide an elastic support of adequate stiffness in order not to underdesign the memb
stiffness provided by either compression or tension chords in different cases is analyzed, and the eff
initial crookedness of compression chord is taken into account. Formulae are presented to compu
required stiffness of chord member and to determine the effective length factor for inadequately constr
compressive diagonals.

Key words:  truss; double-angle section; flexural-torsional buckling; width-thickness ratio; elas
support; lateral stiffness; bracing; effective length.

1. Introduction

Trusses with members built-up with twin angles back-to-back are very popular in mill bui
construction. These members with monosymmetric section buckle in a flexural-torsional pattern abo
their axis of symmetry. But, for a long period, this buckling problem has often been treated sim
flexural buckling, leading to underdesign of these members.

Marsh (1997) pointed out the necessity of considering flexural-torsional buckling for single and d
angle struts and presented simplified formulae in this regard. But the simplification effort foc
mainly on two equal-leg angles in close contact with scare interconnection. This study pr
simplified formulae ready-to-use for routine design work that covers both equal- and unequa
angles, with stitch plates in-between their backs.

When a member is susceptible only to flexural buckling, its constituent plate elements sho
slender so as to obtain larger radius of gyration. But, in case twisting interacts with flexion, se

†Professor
‡Associate Professor



262 Shaofan Chen and Mingzhou Su

orsion.
kness

l to be
al are
ints is
e to act

ize the
ut the
ingent

 both
metric
d for
r in the

s ratio
rmined

elves.
with slender plate elements may no more be economic owing to their weakness in resisting t
This is especially true when twisting is predominant in the buckling pattern. Advisable width-thic
ratios for double-angle compression members are given in this paper.

It is a common practice to take the out-of-plane effective length of a truss compressive diagona
equal to its geometric length. In so doing, it is taken for granted that both ends of this diagon
supported laterally. In the actual layout of the truss-bracing system, only a part of panel po
provided with lateral bracing, and the chord members concurrent at the unsupported points hav
as elastic support to the diagonal.

Fisher (1983) stressed for the first time on the importance of tension chord bracing to stabil
compression diagonal and analyzed the restraining effect of lower chord to web member. B
benefit of the tensile force to stiffen the chord was overlooked in his study, thus leading to too str
requirement of bracing system.

Comprehensive analysis is carried out in the present work on the restraint provided by
compressive and tensional chords, taking account of their axial force. The effect of geo
imperfection on chord stiffness as well as that of twisting is discussed. Formulae are presente
checking the adequacy of chord stiffness and for determining the effective length of web membe
event of inadequate stiffness.

2. Practical formulae for flexural-torsional buckling

2.1. Equivalent slenderness ratio

The common approach to deal with flexural-torsional buckling is to find out an equivalent slendernes
thus transforming the problem into a flexural buckling one. This equivalent slenderness as dete
by elastic stability theory is given by the following expressions

(1a)

and (1b)

where λy − slenderness ratio about the axis of symmetry y, λy = loy / iy (Fig. 1)

where λz − slenderness ratio for torsional buckling, 
where k − factor, 
where e0 − ordinate of shear center
where i0 − radius of gyration about the shear center, 
where GIt − St. Venant torsional rigidity
where EIω − warping torsional rigidity

The above formulae (1a) and (1b) although different in format, are totally equivalent in thems
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They are preferable for use in cases λy > λz and λy < λz respectively. The first criterion means tha
flexural buckling is weaker than torsional one so that λyz should be calculated on the bases of λy. On
the other hand, when twisting governs at the onset of buckling, Eq. (1b) has to be used.

2.2. Simplified formulae for design use

Formulae (1a) and (1b) are rather complicate for routine design work and can be simplifi
adopting approximate geometric properties of the section. For sections built-up with two equ
angles, we can write (Fig. 1)

 

and assuming a gap width of 0.75t between angle backs

iy = 0.441b

The St. Venant torsion constant of the two bare angles is equal to 

A being the total sectional area, whereas that of the section with stitch plate is equal to

or approximately .
For the compound member, assuming that 15% of its length is filled with gusset and stitch plate, th

St. Venant torsion constant will be the weighted mean

Sections built-up with unequal-leg angles (Fig. 2) are treated similarly and the leg width ratio ad
is b1 : b2 = 1.55.

ix 0.305b   eo 0.236b=,=

I t1 At2 3⁄=

I t2
2 b t–( )t3

3
-------------------- b 2.75t( )3

3
---------------------+=

I t2 1.98At2=

I t 0.85I t1 0.15I t2 0.58At2≈+=

Fig. 1 Equal-leg double-angle sections
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tios.
The warping constant Iω  is neglected so that λz reduces to

The above approximation leads to the following simplified expressions of equivalent slenderness ra
For double angles of equal legs (Fig. 1a)

(2a)

(2b)

For double angles of unequal legs with short leg outstanding (Fig. 2a)

(3a)

(3b)

For double angles of unequal legs with long leg outstanding (Fig. 2b)

(4a)

(4b)
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Fig. 2 Unequal-leg double-angle sections
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2.3. Experimental verification

Kennedy and Murty (1972) reported experimental results of twelve sets of equal-leg double
specimens subject to concentric compression. Seven of them failed by flexural-torsional bu
Except the set having unusual leg width-thickness ratio of 18.7, the remaining six sets, each comising
three identical specimens, are compared with the bearing capacity calculated with equ
slenderness ratio of Eqs. (2a) and (2b). Table 1 reveals that test results agree well with calculat
Comparison is carried out between strength reduction factors ϕ. The experimental ϕ t is the ratio of the
buckling stress to the yield strength of specimen, namely

The calculated strength reduction factor ϕc is obtained right away with equivalent slenderness ra
λyz from the specific table of the Chinese Code for Design of Steel Structures (GBJ 17-88). A
ratios ϕ t /ϕc are larger than unity, with mean value 1.075 and standard deviation 0.059.

Cao (1983) conducted a test program comprising five specimens of 75×50×6 double-angle stru
short leg outstanding. The gap between angle backs was 6 mm and the yield strength of the 
326.3 MPa. Table 2 shows the comparison of tested and calculated strength reduction factors ϕ t and ϕ c. The
ratio ϕt /ϕc ranges from 1.13 to 1.25 with mean value 1.188 and standard deviation 0.039. The 
bearing capacity of test specimens may be attributed to flat platens 25 mm thick welded to the
which enhanced the twisting resistance as explained by Marsh (1997).

ϕt

σc.yz

fy
----------=

Table 1 Correlation between suggested formulae and test data−equal-leg angles

Specimen set Section b×t (mm) b/t fy (MPa) λy λyz ϕt ϕc ϕt /ϕc

DH2 51×3.2 15.6 315.8 53.2 62.2 0.751 0.738 1.02
DH4 63.5×4.8 13.2 349.6 43.3 52.7 0.821 0.781 1.05
DH5 76.2×6.4 11.5 374.4 36.2 46.6 0.849 0.814 1.05
DF1 44.5×3.2 13.0 333.7 29.6 53.2 0.890 0.789 1.13
DF3 51×4.8 10.5 320.6 25.8 42.6 0.882 0.857 1.03
DF5 76.2×6.4 11.3 393.7 17.8 48.8 0.932 0.798 1.18

Table 2 Correlation between suggested formulae and test data− unequal-leg angles

Specimen loy (cm) λy λyz ϕt ϕc ϕt /ϕc

SJ1-1 255 123 126.6 0.374 0.311 1.20
SJ2-1 205 99 103.5 0.475 0.422 1.13
SJ2-2 205 99 103.5 0.492 0.422 1.17
SJ2-3 205 99 103.5 0.503 0.422 1.19
SJ3-1 155 75 80.9 0.734 0.585 1.25
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3. Selection of width-thickness ratio

The behavior of flexural-torsional buckling may be classified in two categories where either fl
or twisting is the predominant mode of deformation. Eqs. (2) through (4) are thus divided into tw
expressions, the first of which applies to the case where flexion prevails over twisting, while the second
applies to the case vice versa.

It can be seen from Eqs. (2) through (4) that the equivalent slenderness ratio λyz is very sensitive to the
increase of the leg slenderness b/t in the range Eqs. (2b)~(4b) apply. Fig. 3 depicts the stren
reduction factor ϕ versus member length loy of two sections of about the same cross-sectional area
with quite different b/t ratios. The section built-up with two angles 160×10 has higher bearing capacit
for larger value of unsupported length loy. This capacity keeps on increasing substantially with decrea
loy up to 4.4 m. On the other hand, the section composed of two angles 100×16 having smaller radius of
gyration, lags behind in capacity for large loy, but exceeds the wider and thinner section at loy = 3 m. The
turning point at loy = 4.4 mm for angles 160×10 is the boundary between Eqs. (2a) and (2b), and ca
obtained from b/t = 0.58loy/b. This latter expression means actually the equality λy = λz for twin equal-leg
section. In the cause of material saving, it is always advisable to choose angle size that fulfills the c

λy ≤ λz (5)

The leg width-thickness ratios satisfying this expression are given in Table 3, for the three categ
double-angle section.

Fig. 3 Comparison of sections with wide and narrow leg

Table 3 Advisable width-thickness ratios of double angles section

λy
Equal-leg angle

b/t
Unequal-leg angle

Short leg outstanding b2/t Long leg outstanding b1/t

�70000 16 10 16
60 15 10 16
50 12.5 10 13.5
40 10 8 10.8
30 7.5 6 8.1
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4. Chord stiffness requirement for supporting web members

4.1. Elastically supported struts and effective length

Struts elastically supported laterally at both ends may be dealt with as hinged-hinged only wh
stiffness of the elastic supports satisfy the following condition (Simitses 1976)

(6)

where S1 and S2 − stiffness of elastic support at upper and lower ends respectively
where NEd − Euler critical load of the diagonal, 
where Iyd − moment of inertia of the diagonal for out-of-plane bending
where ld − length of the diagonal

In case one of the ends is supported by lateral bracing, Eq. (6) reduces to

S≥ NEd / ld (7)

If criterion (6) or (7) is not satisfied, the diagonal must have an effective length factor larger tha
namely

(8)

or

(8a)

4.2. Support stiffness provided by chord members

Consider the compressive diagonals AE and BG of the truss shown in Fig. 4, which has lateral braci
at joints A, C and D, F, H. The end diagonal AE has hinged support at its lower end and an elastic lat
support at its upper end while the diagonal BG has elastic lateral supports at both ends.

S1S2 S1 S2+( )⁄ NEd l d⁄≥

NEd π2EIyd l d
2⁄=

µ π
l d

---
EIyd

ld

---------
S1 S2+
S1S2

--------------⋅=

µ π
ld
--- EIyd

ldS
---------=

Fig. 4 Web members in compression
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The stiffness of the lateral elastic support at E and G provided by the upper chord can be calculat
according to the schemes of Fig. 5. Subject to a concentrated lateral load Q at points E and G, the
chords DF and FH deflect out of the truss plane by δ and the relevant stiffness is given by

S0 = Q/δ

The analytical solution of the more general case (Fig. 5b) can be easily obtained as

(9)

where

A simpler solution by Rayleigh-Ritz method, adopting a deflection function

is

(10)

The error of this expression is within 2% and can be further simplified by neglecting the last te
minor importance. Thus

(11)

This expression, corresponding to the case where equal and opposite forces P1 + P2/2 act at the two
ends, can be used for routine design purpose.
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Fig. 5 Upper chord lateral stiffness
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hown in
For the end panel DF, P1 = 0 and P2 = P (Fig. 5a), Eq. (11) reduces to

(12)

Similarly, the stiffness of the lateral elastic support at B provided by the lower chord AC is calculated
according to the scheme of Fig. 6 and the solutions obtained are:

by analytical approach

(13)

and by Rayleigh-Ritz approach with further simplification

(14)

where

b being the distance between laterally braced points.
Trusses with longer span may have lower chord unsupported by a length of three panels as s

Fig. 7. To solve the lateral stiffness at point B and C analytically will be too involved. The problem is
first solved by replacing chord tension T1, T2 and T3 by the average value T = (T1 + T2 + T3)/3 in all the
three panels (Fig. 7b). The analytical solution in this case of symmetry is

(15)

where
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Fig. 6 Lower chord lateral stiffness
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The Rayleigh-Ritz solution using a single half-wave of sine curve as deflection function is

(16)

and proves itself to be accurate enough by comparison to Eq. (15).
The above approximate solution is afterwards verified by the finite element method, with chord

tension increasing from T1 to T3. It is found that the difference between deflections at point B and point
C cannot be overlooked. Through parametric calculation and regression of results, it can be sho
the lateral stiffness at point B and C may be obtained from same Eq. (16), but with different :
for point B

(17a)

for point C

(17b)

S0t

π4EIyt

3b3
-------------- 1 0.101 3u′( )2+[ ]=

u′

uB′ b
3
--- 0.65T1 0.35T3+

EIyt

------------------------------------=

uC′ b
3
--- 0.5 T1 T3+( )

EIyt

---------------------------=

Fig. 7 Lower chord of three panels
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4.3. Influence of imperfection

The foregoing analysis is based on perfectly straight members. As compression chord are senitive to
initial crookedness, due attention should be paid to its effect. Assuming an initial deflection in the
of sine curve

the deflection at mid-span of the member caused by simultaneous action of lateral load Q and axial
compression P can be obtained by superposition (Timoshenko and Gere 1961) (Fig. 8).

or

(18)

where

The maximum allowable initial deflection δ0 is a / 1000, whereas the deflection [Qa3 / 48EIyc] due to
a concentrated load Q is usually of the order a / 500, i.e., two times the initial δ0. Taking account of the
deleterious effect of residual stresses on the member stiffness, δ0 is enlarge to

and Eq. (18) becomes

(19)

For a member devoid of imperfection, the second term at the right side of Eq. (19) vanishes. There
initial imperfection magnifies the deflection by the factor
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Fig. 8 Compression chord with initial crookedness
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(20)

  Double-angle trusses often keep constant cross-section in their compression (or tension) c

that the latter is not fully stressed except at mid-span.  is deemed large en

to be introduced into Eq. (20). The factor η thus obtained is 1.67 and the imperfection reduces 

stiffness of member to 1/1.67 = 0.6 times that of a perfect one. S0c in Eqs. (11) and (12) should be

multiplied by 0.6 to obtain the upper support stiffness S1.

Tension in chord members reduces their initial bow in lieu of enlarging it and its effect on stiffness
can be neglected. But, residual stresses still exist and a stiffness reduction factor of 0
recommended for S0t of Eqs. (14) and (16) to obtain the lower support stiffness S2.

In case a diagonal is laterally supported by rigid bracing at its top but by tension chord at the b
Eq. (7) is still valid. The limiting value of chord unsupported length satisfying this criterion is give

(21)

where

for 2-panel pattern (Fig. 6)

and

 for 3-panel pattern (Fig. 7)

4.4. Example of calculation

The member forces and cross-section of a truss of 24 m span depicted in Fig. 9 are given in 
The laterally braced points are shown in Fig. 9.

End diagonal D1 is laterally supported at its lower end but elastically supported at the top.
stiffness provided by the upper chord is calculated by Eq. (12) which is to be multiplied by 0.6

η 1
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γt
π2

3
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Fig. 9 Example of calculation
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have successively

and

The stiffness required is

= 1.48 kN/cm < 0.6 × 10.6 = 6.36 kN / cm

This end diagonal may be calculated with effective length factor µ = 1.
Diagonal D2 The stiffness provided by the upper chord is calculated by Eq. (11) where u1 = 0.93 as

obtained above, and

substituting these parameters into Eq. (11), one obtains

S0c = 7.35 kN/cm,     and S1 = 0.6 S0c = 4.41 kN/cm

The stiffness provided by the lower chord is calculated by Eqs. (16) and (17a) as follows

u
a
2
--- C

EIyc

--------- 200 366.7
20600 822.6×
--------------------------------- 0.93= = =

S0c

π4EIyc

2a3
-------------- 1

2u2

π2
--------– 10.6 kN/cm==

NEd

ld

--------
π2EIyd

ld
3

--------------- π2 20600× 342.2×
360.63

-------------------------------------------= =

u2 200 533.3 366.7–
20600 822.6×
--------------------------------- 0.627==

u′ 400 0.65 183.3× 0.35 583.3×+
20600 549×

-------------------------------------------------------------- 2.14==

S0t
π4 20600 549××

3 12003×
-------------------------------------- 1 0.101 3 2.14×( )2

+[ ] 1.10 kN/cm= =

S2 0.85S0t 0.935 kN/cm= =

Table 4 Member forces and cross-section properties

Upper chord Lower chord Compression diagonal

C1 C2 C3 T1 T2 T3 D1 D2

Forces 
(kN)

-366.7 -533.3 -600.0
+183.3 +450.0 +583.3

-330.6 -210.4
Mean: +405.5

Sections 110×8 100×7 125×80×8  80×7
Iy (cm4) 822.6 549.0 342.2 293.6
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The left side of Eq. (6) is

While the right side is

The support stiffness provided by the lower chord is inadequate to ensure the stability of diagoD2

if its effective length factor is taken as 1.0. Even though a lateral bracing is provided at diagonal t
lower chord is still too flexible because S= 0.935 cannot satisfy Eq. (7). Notice that the slendern
ratio of the lower chord b/iyt = 1200/4.46 = 269 does not violate the allowable or recommended valu
350 (Chinese Code GBJ 17-88) or 300 (American Code AISC LRFD-99). The minimum late
unsupported length of the lower chord required for this last case of D2 can be obtained form Eq. (21
with :

unless the unbraced length of the lower chord is reduced to 8 m, the diagonal should be g
effective length factor

4.5. The influence of twisting on chord stiffness

In double-angle trusses, members intersect at a joint with their centroidal axes (or working lines
away from chord shear center S. The chord, subject to lateral load Q, will twist about its shear center
axis simultaneously with bending out of the truss plane. The deflection at the centroid C will be
increased thereby. Denoting the distance SC by e and the average compression P1 + P2/2 by Pm, the
additional deflection at C for compression chord is (Fig. 10)
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4.41 0.935+
---------------------------- 0.77 kN/cm= =

NEd
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Fig. 10 Influence of twisting
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Calculation reveals that the magnitude of this additional deflection is within 10% of the fle
deflection. For tension chord this addition is still smaller because tension enhances the torsion
rigidity.

Considering that the tension diagonal at the joint has some stiffening effect, the additional def
due to twisting may well be neglected.

5. Conclusions

Although the double angle truss is quite popular in use for a long period, not all its features a
well understood or carefully treated, especially regarding the out-of-plane buckling of comp
members. Twisting at the onset of buckling about the axis of symmetry not only reduces m
capacity but also affects the selection of cross-section. Demand on the stiffness of chord mem
providing adequate restraint to compressive web members should be given due consideration in
work as well. Bracing system of lower chord laid-out in accordance with the recommended slend
ratio of tension members may be inadequate.

Making use of the simplified formulae of equivalent slenderness ratio presented in section 2.2
paper, the problem of flexural-torsional buckling of double-angle struts can be easily solv
combination with any national design code and Table 3 gives guidance to avoid too wide angle s
short compressive members.

Whether a compression diagonal can be treated as hinged-hinged strut has to be verified with cri
(6) or (7). If the relevant criterion is not satisfied, Eq. (8) or (8a) is to be used to determine the ef
length factor for the diagonal. Compression diagonals laterally braced only at the upper joint, need restraint
from the lower chord whose minimum unsupported length can be obtained directly from Eq. (21).
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