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Abstract. The paper presents a model for analysing the shear-lag effect on the slab of twin-g
composite decks subjected to static actions, support settlements and concrete shrinkage, which are th
actions of interest in composite bridge design. The proposed model includes concrete creep behavio
shear connection flexibility. The shear-lag in the slab is accounted for by means of a new warping fun
The considered actions are then applied to a realistic bridge deck and their effects are discussed. The p
method is utilised to determine the slab effective widths for three different width-length ratios of the d
Finally, a comparison between the results obtained with the Eurocode EC4-2 and those obtained wi
proposed model is performed.

Key words:  composite steel-concrete bridges; effective width; flexible shear connection; long term beh
iour; shear-lag effect.

1. Introduction

Steel-concrete composite continuous decks are widely used in viaducts and bridges with m
span length (40-100 m). Such decks are usually composed of two steel beams, even in the case
concrete slabs (>20 m), that can be sustained by cantilevered cross-beams or be trans
prestressed (Fig. 1). As is well known, in this kind of structure the usual assumption of bending 
according to which the plane cross-sections remain plane after loading, is not realistic. Th
undergoes significant warping (Von Kármán 1924), which induces a non-uniform stress distribut
the slab cross-section, also known as shear-lag effect. Since this effect depends on the be
interface shear-flow, a refined model should take account of the shear connection flexibility, which
permits slip at the slab-beam interface and increases the global flexibility of the structure. Furthermore,
concrete creep behaviour, which produces a redistribution in time of the internal forces betwee
and steel beam modifying the stress distribution on the slab, should be included.

In practical applications, these aspects are usually considered separately by means of sim
methods suggested by the technical codes (EC4-2 1997). The non-uniform stress distribution
slab is evaluated by reducing the slab width (effective width method), while a modified You
modulus is introduced to take into account the concrete creep. Simplified rules are also emplo
evaluate the local effects on the connection produced by longitudinal concentrated forces or 
concrete shrinkage and thermal action on the slab. Furthermore, it is important to underline t
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formulae suggested by technical codes for the effective slab width were obtained and valida
external static actions (Sedlacek and Bild 1993); their use for other kinds of actions, su
geometrical actions (support settlements), concrete shrinkage and thermal actions, is not su
either by numerical analyses nor by experimental tests.

In this paper, a method for time-dependent analysis of shear-lag effect in twin-girder com
decks, also taking into account the shear connection deformability, is presented.

A model recently developed by the authors for single steel-concrete composite beams (Dezet al.
2001), is generalised to analyse twin-girder decks for any steel beam spacing, by introducing a 
warping function in order to describe the shear-lag effect on the slab. The main actions of inte
bridge design, namely static actions, geometrical actions (settlement of support) and concrete sh
are considered separately in order to evaluate the effective slab width and its variation in time fo
different action. The numerical solution is obtained by introducing a double discretization, alon
time domain and the beam axis, and by using the step-by-step procedures and the finite diff
method. With reference to a realistic bridge deck some numerical applications are carried out considereach
action separately; the results obtained are then compared with those given by the method of 
effective width suggested by the Eurocode EC4-2.

2. Model description

The typical steel-concrete composite twin-girder deck of Fig. 2 is considered. The external loa
positioned so as to avoid torsion, distortion, and transverse bending of the deck cross-section. 
to take into account the flexibility of the shear connection and the shear-lag effect of the slab, the
classical Newmark model (Newmark et al. 1951), which assumes the preservation of the plane cr
section for concrete slab and steel beam considered separately, is modified according to the R
hypothesis (Reissner 1946), for which the slab loss of planarity due to shear-lag is described
product between a fixed warping shape of the cross-section (warping function) and a scalar fun
defining the warping intensity along the beam axis (shear-lag function).

The shear-lag analysis in twin-girder decks should take into account the actual position of the
[Fig. 2(a)].

The problem can be solved by introducing two shear-lag functions, the first for the slab canti
and the second for the internal section, as shown in Dezi and Mentrasti (1985). Alternatively, on
shear-lag function may be used in conjunction with a more complex function which describes wa

Fig. 1 Twin-girder composite decks: (a) with cantilevered cross-beams; (b) with transversally prestresse
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throughout the slab width. This paper proposes a unique warping function with two different bra
[Fig. 2(c)].

By adopting the reference frame and the notations of Fig. 2, the displacement field, at a g
instant t, is then expressed by the following equations:

for the concrete slab (1)

for the steel beam (2)

in which v denotes the vertical displacement of the composite cross-section, wc and ws are the axial
displacements of the concrete slab and the steel beam, respectively, and f is the function which
measures the intensity of the slab warping described by the shape function ψ constant on the slab
thickness (Dezi et al. 2001). From Eqs. (1) and (2), the following expression of the interface 
can be easily derived:

(3)

Furthermore, as a result of Eqs. (1) and (2), the steel beam is subjected only to axial strain
both axial and shear strains are present in the concrete slab.

The analysis is performed under the hypothesis of linear elastic behaviour for the steel bea
shear connection, which is assumed to be spread along the beam length. 

The concrete is a viscoelastic material affected by axial and shear strain components; the following
two integral-type constitutive relationships are thus introduced:

(4)

(5)

where RE(t, ϑ) and RG(t, ϑ) are the axial and shear relaxation functions, namely the stress compo

u x y z  t;, ,( ) v z  t;( ) j wc z  t;( ) y yc–( )v′ z  t;( ) f z  t;( )ψ x( )+–[ ]k+=

u x y z  t;, ,( ) v z  t;( ) j ws z  t;( ) y ys–( )v′ z  t;( )–[ ]k+=

Γ z  t;( ) ws z  t;( ) wc z  t;( )– hv′ z  t;( )+=

σz x y z  t;, ,( ) RE t ϑ,( )d εz x y z  ϑ;, ,( ) ε ϑ( )–[ ]
t0

t

∫=

τxz x y z  t;, ,( ) RG t ϑ,( )dγxz x y z  ϑ;, ,( )
t0

t

∫=

Fig. 2 (a) Composite twin-girder deck; (b) shear stress distribution; (c) warping function
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at time t due to the relevant unit strain components (εz and γxz) applied at time ϑ and maintained
constant in time; ε is an imposed strain representing the concrete shrinkage or the thermal stra

Both these relationships are also considered for concrete under tensile stresses, which is sup
be uncracked.

The shear relaxation function is derived by means of the following equation:

(6)

which considers the concrete Poisson ratio υ constant in time. This approximation is usually accept
in literature (Chiorino et al. 1984) although experimental data regarding the variation in time of Poi
ratio are not available.

By assuming as unknowns the displacements previously defined (v, wc, ws and f ), the following
solving system is derived (Dezi et al. 2001):

(7)

(8)

(9)

(10)

where p is the vertical load; Ac, As and Ic, Is are the areas and the moment of inertia of the conc
slab and steel beam cross-section, respectively, Es is the Young’s modulus of the steel beam, ρ is the
stiffness per unit length of the shear connection and

, , (11a,b,c)

are the cross-sectional properties related to the slab loss of planarity. From a physical point o
Eqs. (7) and (8) translate the axial equilibrium condition of the concrete slab and the steel 
respectively; Eq. (9) translates the vertical equilibrium condition of the composite element and Eq.
(10) is an overall equilibrium condition between shear and axial stresses in the concrete slab.

The problem solution is obtained by completing the solving system with the relevant bou
conditions. As is well known, they express the kinematical effects of external restraints or, in the c
free boundary, the dual static conditions. For the sake of simplicity in Table 1 the most com
boundary conditions are reported. In particular, in the case of geometrical actions, the solving Eqs
(10) are homogeneous and the support settlement ν is imposed in the fourth kinematical condition.
Similarly, even in the case of uniform shrinkage or thermal action, the solving system is homoge
and the relevant strains ε are imposed in the first and in the last static conditions.

2.1. Warping function

As previously stated, the shear-lag analysis of twin-girder decks should take into account the

RG t ϑ,( ) 1
2 1 υ+( )
---------------------RE t ϑ,( )=

ρ ws wc v′h+–( ) RE t ϑ,( )d Ac wc″ ε′–( ) Sψ f ″+[ ]
t0

t

∫–– 0=

ρ ws wc v′h+–( ) EsAsws″ 0=–

hρ ws′ wc′ v″h+–( ) EsIsv″″ RE t ϑ,( )I cdv″″ p=
t0

t

∫+ +–

RE t ϑ,( )d Sψ– wc″ ε′–( ) Iψ f ″
I dψ f

2 1 υ+( )
---------------------+– 0=

t0

t

∫

Sψ ψda
Ac

∫= Iψ ψ2da
Ac

∫= I dψ ψ ,x
2 da

Ac

∫=
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position of the beams. In fact, even if the deck is symmetric, it cannot be divided into two symmetri
beams [Fig. 2(a)] and the usual warping functions available in literature are not suitable. For this
a new warping function describing the non-uniform stress distribution on the whole slab wid
introduced.

As a consequence of the small thickness of the slab, the warping function may be assume
constant on the slab thickness, so that ψ (x, y) ≅ ψ (x). The warping function can be derived from th
local equilibrium condition of the slab considered as a thin walled beam (Laudiero and Savoia 
Under the assumption of zero body forces and by neglecting the shear stress component τyz, the stress
τxz on the middle plane of the slab [Fig. 2(b)] can be obtained by integrating the following equilib
equation:

(12)

By assuming, at a first level of approximation, σz as uniformly distributed on the slab width, th
local longitudinal equilibrium condition for the concrete slab provides

(13)

where q is the global longitudinal shear flow due to the slab beam interaction. Thus, the follo
expressions for τxz are obtained:

(14a)

     (14b)

(14c)

where B and B1 are clearly defined in Fig. 2.

∂τxz

∂x
---------

∂σz

∂z
--------+ 0=

∂σz

∂z
-------- q

Ac

-----=

τxz x z,( ) q z( )
Ac

---------- x B+( )= B– x B1–≤ ≤

τxz x z,( ) q z( )
Ac

----------x= B1– x< +B1≤

τxz x z,( ) q z( )
Ac

---------- x B–( )= +B1 x< +B≤

Table 1 Boundary conditions

Kinematical conditions Static conditions

wc = 0

ws = 0

= 0

v = v

f = 0

RE t ϑ,( )d Ac wc′ ε–( ) Sψ f ′+[ ] 0=
t0

t

∫

EsAsws′ 0=

v′ RE t ϑ,( )I cdv″ EsIsv″– 0=
t0

t

∫–

RE t ϑ,( )I cdv″′ EsI sv″′– hρ ws wc v′h+–( )+ 0=
t0

t

∫–

RE t ϑ,( )d Sψ wc′ ε–( ) I ψ f ′+[ ] 0=
t0

t

∫
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By denoting with G the shear modulus of elasticity, the usual stress-strain elastic relationship 

(15)

By assuming that ux (horizontal transverse displacement) is zero on the whole slab, uz can be
obtained by integrating Eq. (15) with respect to x. By taking into account expressions (14), th
longitudinal displacements can be expressed as

(16)

where

(17a)

(17b)

(17c)

is a warping function which is zero at the beam-slab joints. 
The warping function obtained is thus constituted by three parabolic branches: in the general c

external branches are different from the internal branch [Fig. 2(c)] while, in the simple case in 
B1 = B/2, the warping function components (17) assume the same maximum value both at the 
and at the edges of the slab.

3. Numerical solution

Eqs. (7)-(10) constitute a coupled integral-differential system in which the four functions v, wc, ws and
f are the problem unknowns. The system cannot be solved in closed form and thus a numerical 
has to be calculated.

The first problem encountered in the numerical solution deals with the calculation of the rela
function. In fact, the main creep models are expressed in terms of creep functions; given the com
of these expressions, the relevant relaxation functions must be numerically evaluated by integ
Volterra’s integral equation (Chiorino et al. 1984). In order to avoid the preliminary onerou
calculations providing the relaxation function, the problem can be switched to a dual form enforci
relationship holding between the creep and relaxation problems

(18)

This leads to a different coupled system of integral-differential equations in which only the 
function J is involved 

uz x, ux z,+
1
G
----τxz x z,( )=

uz
q z( )B2

2AcG
----------------ψ x( ) c z( )+=

ψ x( ) x
B
--- 

 
2

2
x
B
---

B1

B
----- 2

B1

B
-----– 

      B– x B1–≤ ≤+ +=

ψ x( ) x
B
--- 

 
2 B1

B
----- 

 
2

–               B1– < x +B1≤=

ψ x( ) x
B
--- 

 
2

2–
x
B
---

B1

B
----- 2

B1

B
-----– 

      +B1 x< +B≤+=

f t( ) RE
t0

t

∫ t ϑ,( )dg ϑ( )= g t( ) J
t0

t

∫ t ϑ,( )df ϑ( )=⇔
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(22)

The numerical solution of this problem requires the discretization both of the time domain an
beam axis. The first is necessary to transform the time integrals appearing in the system 
algebraic form by applying the trapezoidal integration rule. The second permits solving the diffe
system by means of the finite difference method. In this way the solution of the integral-differ
problem is obtained by a step-by-step procedure by solving a sequence of linear algebraic pro

For the details of the numerical procedure readers can refer to Dezi et al. (2001).

4. Shear-lag analysis for different actions

In this section, the results of elastic and time-dependent analyses of a two-span composite bri
deck, with the cross-section shown in Fig. 3, are reported. It is assumed that the prese
cantilevered cross-beams, required to support the thin slab, does not affect the longitudinal deck
behaviour. Three different actions are considered separately: static action constituted by a uniformly
distributed load, geometrical action constituted by settlement of the middle support and a uniform
concrete volume reduction due to concrete shrinkage. As is well known, the results obtained in 
case can be extended to the case of uniform thermal action in the slab.

The effective slab width (Beff) is here calculated by means of the well known formula (Von Kárm
1924):

(23)

where σz is the normal stress in the concrete.
The creep and shrinkage functions suggested by the CEB-FIP model code 1990 (1988) are co

Ac wc″ εcs′–( ) Sψ f″+[ ]– ρ J t ϑ,( )d ws wc v′h+–( )
t0

t

∫ 0=–

EsAsws″ ρ ws wc v′h+–( )+ 0=–

I cv″″ J t ϑ,( )d EsIsv″″ hρ ws′ wc′ v″h+–( )–[ ]
t0

t

∫ J t ϑ,( )dp
t0

t

∫=+

Sψ wc″ εcs′–( )– Iψ f ″–
I dψ f

2 1 υ+( )
---------------------+ 0=

Beff B
σz adAc

∫
Acσmax

------------------=

Fig. 3 Static scheme and cross-section of the deck
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by assuming the concrete strength fck= 50 MPa and the relative humidity RH= 75%. The initial time of
the analysis is t0 = 28 days in the cases of static load and support settlement while the con
shrinkage begins at casting time; the final time of the analysis is t = 20000 days.

It has been observed that bridge decks possess high values of shear connection stiffness and
range of variation is very limited. It has also been reported in Gara et al. (2001) that the results of the
analysis are not affected by varying the values of the shear connection stiffness in this particular range
For this reason a typical shear connection stiffness (ρ) has been utilised in the following discussion

The concrete is considered to be uncracked even in the tension regions of the slab. This sim
assumption is meaningful only when the slab is prestressed. However the problem linearity perm
superposition of effects produced by different actions and the results reported here evidence the shear
lag effect for each action considered separately.

4.1. Static action (uniformly distributed load)

The normal stresses produced in the concrete slab by two uniformly distributed loads applied
the axes of the steel beams are illustrated in Fig. 4. The longitudinal distributions of the norma
calculated at mid-height of the concrete element along the edge of the slab and above the stee
are illustrated in Fig. 4(a). These are calculated for both the initial and final time. In Fig. 4(b
transverse distributions of the normal stresses in the slab at two cross-sections are shown, one
along the beam (cross-section 1) and one located at inner support (cross-section 2).

As it is well known, the shear-lag effect strongly modifies the transverse stress distribution 
cross-section over the internal support, while it is less important on the span.

The effective slab width Beff is also shown by dashed lines in Fig. 4(b). For cross-section 1, Beff is
about 94% of the geometrical width, while for cross-section 2 it reduces to 72%. It is important t
that the effective width is practically constant in time, both in the span and at the middle supp

4.2. Geometrical action (support settlement)

Fig. 5 outlines the results obtained by imposing a settlement to the middle support. As in the pr

Fig.  4  Static action: (a) longitudinal distribution of the slab normal stresses; (b) transverse distribution
slab normal stresses
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loading case, the longitudinal distributions of the normal stresses calculated along the slab ed
above the steel beam are shown in Fig. 5(a), while their transverse distribution calculated at two
sections are shown in Fig. 5(b).

In this case, the shear-lag effect appears to be significant only near the internal support for a
approximately equal to half the deck width, while at other cross-sections along the beam len
transverse distributions of the normal stresses remain uniform. At the middle support, the effectiv
width is about 93% of the geometrical slab width. Even in this case the effective slab width is
constant in time.

By comparing the results obtained for static and geometrical actions, very significant differen
the effective slab width may be observed. Consequently, in practical applications, when s
settlements are imposed to introduce longitudinal slab prestressing, two different effective slab 
should be introduced to evaluate the normal stresses produced by the two kinds of action.

4.3. Concrete shrinkage

Fig. 6 shows the results produced by the drying shrinkage of concrete slab at 90 days after concre
casting and at the final time of the analysis. The longitudinal distributions of the normal stresses
the slab edge are reported in Fig. 6(a), while the transverse distributions at cross-sections n
external support (cross-section 0) and at the middle support (cross-section 2) are shown in Fi
The stresses are calculated at mid-height of the concrete slab for the final time of the analysis

At locations along the beam length other than those near the external supports, the distributio
normal stresses due to shrinkage is similar to that produced by a settlement of the internal suppo
effective slab width is practically coincident with the geometrical width in the span and reduces t
at the middle support cross-section. 

The regions at the ends of the beam are characterised by a significant shear-lag effect, du
longitudinal shear force distribution at the beam-slab interface, even if the stress state in the sla
important. The diagram of Fig. 6(a) (dashed line) shows the interface shear force distribution along 
beam axis at the final time of the analysis which assumes the maximum value at the beam en

The conclusions drawn for the concrete shrinkage can be also extended to the case of a 

Fig. 5  Geometrical action: (a) longitudinal distribution of the slab normal stresses; (b) transverse distr
of the slab normal stresses
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thermal action on the slab. In both cases the slab is affected by an imposed uniform strain dist
which induces a similar stress field. 

4.4. Influence of the width-length ratio

The effective widths are calculated for each action separately and for three different deck 
length ratios. The stresses obtained with these analyses are then compared with those obtained
EC4-2 (1997). 

As previously shown, concrete creep does not significantly modify the effective width in time. F
shows the time evolution of the effective width of cross-sections 1 and 2 for each action consider
this reason only the elastic results of the applications considered are illustrated in the following figur

Fig. 8(a) highlights the dependence of shear-lag effect on the width-length ratio and on the l
conditions. The shear-lag effect is more important for the static action than for support settleme
concrete shrinkage (or uniform thermal action on the slab), both in the span and near the 
support. In the case of static action, the effective slab width is not reported in the section in
between the dashed lines, because in this region the stress resultant is almost zero and the 
width is not significant.

Fig. 6 Concrete slab shrinkage: (a) longitudinal distribution of the slab normal stresses and shear 
beam-slab interface; (b) transverse distribution of the slab normal stresses

Fig. 7 Time evolution of effective width: (a) cross-section 1; (b) cross-section 2 
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Fig. 8(b) shows a comparison between the results obtained with the method presented and
recommended by EC4-2; the curves represent the ratios between the maximum value of the
stresses calculated with the model presented and the value obtained by the method suggeste
EC4-2. In the case of static actions, differences of about ±20% are observed for the extreme c
short (B/L = 1/4) and long (B/L = 1/10) spans. For geometrical actions and concrete shrinkage, la
differences (about 40%) are observed for wide decks. 

This result is particularly important for geometrical actions, such as settlement of supports, wh
usually imposed to induce slab prestressing. In this case, in fact, the effective width suggested by th
overestimates the stress state produced by the support settlement and consequently leads 
conservative solution. This aspect is important in practical applications and should be investigated 
detail even in the case of composite decks prestressed by means of both internal and external cab

5. Conclusions

In this paper, the shear-lag effect in twin-girder composite decks has been investigated by means of
an analytical model taking into account the shear connection flexibility and concrete creep. A n
warping function, which describes the non-uniform stress distribution on the whole slab 

Fig. 8 (a) Effective width given by the model presented; (b) comparison with EC4-2



122 Luigino Dezi, Fabrizio Gara and Graziano Leoni

 bridge
e normal

hen
awn:

ncrete

an for
 of the
ractical
 the code

l

e-

posite

ty and

h open

mplete

ergy”,

 shear
considering the actual position of the beams, was introduced. The main actions of interest in
design, such as static actions, settlement of supports, and concrete shrinkage, were considered. Th
stress distributions and the effective slab widths were evaluated both at initial and at final time and t
compared with those calculated in accordance with EC4-2. The following conclusions may be dr

• in all the actions considered, the shear-lag effect is not substantially modified by concrete creep and
consequently the effective slab width can be considered as constant in time;

• the shear-lag effect is more important for static actions than for support settlements, co
shrinkage and uniform thermal action on the slab;

• the effective widths suggested by technical codes give better solutions for static actions th
support settlements or shrinkage. Their use for geometrical actions leads to an overestimation
maximum values of the normal stress in the slab. This result assumes a certain importance in p
applications, where support settlements are imposed in order to prestress the concrete slab and
results are not conservative.
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