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Abstract. The paper presents a model for analysing the shear-lag effect on the slab of twin-girder
composite decks subjected to static actions, support settlements and concrete shrinkage, which are the main
actions of interest in composite bridge design. The proposed model includes concrete creep behaviour and
shear connection flexibility. The shear-lag in the slab is accounted for by means of a new warping function.
The considered actions are then applied to a realistic bridge deck and their effects are discussed. The proposed
method is utilised to determine the slab effective widths for three different width-length ratios of the deck.
Finally, a comparison between the results obtained with the Eurocode EC4-2 and those obtained with the
proposed model is performed.

Key words: composite steel-concrete bridges; effective width; flexible shear connection; long term behav-
iour; shear-lag effect.

1. Introduction

Steel-concrete composite continuous decks are widely used in viaducts and bridges with medium
span length (40-100 m). Such decks are usually composed of two steel beams, even in the case of wid
concrete slabs (>20m), that can be sustained by cantilevered cross-beams or be transversall
prestressed (Fig. 1). As is well known, in this kind of structure the usual assumption of bending theory,
according to which the plane cross-sections remain plane after loading, is not realistic. The slab
undergoes significant warping (Von Karman 1924), which induces a non-uniform stress distribution on
the slab cross-section, also known as shear-lag effect. Since this effect depends on the beam-sla
interface shear-flow, a refined model should take account of the shear connectiofityflexihich
permits slip at the slab-beam interface and increases the globallifiexibihe structure. Furégrmore,
concrete creep behaviour, which produces a redistribution in time of the internal forces between slab
and steel beam modifying the stress distidmuon the slab, should be included.

In practical applications, these aspects are usually considered separately by means of simplifiec
methods suggested by the technical codes (EC4-2 1997). The non-uniform stress distribution on the
slab is evaluated by reducing the slab width (effective width method), while a modified Young’s
modulus is introduced to take into account the concrete creep. Simplified rules are also employed to
evaluate the local effects on the connection produced by longitudinal concentrated forces or by the
concrete shrinkage and thermal action on the slab. Furthermore, it is important to underline that the
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Fig. 1 Twin-girder composite decks: (a) with cantilevered cross-beams; (b) with transversally prestressed slab

formulae suggested by technical codes for the effective slab width were obtained and validated for
external static actions (Sedlacek and Bild 1993); their use for other kinds of actions, such as
geometrical actions (support settlements), concrete shrinkage and thermal actions, is not supportec
either by numerical analyses nor by experimental tests.

In this paper, a method for time-dependent analysis of shear-lag effect in twin-girder composite
decks, also taking into account the shear connection deformability, is presented.

A model recently developed by the authors for single steel-concrete composite beanet @Dezi
2001), is generalised to analyse twin-girder decks for any steel beam spacing, by introducing a suitable
warping function in order to describe the shear-lag effect on the slab. The main actions of interest in
bridge design, namely static actions, geometrical actions (settlement of support) and concrete shrinkage
are considered separately in order to evaluate the effective slab width and its variation in time for each
different action. The numerical solution is obtained by introducing a double discretization, along the
time domain and the beam axis, and by using the step-by-step procedures and the finite difference:s
method. With reference to a realistic bridge deck some numerical applications are carried out caresdering
action separately; the results obtairemeé then compared with those given by the method of the
effective width suggested by the Eurocode EC4-2.

2. Model description

The typical steel-concrete composite twin-girder deck of Fig. 2 is considered. The external loads are
positioned so as to avoid torsion, distortion, and transverse bending of the deck cross-section. In orde
to take into account the flexibility of the shear connection and teardag effect of the slab, the
classical Newmark model (Newmaek al 1951), which assumes the preservation of the plane cross-
section for concrete slab and steel beam considered separately, is modified according to the Reissne
hypothesis (Reissner 1946), for which the slab loss of planarity due to shear-lag is described by the
product between a fixedarping shape of the cross-section (warping function) and a scalar function
defining the warping intensity along the beam axis (shear-lag function).

The shear-lag analysis in twin-girder decks should take into account the actual position of the beams
[Fig. 2(a)].

The problem can be solved by introducing two shear-lag functions, the first for the slab cantilevers
and the second for the internal section, as shown in Dezi and Mentrasti (1985). Alternatively, only one
shear-lag funtion may be used in conjunction with a more complex function which describes warping
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Fig. 2 (a) Composite twin-girder deck; (b) shear stress distribution; (c) warping function

throughout the slab width. This paper proposes a unique warping function with two different branches
[Fig. 2(c)].

By adopting the reference frame and the notations of Fig. 2, the displacement field, at a generic
instantt, is then expressed by the following equations:

uix,y,zt) = v(z t)j+[w.(z; t)=(y=y.)V'(z; t) +f(z; ) p(x)]k for the concrete slab (1)
uix,y,zt) = v(z t)j+[wyz; t) —(y-vs)V'(z; t)]k for the steel beam (2)

in which v denotes the vertical displacement of the composite cross-segtiandw; are the axial
displacements of the concrete slab and the steel beam, thesdge@ndf is the function which
measures the intensity of the slab warping described by the shape fupatmmstant on the slab
thickness (Dezet al 2001). From Egs. (1) and (2), the following expression of the interface slip
can be easily derived:

F(z;t) = ws(z; t) —we(z; t) +hv'(z; 1) 3)

Furthermore, as a result of Egs. (1) and (2), the steel beam is subjected only to axial strain while
both axial and shear strains are present in the concrete slab.

The analysis is performed under the hypothesis of linear elastic behaviour for the steel beam anc
shear connection, which is assumed to be spread along the beam length.

The concrete is a viscoelastic material affected by axial and shear strain cotsipibreefollowing
two integral-type constitutive relationshipee thus introduced:

%MMZU=J%&&M&MMZ&—H®] (4)
sz(xa Y, Z t) = JRG(t: B)dyxz(xa Y, Z 79) (5)

whereRg(t, 3) andRs(t, 9) are the axial and shear relaxation functions, namely the stress components
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at timet due to the relevant unit strain componergsand ), applied at time3 and maintained
constant in timeg is an imposed strain representing the concrete shrinkage or the thermal strain.
Both these relationships are also considered for concrete under tensile stresses, which is supposed
be uncracked.
The shear relaxation function is derived by means of the following equation:

Re(t 9) = 57 5yRe(t 9) ©)

which considers the concrete Poisson raticonstant in time. This approximation is usually accepted
in literature (Chiorinoet al 1984) although experimental data regarding the variation in time of Poisson
ratio are not available.

By assuming as unknowns the displacements previously defined, (vs andf), the following
solving system is derived (Deet al 2001):

t
—p(W,—w, + V'h) —J’RE(t, S d[A(W! —¢') + S,f1 =0 (7)
p(Ws - Wc +V' h) - EsAsWs" = (8)
t

~hp(ws' —w,’ +v"h) + Eulv"" + [Re(t, §)ldv'” = p (9)

t - Iy, f

_ n _ ! n d

J;RE(t, 19)d[ SyWe" — ') =1, 1"+ 2_L(1+ )} 0 (10)

wherep is the vertical loadA;, As andl,, |5 are the areas and the moment of inertia of the concrete
slab and steel beam cross-section, respectikZzglg the Young’s modulus of the steel beanis the
stiffness per unit length of the shear connection and

= [ yda, ly =1, y’da, lag = [, yda (11a,b,c)

are the cross-sectional properties related to the slab loss of planarity. From a physical point of view,
Egs. (7) and (8) translate the axial equilibrium condition of the concrete slab and the steel beam,
respectively; Eq. (9) translates the vertical equilibrium condition of the compositer and Eg.
(20) is an overall equilibrium condition between shear and axial stresses in the concrete slab.

The problem solution is obtained by completing the solving system with the relevant boundary
conditions. As is well known, they express the kinematical effects of external restraints or, in the case of
free boundary, the dual static conditions. For the sake of simplicity in Table 1 the most common
boundary conditionare reported. In particular, in the case of geometrical actions, the solving Egs. (7)-
(10) are homogeneous and the suppditeseentv is imposed in the fourth kinematical catmh.
Similarly, even in the case of uniform shrinkage or thermal action, the solving system is homogeneous
and the relevant strairgssare imposed in the first and in the last static conditions.

2.1. Warping function

As previously stated, the shear-lag analysis of twin-girder decks should take into account the actual
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Table 1 Boundary conditions

Kinematical conditions Static conditions
t
w.=0 IRE(t, D)d[A(w,'—&) +S, f]= 0
tU
w;=0 EAW, =0
t
V=0 —IRE(t, Il dv' —Edv' =0
tU
_ t
V=V —[Re(t, I dv" —EJ V" + hp(ws—w,+Vv'h) =0
tU
t
f=0 IRE(t, 19)d[Sp(wC'—z)+lwf’]= 0

position of the beams. In fact, even if the deck mmetric, it cannot be divided into two symmetric
beams [Fig. 2(a)] and the usual warping functions available in literature are not suitable. For this reasor
a new warping function describing the non-uniform stress distribution on the whole slab width is
introduced.

As a consequence of the small thickness of the slab, the warping function may be assumed to b
constant on the slab thickness, so th#x, y) O (x). The warping function can be derived from the
local equilibrium condition of the slab considered as a thin walled beam (Laudiero and Savoia 1990).
Under the assumption of zero bodydes and by neglecting the shear stress compapgetite stress
Ty, on the middle plane of the slab [Fig. 2(b)] can be obtained by integrating the following equilibrium
equation:

1704 0z

By assuming, at a first level of approximatiam, as uniformly distributed on the slab width, the
local longitudinal equilibrium condition for the concrete slab provides

=0 (12)

Jdo, q
oz A (13)
whereq is the global longitudinal shear flow due to the slab beam interaction. Thus, the following

expressions for,, are obtained:

T,(X, 2) = 9}A—Z)(x+ B) -B<x<-B, (14a)
C
T,(X 2) = gi—zzx -B,<x<+B; (14b)
C
T,(X, 2) = 9}A—Z)(x— B) +B;<x<+B (14c)
C

whereB andB, are clearly defined in Fig. 2.
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By denoting withG the shear modulus of elasticity, the usual stress-strain elastic relationship holds

1
U, x+t U, = érxz(xa Z) (15)
By assuming thau, (horizontal transverse displacement) is zero on the whole sglatean be
obtained by integrating Eqg. (15) with respectxtoBy taking into account expressions (14), the
longitudinal displacements can be expressed as

BZ
0, = L2 4+ (2 (16)
where
B B
Wx) = %g+2§+§1 —Elg -B<x<-B, (17a)
2
w(x) = %g_g%% —B,<x<+B, (17b)
w(x) = xf_,X, Bip,_Big B, <x<+B (17¢c)

BO “B B BUO

is a warping function which is zero at the beam-slab joints.

The warping function obtained is thus constituted by three parabolic branches: in the general case the
external branches are different from the internal branch [Fig. 2(c)] while, in the simple case in which
B, = B/2, the warping function components (17) assume the same maximum value both at the middle
and at the edges of the slab.

3. Numerical solution

Egs. (7)-(10) constitute a coupled integral-differential system in which the four fungtwanss, and
f are the problem unknowns. The system cannot be solved in closed form and thus a numerical solutior
has to be calculated.

The first problem encountered in the numerical solution deals with the calculation of the relaxation
function. In fact, the main creep models are expressed in terms of creep functions; given the complexity
of these expressions, the relevant relaxation functions must be numerically evaluated by integrating &
\olterra’s integral equation (Chiorinet al 1984). In order to avoid the preliminary onerous
calculations providing the relaxation function, the problem can be switched to a dual form enforcing the
relationship holding between tloeeep and relaxation problems

f(V) = [Re(t, 9)dg(9) = g(1) = [J(t, 9)di(3) (18)

This leads to a different coupled system of integral-differential equations in which only the creep
functionJ is involved
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t
—[Ad(We" —&c5 ) + S 1] = p[ I(t, F)d(Ws—we +V'h) =0 (19)

tO
—-E-AW" + p(Wg—w,+Vv'h) =0 (20)

t t
[V +J’J(t, ) A[Elv"" —hp(ws' —w.' +Vv"h)] = J’J(t, J)dp (21)
" ' " Id f —

—Sy(W" —£c) =1y f +2(—1+LU) =0 (22)

The numerical solution of this problem requires the discretization both of the time domain and the
beam axis. The first is necessary to transform the time integrals appearing in the system into an
algebraic form by applying the trapezoidal integration rule. The second permits solving the differential
system by means of the finite difference method. In this way the solution of the integral-differential
problem is obtained by a step-by-step procedure by solving a sequence of linear algebraic problems

For the details of the numerical procedure readers can refer teCaz{2001).

4. Shear-lag analysis for different actions

In this section, the results of elastic anddidependent analyses of a two-span composite bridge
deck, with the cross-section shown in Fig. 3, are reported. It is assumed that the presence of
cantilevered cross-beams, required to support the thin slab, does not affect ttulitmigdeck
behaviour. Three different actions are considered separately: static acttitutzsh by a uniformly
distributed load, geometrical action constituted by essitint of the middle support and a uniform
concrete volume reduction due to concrete shrinkage. As is well known, the results obtained in the last
case can be extended to the case of uniform thermal action in the slab.

The effective slab widthBi) is here calculated by means of the well known formula (Von Karméan
1924):

[ 0,02

Betr = BACT (23)

C~ max

where g, is the normal stress in the concrete.
The creep and shrinkage functions suggested by the CEB-FIP model code 1990 (1988) are considere

s 5 2
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Fig. 3 Static scheme and cross-section of the deck
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by assuming the concrete strenfjflx 50 MPa and the relative humidiBH = 75%. The initial time of
the analysis igy=28 days in the cases of static load and support settlement while the concrete
shrinkage begins at casting time; the final time of the analysis 20000 days.

It has been observed that bridge decks possess high values of shear connection stiffness and that th
range of variation is very limited. It has also been reported in &ala(2001) that the results of the
analysis are not affected by varying the values of the shear conr&tfioess in this particular range.

For this reason a typical shear connection stiffngsids been utilised in the following discussion.

The concrete is considered to be uncracked even in the tension regions of the slab. This simplifying
assumption is meaningful only when the slab is prestressed. However the problem linearity permits the
superposition of effects produced by different actions and thiésresported are evidence the shear-
lag effect for each action considered separately.

4.1. Static action (uniformly distributed load)

The normal stresses produced in the concrete slab by two uniformly distributed loads applied along
the axes of the steel beams are illustrated in Fig. 4. The longitudinal distributions of the normal stress
calculated at mid-height of the concrete element along the edge of the slab and above the steel bean
are illustrated in Fig. 4(a). These are calculated for both the initial and final time. In Fig. 4(b) the
transverse distributions of the normal stresses in the slab at two cross-sections are shown, one locate
along the beam (cross-section 1) and one located at inner support (cross-section 2).

As it is well known, the shear-lag effect strongly modifies the transverse stress distribution at the
cross-section over the internal support, while it is less important on the span.

The effective slab widtlB.; is also shown by dashed lines in Fig. 4(b). For cross-sectiBg; Is
about 94% of the geometrical width, while for cross-section 2 it reduces to 72%. It is important to note
that the effective width is practically constant in time, both in the span and at the middle support.

4.2. Geometrical action (support settlement)

Fig. 5 outlines the results obtained by imposing a settlement to the middle support. As in the previous

o, [MPa] T : T,..4228days___o.[MPa
]2% ® above the beam axis | i !
® along the slab edge | 12
oL +1 1=20000 days 6
t = 20000 di
0 Rk o ll[e]ll .
. tl= 20000 days
6 1 e -6
12 t =28 days | <28 days 96 s
® p-250KN/m @ 4+ By=094B— it By=072B—4
' 3 T ®
L -—
L=7B L® L

@) (b)

Fig. 4 Static action: (a) longitudinal distribution of the slab normal stresses; (b) transverse distribution of the
slab normal stresses
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Fig. 5 Geometrical action: (a) longitudinal distribution of the slab normal stresses; (b) transverse distribution
of the slab normal stresses

loading case, the longitudinal distributions of the normal stresses calculated along the slab edge ant
above the steel beam are shown in Fig. 5(a), while their transverse distribution calculated at two cross:
sections are shown in Fig. 5(b).

In this case, the shear-lag effect appears to be significant only near the internal support for a lengtt
approximately equal to half the deck width, while at other cross-sections along the beam length the
transverse distributions of the normal stressesain uniform. At the middle support, the effective
width is about 93% of the geometrical slab width. Even in this case the effective slab width is fairly
constant in time.

By comparing the results obtained for static and geometrical actions, very significant differences in
the effective slab width may be observed. Consequently, in practical applications, when support
settlements are imposed to introduce longitudinal slab prestressing, two different effective slab widths
should be introduced to evaluate the normal stresses produced by the two kinds of action.

4.3. Concrete shrinkage

Fig. 6 shows the results produced by the drying shrinkage ofaeterslab at 90 days after concrete
casting and at the final time of the analysis. The longitudinal distributions of the normal stresses along
the slab edge are reported in Fig. 6(a), while the transverse distributions at cross-sections near th
external support (cross-section 0) and at the middle support (cross-section 2) are shown in Fig. 6(b)
The stresses are calculated at mid-height of the concrete slab for the final time of the analysis.

At locations along the beam length other than those near the external supports, the distribution of the
normal stresses due to shrinkage is similar to that produced by a settlement of the internal supports. Th
effective slab width is practically coincident with the geometrical width in the span and reduces to 96%
at the middle support cross-section.

The regions at the ends of the beam are characterised by a significant shear-lag effect, due to th
longitudinal shear force distribution at the beam-slab interface, even if the stress state in the slab is les
important. The diagram of Fig. 6(a) (daslied) shows the interface shear force distribution along the
beam axis at the final time of the analysis which assumes the maximum value at the beam end.

The conclusions drawn for the concrete shrinkage can be also extended to the case of a uniforn
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Fig. 6 Concrete slab shrinkage: (a) longitudinal distribution of the slab normal stresses and shear flow at
beam-slab interface; (b) transverse distribution of the slab normal stresses

thermal action on the slab. In both cases the slab is affected by an imposed uniform strain distribution
which induces a similar stress field.

4.4. Influence of the width-length ratio

The effective widths are calculated for each action separately and for three different deck width-
length ratios. The stresses obtained with these analyses are then compared with those obtained using t
EC4-2 (1997).

As previously shown, concrete creep does not significantly modify the effective width in time. Fig. 7
shows the time evolution of the effective width of cross-sections 1 and 2 for each action considered. For
this reason only the elastic s of the applications considered are illustrated in the following figures.

Fig. 8(a) highlights the dependence of shear-lag effect on the width-length ratio and on the loading
conditions. The shear-lag effect is more important for the static action than for support settlement and
concrete shrinkage (or uniform thermal action on the slab), both in the span and near the middle
support. In the case of static action, the effective slab width is not reported in the section included
between the dashed lines, because in this region the stress resultant is almost zero and the effecti
width is not significant.

Boy/B 1 VR B.4/B : : !
ﬂ/ l \ . gcometrical action 7 concrete\ Shrinkage I \ | .
0.8 static action  Tand concrete shrinkage ™™ 0.8 [ geometrical actionf, ——
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N e e e i = 0.6l—— static action
concrete shrinkage in ©
0.4 ‘ 0.4
0.2 CROSS SECTION D 0.2 CROSS SECTION @
oL | 0
10 28 100 1000 1000020000 fgys 10 28 100 1000 1000020000 g5
(a) (b)

Fig. 7 Time evolution of effective width: (a) cross-section 1; (b) cross-section 2
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Fig. 8 (a) Effective width given by the model presented; (b) comparison with EC4-2

Fig. 8(b) shows a comparison between the results obtained with the method presented and the on
recommended by EC4-2; the curves represent the ratios between the maximum value of the norma
stresses calculated with the model presented and the value obtained by the method suggested by tl
EC4-2. In the case of static actions, differences of about +20% are observed for the extreme cases C
short /L = 1/4) and long B/L = 1/10) spans. For geometrical actions and concrete shrinkage, larger
differences (about 40%) are observed for wide decks.

This result is particularly important for geometrical actions, such as settlement of supports, which are
usually imposed to induce slab prestressing. In this case, in fact, the effective width suggested by the EC4-
overestimates the stress state produced by the support settlement and consequently leads to a n
conservative solution. This aspect is important in practical applications and should be investigated in more
detail even in the case of composite decks prestressed by means of both internal and external cables.

5. Conclusions
In this paper, the shear-lag effect in twin-girder composite decks has been investigaahbyof

an analytical model taking intaccount the shear connection flexibility and concrete creep. A new
warping function, which describes the non-uniform stress distribution on the whole slab width
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considering the actual position of the beams, was introduced. The main actions of interest in bridge
design, such as static actions, settlement of supports, and concrete shrinkage, were considered. The norn
stress distributions and tleffedive slab widths were evaluated both at initial and at final time and then
compared with those calculated in accordance with EC4-2. The following conclusions may be drawn:

« in all the actions considered, the shear-lag effect is not subByamitalified by concretereep and
consequently the effective slab width can be considered as constant in time;

» the shear-lag effect is more important for static actions than for support settlements, concrete
shrinkage and uniform thermal action on the slab;

« the effective widths suggested by technical codes give better solutions for static actions than for
support settlements or shrinkage. Their use for geometrical actions leads to an overestimation of the
maximum values of the normal stress in the slab. This result assumes a certain importance in practice
applications, where support settlements are imposed in order to prestress the concrete slab and the co
results are not conservative.
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