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Abstract. A numerical model is presented to simulate the mechanical behaviour of composite steel and
concrete columns taking into account the interaction between the hollow steel section and the concrete core.
The model, based on displacement finite element methods with an Updated Lagrangian formulation, allows
for geometrical and material non linearities combined with heating over all or a part of the section and column
length. Comparisons of numerical calculations made using the model with 33 fire resistance tests show that
the model is able to predict the fire resistance, expressed in minutes of fire exposure, of composite columns
with a good accuracy.
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1. Introduction

During the last 30 years extensive experimental and theoretical investigations on the fire performance
of unprotected steel hollow sections filled with concrete have been carried out in the World (Grimault
1980, Kordina and Klingsch 1983, Klingsch and Wittbecker 1988, Lie ef al. 1988 to 1996). Calculation
methods have been developed to predict the fire resistance of structures and structural elements. When
well calibrated to experimental results such methods prove to be a practical alternative to testing
structures subject to fires which is costly. In these methods the thermal and structural behaviour of
composite structures under fire conditions are assumed to be uncoupled. For the purpose of the
structural analysis, temperature distributions in columns are obtained separately, either from heat
transfer analyse or from test data. The structural behaviour of the member is then determined in a step
by step procedure using the temperature distribution provided at each time step taking into account the
influence of temperature on the mechanical properties of materials.
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Calculation models based on the finite element method appeared on and after 1985. In these models,
the mechanical behaviour of composite columns under fire condition is calculated using an incremental
elasto-plastic analysis taking into account both geometrical and material non-linearities (Franssen 1987,
Schleich 1987). Usually, columns are discretized by means of bar elements with two nodes and three
degrees of freedom at each node. In plane bending, Bernoulli’s assumption is adopted for the transversal
cross-section. Effects of torsion are not considered and effects of vertical shear on the deformation
energy of the element are neglected so that normal stresses are only considered. The effects of residual
and thermal stresses are treated explicitly. In the presence of any temperature distribution, the
longitudinal strain is given by the sum of four independent terms due to the normal stress, thermal
elongation, residual stress and creep, respectively.

Alternatively, the structural stability of composite columns were calculated by a simplified method
based on moment-curvature and axial strength-longitudinal strain relationship in the critical cross-
section and combined with the global equilibrium equation (Quast ef al. 1986, O’meagher et al. 1991,
Lie et al. 1995, Han 2001, 2003). In such a method, the ultimate state of the column after a given
duration of fire corresponds to the condition where the external bending moment in the critical cross-
section exceeds the resistant moment. Successive values of the resistant moment are calculated by
incrementing the longitudinal strain and the curvature (related to column deflection) and deducing the
normal stresses from the stress-strain relationships of the materials. Bernoulli’s assumption is adopted
for the composite cross-section. This formulation takes into account explicitly the effects of differential
thermal strains, geometrical imperfections and materials non-linearities on the load bearing capacity of
columns. As in the methods described in (Lie ef al. 1995, Han 2001, 2003), it may be introduced an
effective buckling length for columns with end restraint which consists in modelling them as hinged at
the points of contra-flexure of the member.

It should be noted that Eurocode 4 Part 1.2 provides a simplified calculation model in Annex G
applicable to axially loaded circular or rectangular hollow sections (CEN 1994). For a given field of
temperature, the ultimate buckling load is determined by means of a procedure similar to the one
developed by Guiaux and Janss for composite hollow sections at ordinary temperature, except that the
method is adapted by using temperature-dependant generalized stress-strain relationships for the steel
section, reinforcement and concrete. This determination is based on the following principle: the axial
buckling load at increasing temperature corresponds to the Euler critical load according to Engesser’s
concept of tangent modulus applied to the various materials at different temperatures (steel of hollow
section, filled concrete and reinforcing steel). So an effective value of flexural stiffness for the
composite column can be derived from the stress-strain relationships, assuming an equal elongation for
all materials and neglecting any effect of self-equilibrated stresses due to differential thermal
elongations (Grimault 1980).

In fact, all the above mentioned calculation methods to predict the fire resistance of concrete filled
hollow section columns assume the full interaction between the hollow steel section and the concrete
core. However, in situation of fire, this assumption proves to be inaccurate (Kordina and Klingsch 1983,
Stringer and Lie 1994). As shown by measurement, the thermal elongation in the radial direction of the
hollow section creates, during the fire exposure, a gap between this section and the concrete core which
suggests a loss of bond leading to slip at the interface between the concrete core and the steel hollow section.

The present paper is devoted to present a novel finite element model specifically established by the
authors for simulating the mechanical behaviour and resistance of both steel-concrete composite
members and frames exposed to fire. In particular, this model is able to simulate more or less the
interaction between the hollow steel section and the concrete core resulting in slip at the steel-concrete
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interface. This is achieved by choosing the slip as an additional nodal degree of freedom. In addition to
different structural configurations of columns (isolated or as a part of a frame) both geometrical and
material non linearities as well as temperature distribution through the cross-sections and over the
length of the columns can be taken into account.

After a presentation of the main characteristics of the model, a comparison is performed between
French, German and Canadian fire test results and corresponding calculation results.

2. Presentation of the numerical model

The model presented in this paper is an advanced calculation model developed at CTICM (Zhao and
Aribert 1996, 1999). In fact, this model based on the finite element method is applicable not only to
steel-concrete composite columns but also to complex planar composite frames subject to any fire
conditions.

2.1. Basic analytical formulation of a beam-column element in equilibrium under fire conditions

In a non-linear analysis, the equilibrium of any frame should be expressed in the udapted
configuration which generally requires employing an incremental formulation and introducing a time
variable t, in order to describe the loading and the motion of the frame, the resolution being necessarily
of iterative type to take into account the various non-linearities (geometrical and material). The
formulation used in the model and the assembly of finite elements are based on the principle of virtual
work expressed in an Updated Lagrangian Description; they refer to the configuration of the structure at
time t to solve equilibrium problem at time (¢ + Ar). In addition, it is judicious to adopt an approximate
description for the local coordinates system, called “corotational”, which is commonly used in sway
frames (Fig. 1).

In the model, a whole composite column is built up by means of several beam-column elements tied
with connection elements. The application of the principle of virtual work for a beam-column element
of homogeneous material, working in plane bending only is explained below. Effects of torsion are not
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Fig. 1 Principle of updated “corotational” Lagrangian description
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considered and effects of vertical shear on the deformation energy of the element have been neglected,
so that the internal behaviour of the element is described by longitudinal strains and (normal) stresses at
the cross-sections.

Using the “corotational” Updated Lagrangian formulation (Bathe 1982), and assuming that the strain
remains small (which allows the assumption: "4} =V = V for the volume of the element, and ""4S =S
= § for its external surface), the equilibrium of any beam-column element may be expressed by the
principle of virtual work as follows:

™~x X

J”+A’S 5 '"Ne dv = I’*A,’f,." Ou, dV + | LS Sy, dS (1)

v

Here '+A,'SX corresponds to 2™ Piola-Kirchoff stress tensor at time (¢+ Af) with reference to its
. . t+ DMt . . .

configuration at time ¢ .£, corresponds to the increment of Green Lagrange strain tensor at time
(t+ Ar), with reference to its configuration at time #; '+?'f,v et '+?'f,7§ are the components of the
externally applied body and surface force vectors at time (¢ + A¢), with reference to its configuration at
time £, u; is the increment of the virtual displacement vector between time ¢ and time (¢ + Af) and O
corresponds to a virtual variation.

The normal stress and the corresponding strain can be decomposed as follows:

oS, =g+ 45, and g = e+ 0, )
with
o= 9 and p = AOWD  @upnn g
X t"Ix
dx 2yt Gy 00 20, 0
where 0, and AS, correspond to Cauchy stress tensor at time 7 and the increment between MA,'S.Y

and ‘o, respectively; e, and ,f, correspond to the linear and the non-linear contribution to Green
Lagrange strain tensor respectively, the above approximation for the latter being known as Von
Karman hypothesis.

Linearising (from a geometrical point of view) the equilibrium equation leads to the following
relation:

t+ At

‘[AS,\'élede*-‘[ lqv51’7de = I H-Allf; 5u,dV+I lfl“" 67/{,- dS—I ’0:\' 6le,vdV (3)

Another simplification may be introduced, which consists in neglecting second order terms to
linearise the incremental behaviour as fallows:

A4S, O Ee; “4)

where ,ef is the strain related to the stress increment and ;£ is the tangential modulus of the strain-
stress relation defined as a function of the stress and temperature.

In addition, it should be noted that the total strain is given, in the presence of a temperature
distribution in any cross-section, by the sum of four independent terms (Fig. 2), namely:
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Cross-section Distribution of temperature Unit strain
(x = cte) for z=cte

Fig. 2 Decomposition of total strain
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where ,e;h . €. and .. are the strain increments due to thermal elongation, residual stress and creep,
respectively. Obviously, the distribution of e, in each part (steel or concrete) of the cross-section
must respect the Bernoulli’s principle (Fig. 2).

Finally, the application of the principle of virtual work based on the incremental approach leads to the

following approximate equilibrium equation:

[EeSedV+ [ 'a.ondv

-] A Gy v [T G Y080 eV

th

+IZE(le.\’ + le.’\’ + le;‘r) 5IeYdV (6)

In general, the three strain tensor increments ,e,”, e, and e, can be regarded as known quantities.
This is why they have been placed in the load vector (right side of the equation).

The right part of Eq. (6) represents an “out of balance” between the virtual work of external forces at
time (¢ + A¢) and that of internal forces corresponding to time £. In order to reduce this “out of balance”,
an iteration process should be performed, which is characterized by index & and related to the iterative
increment of displacements Au,¥ governed by the following equation deduced from (6):

[ED e e dv+[ ‘g, 84, nPay
=[O dwv [ s~ 0l 8y el Ny

+ I,E(A,e.’!’"" +8,e + e ) ge,av ()

Solving of Eq. (7) should be repeated (k= 1, 2, 3....) until the difference between the external virtual
work and the internal virtual work is negligible within a certain convergence measure (the user must
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Fig. 3 Passage procedure from a behaviour curve to another

decide on the degree of accuracy required).

In fact, the repeated application of Eq. (7) corresponds to a modified Newton Raphson iteration
process. The iteration is performed without updating the values of the constitutive (material property)
tensor, which corresponds to adopting a constant tangent stiffness for all iterations. After the resolution
of each iteration, and before starting the next iteration, all static and kinematic variables should be
reinitialised as follows:

1

t+ A (k) t+Ar _(0) _ ¢ 0) _
U; = U Of = 0 and (+0Cx T Cx (8)

— HAlufk_l) +Au,(-k), I+Alu50)

with,

It should be noted that stress-strain relationships for the materials are non-linear and moreover are
temperature dependant. Thus, from one temperature to another, the behaviour curve is different for the
same material. The procedure adopted in the model in order to pass from a behaviour curve to another,
at each step of time and thus of temperature, is schematized in Fig. 3. It consists in keeping the value of
the permanent strain data from a virtual unloading at time # (also this unloading may be simplified for
concrete in tension).

While in principle, the model can take into account any stress-strain relationship, the material
properties recommended in Eurocode 4 Part 1.2 are generally adopted in the model. In the latter
standard, creep strains of steel and concrete are considered to be implicitly included in their stress-strain
relationships at elevated temperature. However when using other material properties, it is possible to
introduce creep strains in the model in an explicit way. It should be noted that the procedure illustrated
in Fig. 3(a) for structural steel is also considered to be applicable to the shear force-slip curve of
connectors at elevated temperature deduced from experimental push-out tests (Zhao and Kruppa 1997).

As additional simplification, generally a uniform temperature is assumed over the entire column length,
reducing the thermal analysis to a two-dimensional problem of transient heating through the cross-section
only, which can be solved numerically using either a finite difference method (Grimault 1980, Lie and
Chabot 1990, etc.) or a specialized approach such as TASEF (Wickstrém and Sterner 1990).

2.2. Associated matrix formulation of a homogeneous material (steel or concrete) beam-
column element

The finite element used in the model to represent the steel hollow section and the concrete core is a
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bar element of homogeneous material with two nodes and three degrees of freedom at each node,
namely: u, v and 6 defined as longitudinal displacement according to the direction '}, transverse
displacement according to the direction '3, and rotation according to %, respectively. The transverse
displacement v(x) of any point along the beam-column element is obtained assuming a cubic Hermitian
shape function. Assuming also a linear interpolation in #(x) and taking into account Bernoulli’s
assumption, the increment of displacement within an element is given by:

20 = OB e )1 ) with (8w = {Bu, Bv, 86, A, v, 26} (9)

(1) B

where Au;, Av;, A6, Au;, Av; and AG; correspond to the nodal variables at node i and j with reference to
the local coordinate system (', ’)’,), and [H] correspond to the displacement interpolation matrix, as a
function of x, y and L (L being the initial length of element).

The components of strain are obtained by the derivation of these displacements. They may be
expressed by following relations:

& = [B,){4u) and n, D3 20= L((1B, 1 A0} (10)

where the matrices [;B,] and [5BN,‘] are the “linear” strain matrix and the “non-linear” strain matrix,
respectively, defined by:

€ =

01 g6, 12xg pg4,.6xg1 6 12xg g2, 6xd
= = e R e e .
[B.] = O 2ap o0t PR YT 00 pi
[’B ] = Ep 6_x+_6x2 1_4_x+3_x2 0 6_x_6_xz _2_x+3_ng (11)
t=NL D,Lz 3 L 272 3L LZD

where x is the coordinate along the longitudinal axis ' of the element.

It should be noted again that the non-linear strain matrix is only related to the contribution of
transverse displacement v and the influence (Ju/dx)* is neglected owing to the fact that the axial
deformation remains in general relatively small.

Introducing relations (9) to (11) into the iteration equilibrium Eq. (7), the following matrix formulation can
be obtained:

(K] + [Ko DL} = {779RY = (AP Y + {4 FS) ) (12)
where:

-[K,,] and [\K,, ] are tangential stiffness matrices corresponding respectively to the linear strain part
and the non-linear strain part (in direct relation with the change of geometry):

t t T t 1, T t
Kol = [UBL £ [B]dV and [Kei] = 5[[Bu]” "0, [Byd dV (13)

leading to following total stiffness matrix of the beam-column element:
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[K] = [Ko, ]+ [Koy,] (14)

whose dimension is 6x6.
- {""%R,}is the vector of nodal external forces at time (¢ + Ar):

{"R} = J[H]"'{’”’ﬁf}dw J[H]"{’”f,}ds (15)

- { ;:ﬁiﬁﬁk_ l)} is a vector of equivalent nodal forces resulting from the work of internal forces due to
the change of configuration (including the internal forces of the discretised shear connection),
corresponding to time (¢ + A¢) and iteration (k—1):

{TaFEy = J[iBL]" B R (16)

¢

-{AF, " } is also a vector of equivalent nodal forces due to the strain increases resulting from

e thyerr

thermal elongation and creep and due to possible residual stresses in the materials:

(AF G} = [UB] B+ 260+ aeP)ay (7)

e thyer,r X

2.3. Matrix formulation of a steel-concrete composite beam-column element

2.3.1.Vector of nodal displacement (in a generalised global coordinate system)

Any composite column whose flexural bending occurs in a symmetrical plane may be idealised as an

assemblage of three specific finite elements (Fig. 4), namely:

- a first beam-column element for a certain length of steel hollow section (superscript (a)) with a node
at each end and three degrees of freedom (two translations and one rotation) at each node;

- a second beam-column element for concrete core (superscript (b)) corresponding to the same initial
length as the steel element and having also two nodes;

- and a connection element with two nodes and only one degree of freedom per node corresponding
to the discretisation of the distributed shear connection between the steel and concrete beam-
column elements.

Bernoulli’s assumption is adopted for the cross-section of the above-mentioned bar elements and any

gap phenomenon between hollow steel section and concrete core is neglected so that the unknown
variables at node i used to solve the global equilibrium problem can be reduced to:

Element "b" (concrete core)

Connection element “c” Connection element “c”

Element "a" (steel holiow section)

Fig. 4 Specific composite bar element
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Fig. 5 Nodal, local and global coordinate systems

{4AD} = [4u, &, 26, Ay (18)

where:

- Au,(-a), Av,(a), AQ,(-") are the increments, between ¢ and (¢ + A¢), of the usual nodal variables referred to
the global coordinate system of the column and related to the translational displacement in )_)(
direction, the translational displacement in ff direction and the rotation around % axis, respectively.

- Ay, is anodal variable which corresponds to the increment of relative displacement between the steel
and concrete parts, at node i in the tangential direction to the interface in the configuration at time ¢.
In fact Ay; is a slip increment according to a familiar meaning.

Consequently, the variables are referred to in a generalised global coordinate system needing a further

treatment to establish the iteration equilibrium matrix equation of the whole composite element. Fig. 5
llustrates the different coordinate systems which are used in the model.

2.3.2. Connection finite element between steel and concrete

The connection element developed to link both beam-column elements permits expressing full,
partial or zero shear connection (mechanical bond) at the steel-concrete interface. The thickness of this
element is taken equal to zero, and its material matrix relates the bond stresses along the steel-concrete
interface to the relative displacements between concrete and steel, namely the slip.

Using the assumption of a linear shape function, the increment of slip at each point of the element is
related to the increments of nodal slip Ay; and Ay; as follows:

Ay.0
AW(s) = [N(s 19
Ws) = [ ()]EIAZH (19)

s s
N(s) is the displacement interpolation matrix defined by: [N(s)]Z[1 - ?_, ’E_J where s corresponds to
ij ij

the curvilinear coordinate along the connection element and 7j; is the udapted length of this element

corresponding to the curvature of neutral fibre of steel bar element, assembled with the connection element.
Then, the tangential stiffness matrix of the connection element, whose dimension is 2x2, is given by:
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Hollow steel i Temperature 6(s,1)
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Fig. 6 Two nodes connection element
t _ T
[ K] = L[ [N(s)] kc(s, 1)[N(s)]dlds (20)
Lij

where coefficient k(s,/) is the tangential modulus of the “shear stress-slip curve characterising
mechanical bond at the steel-concrete interface for temperature 8(s, /) at time ¢; P is the perimeter of the
steel-concrete interface at the cross-section considered and / is the curvilinear coordinate along the perimeter.

To evaluate the element stiffness and the nodal equivalent forces resulting from the stresses in the
elements, integration over the element volume should be applied. In case of a homogeneous elastic
behaviour, this can be performed in an analytical way. However it is no longer possible when fibres of
the element have an inelastic behaviour. Consequently, a numerical procedure using certain representative
integration points along the element is adopted. At each point, the corresponding element section is
discretized by means of numerous sub-sections to represent suitably the section geometry and to take
into account both the variation of temperature and the non-linear behaviour of fibres. Concerning the
connection element, the numerical integration of the stiffness matrix over the steel-concrete interface is
based on a two point Gauss quadrature formula, descritizing the perimeter by means of segments dl
(Fig. 6). A similar procedure was adopted for the bar elements.

2.3.3 Transformation of the element stiffness matrix into the generalised global system

a) Steel and concrete beam-column element

For the usual 2D bar elements, the vector of nodal displacements contains six variables. The stiffness
matrix of each element can be established easily in the ordinary global coordinate system X, ¥, Z. But
concerning the specific composite bar element developed in the model, height variables are necessary.
These variables, not defined in the same coordinate system, need to be transformed so that the stiffness
matrix of the two bar elements constituting the steel-concrete composite element can be expressed in
the generalised global coordinate system.

Considering the tangential stiffness matrix of the concrete element, [, k( )] (as defined in Eq. (14)),
determined at time t and referred to the configuration also at time t characterized by the local coordinate
system ('3, y,,) it is easy to express the stiffness matrix in the global coordinate system by the following
transformation:

= [ e ] e

where [7}] is the rotation matrix, with dimension 3x3, allowing a transformation from the local
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>

+A +
T, L 'Xai AL Xbi

Fig. 7 Kinematic compatibility between increments of displacements, rotations and slip at node i

system (’?c/,, ’f//,, %) to the global one ()9(’ ?/, }).

To transfer to the generalised global system, the nodal variables may be replaced by the variables
mentioned in Eq. (18) for node i and the similar ones for node j. At node i, a certain kinematic
compatibility between all variables should be satisfied when the composite element moves from the
configuration at time 7 to the configuration at time (¢ + A¢). Let ‘6, be the total rotation of node i at time ¢,
and °a; the initial angle between the nodal axis used to define the slip variable and the global axis. The
following relationship of kinematic compatibility for the concrete element at node i can be established:

126, v, 28] = [To] [, ', 28, Ay] 22)
where:
N 1 0 “yGin['6+°a] cos('6+"a)

(1ol =1 o 'y os('6, + ) sin('6, +°a)
0 1 0

(23)

Then the stiffness matrix [;f(fgb)] of the concrete element in the generalized global coordinate system
can be derived from following relation:

~ 7. 077 7.. 0

(RO = [ RO @4
0 Tbj 0 Tbj

where i“bj- is similar to (23), but for node ;.

It should be noted that the elementary stiffness matrix has a dimension of 6x6, whereas the
transformed matrix has now a dimension of 8§x8.
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The stiffness matrix [;IN('ff')] of the steel element can be constructed according to a similar procedure as
above while noting that the matrices 7, and ~Ta/., allowing a transformation to the generalised global
system, are very simple:

(25)

S o o =
o o = O
o = O O
S O O O

b) Connection element
As for the connection element for node i and j, its tangential stiffness matrix may be easily determined in
the generalized global system due to the choice of the end slips as nodal variable. It can be obtained by:

[(K.] = [TO ;)jT[;kcc] E ;)J where: [T.] = [0 0 0 1] (26)

and [ k,, ] has been defined in relationship (20). .
At the present stage, the tangential stiffness matrix of the connected composite element, [,K. |, can be
deduced using a direct algorithm of summation of the elementary matrices [;Kff')], [;kﬁb)], and [;ch].

2.4. Transformation of the load vector into the generalised global system

In consistence with the type of composite finite element developed here, the loading vector R; at node
i needs to make a distinction between two sub-vectors R,; and R, among the external forces and the
moment applied to the node since the steel and concrete parts have different displacements.

Defining the steel part and the concrete part of loading at node 7 in the ordinary global system as:

t+ N t+ A0

Pbil

t+ At

oM, and {TYR} = [TYF,, M) @)

ai

{I+AIR } — [I+AIF l+AlP
where £, P and M correspond to the components of two forces and one moment, respectively.
Multiplying on the left {** A’Ra ;} and { +A’R,, ;}+ by the corresponding transposed transformation matrices,
namely matrices [f“a,.]T and [T, ,.]T, we obtain in the generalised global system the two new following
loading vectors:

t+ At t+ At T

{""RaY = ["YE, P, M, 0] (28)
and
E z+AzFbi E
D t+ At D
~ I:l Pn’ D
C%Rd = 00w e o ea, O (29)
g Mbi_sm( 6/ + ai) Y. Fyi +COS( 9/ + a/) Y. Phi%
0 cos(g+"a) TR, +sin(g+"a) TP, O
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Then regrouping the above two loading sub-vectors leads to the following final loading vector at
node i in the generalised global system:

E ’+A1F¢u + l+AlF/7i E
t+ Ay E ’+AlPai+l+Alei E
{ Ri} = |:|+At t+ A t+ At t 0 toot+ N 0 (30)
g Mal+ Mh1_81n(9+ a) y F[,,-+COS( 6'+ ai) y/ Phi%
O cos('6, + a)'+A' ,+sin('6, + a)’+A' Py, O
0 O
t+ Al t+Al t+ At t+ At t+ At T
As an interpretation, the sub-vector [ F,, " p,+0P, M+ Mb ;|' corresponds

to the external loads accumulated for the materlals “a” and “b” and associated only with the increases in
nodal displacements Au;, Av;, AB. This sub-vector is completed at the third and the fourth lines of Eq.
(30) by contributions coming from the external loads related to material b through the effect of the
nodal variable (that is slip) Ay.

2.5. Solving of the global equilibrium equation

After assembling the various composite bar elements and taking into account the boundary
conditions, the global equilibrium matrix equation of the structure can be expressed in the following
incremental form:

t+ At t+ At

[KI{AD®Y = {798y {1 FS Y +{AFS)., ) 31)

and is associated with a Newton Raphson iteration process for resolution. It is clear that Eq. (31)
has the same appearance as the elementary Eq. (12), but now with the following symbols:
-1 ,K ] is the tangential stiffness global matrix of the structure;
- {AD™} is the incremental vector of the generalised nodal displacements at iteration (k);

2
- {l 'S } is the vector of the nodal external forces at time (¢ + Af);

- {;:3;]55( - } is a vector of equivalent nodal forces resulting from the work of internal forces due to

the change of configuration (including the internal forces of the discretised connection),
corresponding to time (¢ + Af) and iteration (k—1);

-{AF ,(lh‘?L.,’,} is also a vector of equivalent nodal forces due to the strain increases between ¢ and
(¢ + A¢) resulting from thermal elongation (subscript ¢h), creep (subscript ¢r) and possible residual
stresses (subscript ) in the materials.

Once equation (31) is solved, the displacements should be udapted as follows:
{1+A1D(k)} _ {1+A1D(k—l)} +{AD(k)} (32)

Adopting {"¥D9} = {'D} in relationship (32), the iteration process is performed for k=1, 2, 3...,
until the “out-of-balance” in Eq. (31) is negligible within a certain convergence measure.
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Table 1 Structural properties and failure times of tested columns

Test loading Material propertiesN/mm®)  Nfeasured  Maximum

Test Profile Rebars Length Er}(j : failure time  temperature
type (mm)  conditions 52;18 %f;f;gg' Steel  Rebars Concrete  (min)  in Stl:f);el e

1 200%6.3 4918 4200 N 432 20 277 475 459 63 975
2 200%6.3 4¢18 4200 _i_hi,,ge 318 50 277 475 459 58 950
3 200%6.3 4¢18 4200 537 5 291 475 429 61 950
4 200x6.3 4¢18 3700 649 20 300 475 55 39 880
5 200x6.3 - 4200 400 20 279 - 55 22 750
6 200x6.3 4¢18 3700 649 20 265 475 75 56 1010
7 200%6.3 4¢18 4200 550 5 274 475 75 59 1035
8 200%6.3 4¢18 3700 294 20 281 469 35 82 1100
9 200%6.3 4¢18 4200 375 22 287 469 35 68 920
10 200x12.5 4¢I8 4200 453 50 234 475 459 34 775
11 300x7.0 4914 3621 end 1500 50 327 441 38 57.3 780
12 300x7.0 4914 3619 i plate 1500 100 327 441 38 25 600
13 150%5.0 4¢12 3810 N 140 0 416 596 37.8 82 1010
14 200x5.0 8¢10 3600 é,mnge 500 7 378 494 38.5 62 830
15  200x5.0 4¢10 3600 500 15 378 494 38.5 56.4 830
16  200x5.0 4¢6 3490 1000 0 598 500 325 23 600
17 200x10.0 4¢6 3430 1200 5 598 500 36.5 27.1 600
18 273.1x6.35 4¢0 3810 1050 0 350 400 46.7 188 1050
19 273.1x6.35 4¢0 3810 1900 0 350 400 47.0 96 930
20  300x7.0 8¢20 3600 1870 0 331 441 325 136 1030
21  300x7.0 8¢20 3600 7%7 2570 0 331 441 325 59 840
22 300x8.0 4¢B2 3810 72 1400 66 394 596 43.8 58 920
23 168.3x4.8 - 3810 N 150 0 350 - 32.7 76 910
24 168.3x4.8 - 3810 =i-|e|'|‘:le 150 0 350 - 354 81 930
25 203x6.35  4¢l6 3810 930 0 350 400 48.1 105 845
26 219.1x4.78 - 3810 492 0 350 - 31.0 80 925
27 219.1x4.78 - 3810 384 0 350 - 323 102 960
28  254x6.35  4@20 3810 1440 0 350 400 48.1 113 990
29  254x6.35  4@20 3810 2200 0 350 400 48.1 70 880
30 273.1x5.56 - 3810 574 0 350 - 28.6 112 955
31 273.1x5.56 - 3810 525 0 350 - 29.0 133 985
32 273.1x5.56 - 3810 end 574 0 350 - 27.2 70 860
33 355.6x12.7 - 3810  #7relate 1050 0 350 - 25.4 170 1030

More detailed developments on the above topic can be found in references (Zhao and Aribert 1996,
1999, Renaud, Aribert, Zhao, and Grimault 2000, Renaud, Aribert, and Zhao 2002).

3. Comparaison of the model with fire tests

Thirty-three fire tests are considered here which were carried out in France (Fire station of CTICM in
“Maizieres-Les-Metz”), in Germany (University of Braunschweig) supported by CIDECT research
projects (Cidect 1983) and in Canada (Institute for Research in Construction, National Research
Council of Canada).
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3.1. Test conditions

The main structural properties of every column and its experimental failure time are summarised in Table 1.

In a standard fire test, the column, located at the centre of a furnace, is subjected to a constant axial
load up to the failure, while being exposed to heating controlled in such a way that the average
temperature in the furnace follows, as closely as possible, the “standard time-temperature curve” (ISO
curve). Some of the columns tested had both ends hinged (rocker bearings), while others had a hinge at
one end and an end plate at the other end. Most of the columns were tested under an eccentric load.

During all the tests, the furnace temperature was continuously recorded. Thermocouples were
installed on the hollow section and the reinforcing bars as well as in the concrete core. In fact, three
cross-sections were equipped along the column length in order to measure the temperature field. The
axial displacement at the top of the column and the transverse column deflection at mid-height (only for
German tests) were systematically recorded during the tests. Except for most of Canadian tests, specimens
from the steel sections, reinforcing bars and concrete were used to obtain the actual mechanical properties
(vield and ultimate tensile strengths of steel and compressive strength of concrete).

3.2. Assumptions for numerical simulations

In addition to the loading, boundary and heating conditions described in the previous paragraph, the
model needs to adopt other physical assumptions to compensate inevitable uncertainties in fire tests, as
follows:

- The thermal and mechanical materials properties as a function of temperature were taken to be in
accordance with EC4 Part 1.2 (1994). It may be underlined that the creep strains of steel and
concrete are implicitly included in the stress-strain relationships at elevated temperature.

- Over the height of the column a uniform temperature has been assumed for the German tests. With
regard to the French tests, a temperature gradient at the top of the columns has been taken into
account over about thirty centimetres. This temperature gradient was due to the fact that the top of
the column, being outside the furnace during the test, was not heated directly by fire but by
conduction.

- All the columns were tested without measuring their out-of-straightness. An out-of-straightness of
L/500 was however used in the numerical simulations (tolerance given by the manufacturer). It was
considered to be always on the side leading to a cumulative effect with the loading eccentricity.

- In each column, the effect of slip between the concrete core and the steel wall was assumed to occur
without significant bond between steel and concrete.

3.3. Presentation of two simulations

To illustrate the effects of end restraint conditions of columns and of slip at the steel-concrete
interface, the behaviour of test number 1 and test number 13 (see Table 1) are simulated with or without
slip and with two different end conditions (namely hinged at both ends or fixed at one end and hinged at
the other end).

For test number 1, the temperature measurements obtained at several points of the section has
allowed introducing a temperature field of sufficient accuracy directly into the numerical simulation.
For test number 13, temperature distributions have been computed using a numerical model based on
the finite difference method (which was proved to simulate the thermal behaviour of composite
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Fig. 8 Calculated and measured temperatures in the column cross-section of test number 13

columns appropriately and to provide a good estimation of the temperature field (Grimault 1980). In
this model, non-linearities due to the temperature dependence of materials properties and boundaries
conditions are taken into account. It is assumed that conduction is the main heat transfer mechanism in
the hollow steel section and concrete core. Convection and radiation act essentially for heat transfers
from fire to the hollow steel section. The influence of moisture (assumed uniformly distributed in the
concrete) is treated in a simplified way: the transient temperatures in the concrete cross-section are
calculated assuming that all moisture evaporates, without any transfer, at the temperature 100°C (or at
another temperature within a narrow range with the heat of evaporation giving a corresponding change
in the enthalpy-temperature curve). So, during the period of evaporation, all the heat supplied to an
element is used for the moisture evaporation until the element is dry.

For test number 13, the calculated temperatures are compared to the measured ones at the hollow
steel section and at various points of the concrete core (including reinforcement) in Fig. 8.

In the hollow steel section the calculated temperatures are in good agreement with the measured ones.
The temperatures in the longitudinal reinforcement are simulated satisfactorily between 0 and 100°C.
However, measured temperatures rise more rapidly than calculated temperatures during this period,
because of important vapour diffusion of hot layers of concrete towards cold layers. Once the
temperature of 100°C is reached close to the reinforcement, calculated temperatures becomes
appreciably more important than those measured (the maximum difference is about 100°C). Globally,
the predicted curve of temperature rise is analogous with those observed in experiments, but somewhat
translated towards lower times (the translation between the curves corresponds to the time necessary to
the vaporisation of water contained in the concrete). Differences between calculations and tests are
explained on the one hand by a certain uncertainty of real moisture content (fixed at 4% in calculations)
and on the other hand by a water accumulation close to the reinforcement subsequent to water
migration (not taken into account in the model). In fact, one part of this water escapes by cracks
towards the hollow section, while the other part migrates towards the coldest zones where it condenses
again, which result in a slowing down of the vaporisation phase and consequently increases the length
of the vaporisation stage. With regard to the point inside the concrete, the agreement is not so good, but



Advanced numerical model for the fire behaviour of composite columns with hollow steel section 91

‘ertical displacement {mm)

30
—#-Test
25 —o— Simulation with hinges at both ends
E —+— Simulation with hinges at both ends and slip
20 -'li o= Simulation with restraint at one end
& — Simulation with restraint at one end and slip
15 -~
"'\-\\
10 1
g H )
5
0F LR 1
o
-5
0 10 20 an 40 50 &l T0

Time (min}

Fig. 9 Vertical displacement at the column top of test number 1
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Fig. 10 Transverse deflection at mid-height of column of test number 1

can nevertheless be regarded as satisfactory. Difference between theoretical and experimental curves is
without too significant consequences: for low temperatures, the concrete mechanical are not affected
and for higher temperatures the calculated curve is on the safe side.

At room temperature, theses columns were designed as hinged at both ends. Assuming the same
support conditions during the fire, the calculated failure time of the column number 1 is 19 minutes,
which is very far from the test failure time (63 minutes). As for test number 13, it is 17 minutes for a
measured value of 82 minutes. In reality, observation of the bending deflection of the column after the
test has suggested trying others support conditions, namely a hinged support at one end and a restraint
condition at the other end. Using these new support conditions, the failure time becomes 61 minutes for
columns number 1, and 77 minutes for column number 13, which now is close to the measured time.
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Fig. 12 Comparison of fire resistances between the numerical model and tests

Generally, individual columns with either end plates or bearings at the top and bottom are both assumed
to provide hinged supports (see end details in Table 1). As an explanation as to why the above result
appears to prove otherwise, it is presumed that additional restraints may result from the parts of the
structure only partially affected by the fire temperature above and below the column ends and therefore
having a higher stiffness.

The evolution of the vertical displacement calculated at the top of the column number 1 and of
the transverse deflection calculated at mid-height of the column is shown in Fig. 9 and Fig. 10,
respectively. These displacements are compared to the measured ones. Fig. 11 present the vertical
displacement calculated at the top of the column number 13. The transverse deflection at mid-
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Table 2 Failure time of columns simulated with or without slip
Test 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Calculated Without slip 60.7 55.4 55.5 50.2 18.8 554 59.1 772 61.4 32.4 547 27.1 756 60.8 53.7 23.5 302
failure time  wyith slip 60.8 58.4 55.3 50.0 21.3 55.5 59.5 79.4 63.5 32.9 55.6 25.6 75.8 60.6 54.7 23.4 30.0
Test 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Calculated Without slip155.6 91.8 125.8 58.1 57.7 782 63.8 90.6 67.4 88.8 97.8 59.6 118.0128.2 56.3 142.6
failure time  wyith slip 155.8 91.2 124.8 58.2 57.2 752 67.2 90.4 65.4 85.8 97.4 59.2 115.4125.4 55.4 139.6

height has not been the subject of measurement during this test, so that no comparison with the
model is possible.

In the case of restraint conditions (fixed) at the one end, there is a good agreement between measured
and calculated displacements, in particular when the slip is taken into account. Whereas the
transverse deflection calculated at mid-height is practically the same as the one measured, it should
be noted that column elongation is somewhat over-estimated near the end of the test. A possible
explanation of this difference may be the fact that the column is not uniformly overheated over its
whole length.

In addition, the fact of introducing into the simulations the temperatures directly measured at
some cross-section points may involve an over-estimate of unknown temperatures inside the
concrete, and consequently lead to overestimating thermal dilation. It should be noted that a
difference exists again in the neighbourhood of the fifteenth minutes, which may be explained by
certain bond persistence between the steel tube and the concrete core, in spite of the important rise
of temperature.

Except during the first 30 minute, the slip does not seem to have a significant influence on the column
deformation, and consequently on the time of fire stability.

3.4. Synthesis of results

Calculations have been performed dealing with the 33 column tests carried out in France, Germany
and Canada. Globally the difference between failure times ascertained numerically and experimentally
does not exceed 15% as illustrated in Fig. 12, which is fully acceptable considering the various
uncertainties inherent to test data, such as the heating condition along the height column, the degree of
rotational restraint at the column ends, the unintentional eccentricity of axial load, the initial out-of
straightness of the column, etc.

The good agreement of the model in comparison with tests is due not only to the choice of
appropriate material laws as well as introduction of column imperfections (initial out-of-straightness,
residual stresses) but also to the ability to take into account the phenomenon of slip between the steel
tube and the concrete core.

All the numerical results confirm that the slip has no significant influence on the failure time of
composite columns, provided that the hollow section is filled with reinforced concrete. However it
leads to a more realistic evolution path of the displacements (vertical displacement and deflection) during
the first period of heating as already shown in Figs. 9 to 11. On the contrary, columns without reinforcement
and columns subject to important bending moments appear to be more sensitive to the phenomenon of slip
which may influence not only their deformations but also their failure time (see Table 2).
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4. Conclusions

The main features of a finite element model specifically implemented by the authors to analyse the
fire resistance of composite structures taking into account the effect of the interface slip between steel
and concrete have been presented. Using this model, the fire resistances of several composite columns
with concrete filled hollow sections have been calculated and compared with test results. These
comparisons show that the model can simulate appropriately the structural behaviour of composite
columns and provide a good estimation of the fire resistance time.

A simplified semi-analytical method to evaluate the fire resistance of columns composed of
unprotected concrete filled hollow sections is available in Annex G of Eurocode 4 (ENV 1994-1-2). Several
research works related to this method have demonstrated its questionable level of approximation with
regard to buckling resistance predictions at elevated temperatures, in particular the method leads to a
safety level that depends clearly on the slenderness of the columns, being unsafe for intermediate
slendernesses (Twilt and Haar 1984, 1985). In the near future, the model will be used to perform a very
wide series of numerical simulations for many values of significant parameters affecting the performance of
composite columns such as buckling length, fire duration, cross-section size, and considering the
standard fire exposure. Referring to this base of numerical results, it may be expected that a more
suitable simplified method will be established, taking into account globally the effects of restrained
thermal stresses and initial deflection of the columns on the load bearing capacity of columns. These
effects are entirely neglected in Annex G but they may become important for columns with high
buckling lengths. Another aim of the work will consist in using the same type of buckling approach
proposed at room temperatures given in Eurocode 4, but modifying material properties at elevated
temperatures.
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