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1. Introduction 

 
In modern times, the composite materials are 

extensively preferred in automobile, civil, aerospace, and 
marine applications due to their higher specific stiffness and 
strength, thermal and chemical resistivity, flexibility in 
designing, and impact resistance. Due to the usage of these 
advanced materials in variable thermal environment, it has 
become a field of keen interest for the researchers to model 
and analyse these layered structures for their optimal design 
to an edge. 

In order to analyse these composite structures, the 
researchers have used various approaches in the past. 
Reissner (1945) and Mindlin (1951) analysed the plates 
taking into account of transverse shear in the deformation 
leading to the development of first order shear deformation 
theory (FSDT). However, the results predicted by FSDT are 
dependent on the choice of shear correction factor whose 
value is dependent on the parameters such as boundary 
conditions, lamination sequence, etc. (Pai 1995). The 
researchers have focused on various modelling approaches 
for laminated composite plates taking into consideration of 
the complicating effects of such structures. In the axiomatic 
approach based on the displacement field, the theories are 
categorized in equivalent single layer (ESL) theories, zig-
zag (ZZ) theories and layer wise (LW) theories. The 
extensive review on the devolvement of the theories for 
modelling of laminated composites are found in the 
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literature (Reddy 1990, Reddy and Robbins 1994, Ghugal 
and Shimpi 2002, Carrera 2003a, Zhang and Yang 2009, 
Khandan et al. 2012, Singh and Grover 2013). The 
complexity in FSDT due to the requirement of shear 
correction factor is eliminated by the development of higher 
order shear deformation theories (HSDTs). The HSDTs can 
be further grouped into polynomial shear deformation 
theories (PSDTs) and non-polynomial shear deformation 
theories (NPSDTs). The displacement field of PSDT’s are 
the polynomial expansion of the transverse coordinate. 
(Reddy 1984, Maiti and Sinha 1994, Kant and Khare 1997, 
Kant and Swaminathan 2002, Shimpi and Patel 2006, Talha 
and Singh 2010). However, in NPSDTs, a non-polynomial  
function of thickness coordinate such as trigonometric  
(Touratier 1991, Shimpi et al. 2003, Ferreira et al. 2005, 
Mantari et al. 2012, Grover et al. 2013a, Thai and Vo 2013, 
Tounsi et al. 2013), inverse trigonometric (Grover et al. 
2013a, Thai et al. 2015), exponential (Karama et al. 2003, 
Aydogdu 2009), hyperbolic (Akavci 2010, Meiche et al. 
2011, Daouadji et al. 2013, Zenkour 2013) and inverse 
hyperbolic (Grover et al. 2013b, Joshan et al. 2017) is used 
in the displacement field. Mantari and Ore (2015) and 
Merdaci et al. (2016) developed ESL theories with four 
degrees of freedom to analyze the composite plates. Carrera 
(1998) developed unified formulation (CUF) expanding the 
displacement field to N-order using Taylor’s expansion. 
Furthermore, Carrera (2001, 2003b) implemented LW 
approach to analyze the laminated structures. Sahoo and 
Singh (2013, 2014) used non-polynomial zig-zag models to 
evaluate structural response of laminated composite plates. 

The laminated plates subjected to thermo-mechanical 
loading have been investigated by the researchers using the 
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developed displacement models. Wu and Tauchert (1980) 
analyzed the response of anti-symmetric cross ply and 
angle-ply laminates by implementing Kirchhoff's 
hypothesis using classical laminated plate theory (CLPT) 
subjected to constant and linearly varying thermal loading.  
Reddy and Hsu (1980) used FSDT for the analysis of the 
cross ply laminated plates under thermal bending using 
Navier type closed form solution. Khdeir and Reddy (1991) 
used Levy type closed form solution to analyze thermo 
static behavior of cross plylaminated plates using CLPT, 
FSDT and HSDT under various boundary constraints. 
Bhaskar et al. (1996) investigated thermo-elastic response 
of laminates and presented results for angle-ply strips under 
linearly varying thermal field. Fares and Zenkour (1999) 
investigated thermal bending behavior of composite plates 
implementing mixed variational formulation. Khare et al. 
(2003) analyzed the laminated cross plycylindrical shells 
using HSDT under thermal gradient. Zenkour (2004) 
developed analytical solution for thermo-mechanical 
analysis of laminated plates employing sinusoidal plate 
theory (SPT) developed by Touratier (1991). Mechab et al. 
(2012) examined thick orthotropic plates subjected to 
thermal bending using HSDT and SPT. Cetkovic (2015) 
used LW approach for studying the thermo-mechanical 
behaviour of laminated and sandwich plates. Chattibi et al. 
(2015) used four variable sinusoidal theory for thermo-
mechanical analysis of laminated plates. Bouchafa et al. 
(2015) implemented refined hyperbolic shear deformation 
theory for thermal stress analysis of functionally graded 
sandwich plates. Ramos et al. (2016) analyzed the effect of 
thermal load on laminated plates based on CUF. Panduro 
and Mantari (2017) analyzed laminated plates under hygro-
thermo-mechanical loading using CUF. 

It is observed from the existing literature that a number 
of ESL theories are developed and used for the analysis of 
the composite structures due to their simplicity and 
computational economical behavior. However, the recently 
developed theories are generally implemented for the 
structural behavior of composite plates due to mechanical 
loads. Due to the development of a large number of 

 
 

theories, there is a need to incorporate the recently 
developed theories for investigating the thermo-mechanical 
response characteristics of laminated composite plates in 
order to accurately predict the results. Moreover, the 
considered shear deformation theories have proven their 
credibility to investigate the response of composite plates 
for free vibration, buckling and bending analysis. The 
objective of the present work is to analytically investigate 
the thermo-mechanical response characteristics of 
composite plates using the recently developed shear 
deformation theories. The assessment of these theories for 
the prediction of thermo-mechanical response of laminated 
composite plates is addressed and a detailed comparison of 
the quantitative results is presented. 

 
 

2. Mathematical formulation 
 
In the present work, a multi-layered laminated plate 

having n layers of equal thickness and total thickness of h 
and having dimensions (a×b) along x and y co-ordinates is 
considered. The mid plane of laminated plate is considered 
at the z = 0 plane in the Cartesian coordinates as shown in 
Fig. 1. 

 
2.1 Displacement field 
 
In the present formulation, the displacement field at any 

point (x, y, z) of the laminated plate is defined in terms of 
displacements (u, v, w) along x, y and z directions 
respectively. The displacement field in the framework of a 
non-polynomial shear deformation theory in terms of a 
function of a transverse co-ordinate is expressed as follows 
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Fig. 1 Coordinate system of the laminated plate 
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where the parameters u0 , v0 are the in plane mid surface 
displacements along x and y directions respectively and w0 
is the transverse displacement of the mid surface of the 
plate. The quantities θx and θy are the shear rotations around 
x and y directions respectively. The function f(z) is chosen 
such that (Soldatos and Timarci 1993) 

 

∫ =− 0)(2/
2/ dzzfh

h  

and 
0)2/(' =±hf  

 
where (‘) denotes the derivative of the function and both f(z) 
and f’(z) are the continuous functions in the domain (-h/2) 
to (h/2). Further the function f(z) is chosen in such a way 
that 

zzgzf Ω+= )()(  (2) 
 

where g(z) is a non-polynomial function of transverse co-
ordinate and Ω is constant introduced in the equation in 
order to equate the value of shear stains to zero at the top 
and bottom surface disregarding the need of shear 
correction factor. The various functions recently used in the 
literature in order to predict the behavior of laminated plates 
are illustrated in Table 1. The accuracy of the predicted 
results depends significantly on choice of the function f(z). 
The variation of the functions considered in Table 1 along 

 
 

 
 

the thickness of the plate is plotted in Fig. 2. 
 
2.2 Temperature field 
 
The laminated plate is subjected to a temperature field 

(T) across the thickness in accordance with non-polynomial 
displacement field as 

 

1 2 3
( )( , , ) ( , ) ( , ) ( , )z f zT x y z T x y T x y T x y

h h
= + +

 
(3) 

 
where the parameters T1, T2 and T3 are constants and 
respectively represent the coefficients of constant 
temperature field, linearly varying temperature field across 
the thickness and non-linearly varying temperature field 
across the thickness. The non-linear term (f(z) T3/h) in the 
temperature field depends on the choice of function (f(z)) 
and hence is different for each theory as mentioned in Table 
1. However the constant (T1) and linear (zT2/h) are not 
affected by the choice of the function (f(z)) and hence the 
temperature field is same for each theory in this case. 

 
2.3 Stress strain relations 
 
The constitutive relations for each layer of composite 

plate characterize the material behavior of the composites. 
For a general kth layer, the stress components {σ} = [σxx σyy 
τxy τyz τzx]T are related to strain components {ε} and 

 
Fig. 2 Variation of shear deformation functions along the thickness of the plate 

Table 1 Shear deformation functions of various theories 
Theory Notation g(z) Ω 

Akavci (2010) SHSDT z sec h(πz2/h2) z sec h(π/4)(π/2(tanh(π/4)) ‒ 1) 
Mantari et al. (2011) SESDT sin(πz/h)e1/2(coz(πz/h)) π/2h 
Mantari et al. (2012) TSDT tan(mz) ‒m(sec2mh/2); m = 0.2 
Grover et al. (2013a) SSDT zsec(rz/h) ‒sec(r/2)(1+(r/2)(tan(r/2))); r = 0.1 
Grover et al. (2013a) ICSDT cot-1(rh/z) ‒4r/h(4r2+1); r = 0.42 

Thai et al. (2015) ITSDT htan-1(2z/h) ‒ z 0 
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temperature induced strains {εTh} as follows 
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or 
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where the matrix �𝑄𝑄�𝑖𝑖𝑖𝑖 �

(𝑘𝑘)
depicts the transformed stiffness 

matrix for the kth layer which is a function of reduced 
stiffness matrix [Qij] and the angle of fiber orientation (ϴ) 
of the layer (Reddy 2004). The parameters αxx, αyy and αxy 
are the coefficients of thermal expansion in the respective 
co-ordinates. 

 
2.4 Strain displacement relationship 
 
The linear strain-displacement relationship is 

implemented in the considered structural problem since the 
laminated plate is considered to undergo linear deformation. 
These relations are as follows 
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The parameters εxx and εyy are the normal strains in x and 

y directions respectively, γxy is the in-plane shear strain, γxz 
and γyz are the shear strains along the transverse directions. 

2.5 Governing equations 
 
The principle of virtual work is employed in order to 

derive the governing equations in terms of stress and 
moment resultants. 
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where the quantity δU represents the virtual strain energy 
and δW denotes the virtual work done by the applied load 
on the laminated plate. These are redefined as follows 
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where q denotes the applied mechanical load onto the plate. 
The values of virtual strain energy and virtual work are 
substituted in Eq. (6) and the strains are introduced in terms 
of displacements using strain displacement relations defined 
in Eq.(5). The product law of differential calculus is used 
and corresponding coefficients of five primary variables (u0, 
v0, w0, θx, θy) are equated to zero. The governing differential 
equations in the form of stress and moment resultants are 
obtained in the process and are as follows 

 

y
N

x
N

y
N

x
N T

xy
T
xxxyxx

∂

∂
+

∂
∂

=
∂

∂
+

∂
∂

 

x
N

y
N

x
N

y
N T

xy
T
yyxyyy

∂

∂
+

∂

∂
=

∂

∂
+

∂

∂
 

=+
∂∂

∂
+

∂

∂
+

∂
∂

q
yx

M
y
M

x
M xyyyxx

2

2

2

2

2

2  

yx
M

y
M

x
M T

xy
T
yy

T
xx

∂∂

∂
+

∂

∂
+

∂
∂ 2

2

2

2

2

2  

11 KS
y

P
y

M
x

P
x

M xyxyxxxx −Ω−
∂

∂
+

∂

∂
Ω+

∂
∂

+
∂

∂
Ω  

y
P

y
M

x
P

x
M T

xy
T
xy

T
xx

T
xx

∂

∂
+

∂

∂
Ω+

∂
∂

+
∂

∂
Ω=  

22 KS
x

P
x

M
y

P
y

M xyxyyyyy −Ω−
∂

∂
+

∂

∂
Ω+

∂

∂
+

∂

∂
Ω  

x
P

x
M

y
P

y
M T

xy
T
xy

T
yy

T
yy

∂

∂
+

∂

∂
Ω+

∂

∂
+

∂

∂
Ω=  

(9) 

 
where the parameters N, M and P are resultants of in-plane 
stresses and moments due to applied mechanical load. The 
quantities S and K are resultants due to transverse shear 
stresses. The parameters NT, MT and PT are in-plane stresses 
and moments due to thermal load. These parameters are 
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redefined in terms of integrals of in-plane and transverse 
stresses (Zenkour 2004). 
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In order to express the governing equations of the plate 

in terms of primary variables, the stress strain relations 
defined in Eq. (4) are implemented. In the formulation, the 
following integrals are used in order to the express the 
governing equations in partial differential equations of mid-
plane displacements and rotations (Zenkour 2004) 

 

[ ]=ijijijijijij HFEDBA [ ]
)(

2

2

kh

h ijQ∫−  

[ ]dzzgzgzzgzz 22 ))(()(.)(1×  

(13) 

 
[ ]AT

i
AT
i

AT
i

T
i

T
i

T
i FDBDBA  

[ ]



























∫−
0
0

2

2

)(

xy

yy

xx

h

h

k

ijQ α
α
α

 

{ }Tdzzfzfzzfzz 22 ))(()(.)(1×  

(14) 

 
where i, j are 1, 2, 4, 5, 6 
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where i, j are 4, 5. 

The generalized partial differential equations obtained 
can be represented in the form 
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where [R] is a differential operator matrix, {Δ} is 
displacement vector of primary displacements and rotations 
and {F} is force vector constituting both thermal and 
mechanical load terms. For cross ply laminates, the stiffness 
characteristics are defined in Eq. (17). 
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These stiffness characteristics are implemented in Eq. 

(16) to obtain the explicit partial differential equations for 
cross ply laminates as follows 
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2.6 Solution methodology 
 
The partial differential equations defined in Eq. (18) are 

solved using the Navier type closed form solution for 
simply supported cross ply laminates. The boundary 
conditions for simply supported plate are as follows 

 
u0 = w0 = θx = Nyy= Myy= 0  at  y = 0, b 
 v0 = w0 = θy = Nxx= Mxx= 0  at  x = 0, a (19) 

 
The Navier solution for the cross ply laminated plates 

for investigating thermo-mechanical behaviour is as follows 
(Reddy 2004) 
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where the quantities Umn, Vmn, Wmn, Xmn and Ymn are 
arbitrarily parameters to be determined by substituting the 
mid-plane displacements in Eq. (18). The mechanical load 
and the thermal load applied on the plate are taken as 
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where qmn = q0 for sinusoidal loading and qmn = 16q0π2/mn 
for uniformly distributed loading. The solution and loading 
conditions are substituted into differential equations defined 
in Eq. (18) and algebraic form of the equations is obtained. 
The solution of the quantities(Umn, Vmn, Wmn, Xmn and Ymn) 
are retrieved in the form 

 

{ } 1[ ] { }C C
mn mn mn mn mnU V W X Y R F−=  

(22) 
 
The mid plane displacements (u0, v0, w0) and rotations 

(θx, θy) can be obtained following the solution methodology. 
The coefficients of the resultant matrix �𝑅𝑅𝐶𝐶����� are given in 
Appendix A. 

 
 

3. Numerical results and discussion 
 
In this section, a study of thermo-mechanical behavior 

of the laminated plates implementing various non-
polynomial shear deformation theories is presented. Using 
the developed mathematical formulation and solution 
methodology, a MATLAB code for each of the theory is 
developed in order to solve the mathematical problem. A 
number of results are presented in order to validate the 
present formulation and the effects of various parameters 
such as side to thickness ratio, aspect ratio, lamination 
sequence, loading conditions and material anisotropy on 
thermo-mechanical response of cross ply laminates are 
discussed and few new results are also presented. Each plate 

 
 

 
 

Table 2 Effect of thickness on dimensionless deflection of orthotropic square plate subjected to 
sinusoidal temperature field (αyy/αxx = 3) 

a/h 
FSDT 

(Reddy and 
Hsu 1980) 

HSDT 
(Zenkour 

2004) 

SPT 
(Zenkour 

2004) 
SHSDT SESDT TSDT SSDT ICSDT ITSDT 

6.25 1.0602 1.0597 10595 1.0597 1.0583 1.0597 1.0597 1.0588 1.0590 
10 1.0440 1.0439 1.0438 1.0438 1.0434 1.0439 1.0439 1.0436 1.0436 

12.5 1.0396 1.0396 1.0396 1.0395 1.0393 1.0396 1.0396 1.0394 1.0394 
20 1.0346 1.0346 1.0346 1.0346 1.0345 1.0346 1.0346 1.0345 1.0345 
25 1.0334 1.0334 1.0334 1.0334 1.0333 1.0334 1.0334 1.0333 1.0333 
50 1.0317 1.0317 1.0317 1.0317 1.0317 1.0317 1.0317 1.0317 1.0317 
100 1.0313 1.0313 1.0313 1.0313 1.0313 1.0313 1.0313 1.0313 1.0313 

 

Table 3 Effect of thickness on dimensionless deflection of simply supported anti symmetric cross ply 
[00/900] square plate under sinusoidal temperature field (αyy/αxx = 3) 

a/h 
FSDT 

(Reddy and 
Hsu 1980) 

HSDT 
(Zenkour 

2004) 

SPT 
(Zenkour 

2004) 
SHSDT SESDT TSDT SSDT ICSDT ITSDT 

6.25 1.6765 1.6848 1.6858 1.6821 1.6916 1.6883 1.6883 1.6883 1.6879 
10 1.6765 1.6798 1.6802 1.6787 1.6825 1.6812 1.6812 1.6812 1.6810 

12.5 1.6765 1.6786 1.6789 1.6779 1.6804 1.6795 1.6795 1.6795 1.6794 
20 1.6765 1.6773 1.6774 1.6771 1.678 1.6777 1.6777 1.6777 1.6777 
25 1.6765 1.6770 1.6771 1.6769 1.6775 1.6773 1.6773 1.6773 1.6772 
50 1.6765 1.6767 1.6767 1.6766 1.6768 1.6767 1.6767 1.6767 1.6767 
100 1.6765 1.6766 1.6766 1.6765 1.6766 1.6766 1.6766 1.6766 1.6766 
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is considered of equal thickness layers and the material 
properties of each layer of the laminated plate are assumed 
as 

,5.0/,5.0/,25/ 21321221 === EGEGEE  
0,3/1/,25.0,2.0/ 12223 ==== xyyyxxvEG ααα  

 
3.1 Thermo-mechanical analysis of 

cross ply laminates under linearly 
varying temperature field 

 
The thermo-mechanical response characteristics of 

simply supported laminated plates are investigated for an 
orthotropic plate [00], two layered anti-symmetric [00/900] 
and three layered symmetric [00/900/00] plates subjected to 
linearly varying sinusoidal thermal field (T2 = 100, T1 = T3 
= 0, q = 0). The response characteristics of the considered 
plates are expressed in terms of maximum non-dimensional 
transverse deflection (𝑤𝑤�) defined as 

 
( ) ( )2

2/10 aTwhw xxα=  (23) 
 
The results obtained for the considered plates using the 

respective theories are compared with the existing results 
due to FSDT (Reddy and Hsu 1980), HSDT (Zenkour 2004) 
and SPT (Zenkour 2004). 

The non-dimensional deflection for orthotropic plate 
[00], two layered anti-symmetric [00/900] and three layered 
symmetric [00/900/00] plate is obtained for a variety of span 

 
 

 
 

to thickness ratio so as to ensure the applicability for thick 
and thin plates. These results are enlisted in Tables 2-4. All 
the considered higher order theories (HSDT, SPT, SHSDT, 
SESDT, SSDT, TSDT, ICSDT, and ITSDT) have a good 
agreement of the results with FSDT for thin cross ply 
plates. However, for the thick cross ply plates, due to the 
higher order contributions of SHSDT, SSDT and TSDT, 
these non-polynomial theories predict the results more 
accurately relative to FSDT. The SESDT, ICSDT and 
ITSDT predict the results more accurately as comparable to 
SPT, SHSDT, SSDT and TSDT. 

Further, a three layered symmetric [00/900/00] 
rectangular cross ply laminated plate is considered. A 
linearly varying sinusoidal temperature load is applied on 
the laminated plate. The effect of aspect ratio on non-
dimensional transverse deflection is illustrated in Table 5 
and the results given by the higher order non-polynomial 
theories are compared with FSDT (Reddy and Hsu, 1980), 
HSDT (Zenkour 2004) and SPT (Zenkour 2004). It is 
observed that for a thin plate (a/h = 100), the response 
predicted due to higher order theories (HSDT, SPT, SHSDT, 
SESDT, SSDT, TSDT, ICSDT, ITSDT) are identical as 
predicted by FSDT. However, for thick plates (a/h = 10), 
the SHSDT, SESDT, ICSDT and ITSDT yield  accurate 
results relative to other shear deformation theories. 

The variation of non-dimensional deflection with 
change in span to thickness ratio for four layered symmetric 
cross ply [00/900/900/00] and anti- symmetric cross ply 
[00/900/00/900] square plate under linearly varying 

Table 4 Effect of thickness on dimensionless deflection of symmetric cross ply [00/900/00] square plate 
subjected to sinusoidal temperature field (αyy/αxx = 3) 

a/h 
FSDT 

(Reddy and 
Hsu 1980) 

HSDT 
(Zenkour 

2004) 

SPT 
(Zenkour 

2004) 
SHSDT SESDT TSDT SSDT ICSDT ITSDT 

6.25 1.1870 1.2057 1.2077 1.1995 1.1958 1.2057 1.2057 1.2118 1.2113 
10 1.1365 1.1463 1.1475 1.1428 1.1438 1.1463 1.1463 1.1502 1.1498 

12.5 1.1224 1.1292 1.1300 1.1267 1.1278 1.1291 1.1291 1.1319 1.1316 
20 1.0158 1.1087 1.1090 1.1076 1.1083 1.1087 1.1087 1.1099 1.1098 
25 1.1018 1.1036 1.1039 1.1029 1.1034 1.1036 1.1036 1.1044 1.1044 
50 1.0963 1.0967 1.0968 1.0966 1.0967 1.0967 1.0967 1.0969 1.0969 
100 1.0949 1.0950 1.0950 1.0949 1.095 1.0950 1.0950 1.0950 1.0950 

 

Table 5 Effect of aspect ratio and span to thickness ratio on dimensionless deflection for simply 
supported three layered symmetric cross ply[00/900/00] rectangular plate subjected to 
sinusoidal temperature field (αyy/αxx = 3) 

a/b a/h 
FSDT 

(Reddy and 
Hsu 1980) 

HSDT 
(Zenkour 

2004) 

SPT 
(Zenkour 

2004) 
SHSDT SESDT TSDT SSDT ICSDT ITSDT 

 10 1.0959 1.1008 1.1014 1.0813 1.0993 1.0922 1.0923 1.0981 1.1026 
0.5 20 1.0795 1.0808 1.0810 1.0759 1.0806 1.0786 1.0786 1.0801 1.0813 

 100 1.0741 1.0741 1.0741 1.0739 1.0741 1.074 1.074 1.0741 1.0742 
 10 0.7508 0.7455 0.7449 0.7376 0.7449 0.7525 0.7525 0.7477 0.7437 

2.0 20 0.7601 0.7583 0.7581 0.7563 0.7581 0.7608 0.7608 0.7591 0.7577 
 100 0.7643 0.7642 0.7642 0.7642 0.7642 0.7644 0.7644 0.7643 0.7642 
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Fig. 3 Variation of maximum dimensionless deflection 

with side to thickness ratio for symmetric cross ply 
[00/900/900/00] plate subjected to sinusoidal 
temperature field 

 
 

 
Fig. 4 Variation of dimensionless deflection at the centre 

of the plate with side to thickness ratio for anti-
symmetric cross ply[00/900/00/900] plate subjected to 
sinusoidal temperature field 

 
 

sinusoidal temperature field (T2 = 100, T1 = T3 = 0, q = 0) is 
illustrated in Figs. 3 and 4. It is observed that for thin plates 
i.e., a/h = 50, all the considered theories (SHSDT, SESDT, 
SSDT, TSDT, ICSDT, and ITSDT) yield the same result. 
However, for thick symmetric cross ply plate, SHSDT, 
ITSDT and ICSDT yield accurate results and for anti-
symmetric cross ply plate, SESDT ITSDT and ICSDT 
produce accurate results. Further, the variation of transverse 
shear stress (𝜏𝜏̅𝑦𝑦𝑦𝑦 ) across the thickness of the considered 
four layered symmetric cross ply [00/900/900/00] laminated 
plate is presented in Fig. 5. The non-dimensional relation 
used for transverse shear stress (𝜏𝜏̅𝑦𝑦𝑦𝑦 ) is given as follows 
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It is observed that the value of transverse shear stress 

 
Fig. 5 Variation of transverse shear stress across the 

thickness for symmetric cross ply [00/900/900/00] 
plate subjected to sinusoidal temperature field 

 
 

 
Fig. 6 Variation of dimensionless deflection with material 

anisotropy for anti-symmetric cross ply plate 
[00/900] (T3 = 0) 

 
 

(𝜏𝜏̅𝑦𝑦𝑦𝑦 ) is obtained as zero at the top and bottom of the plate 
without any use of shear correction factor for the considered 
theories (SHSDT, SSDT, ITSDT, ICSDT). 

The effect of change in material anisotropy (E1/E2) on 
two layered anti-symmetric cross ply [00/900] plate (a/h = 
10) under linearly variable sinusoidal temperature field (T2 
= 100, T1 = T3 = 0, q = 0) is illustrated in Fig. 6. The 
considered higher order deformation theories predict an 
increase in non-dimensional deflection with the increase in 
E1/E2 ratio. In this case, the SESDT, ITSDT and ICSDT are 
more accurate as compared to SSDT, TSDT and SHSDT. 

In order to investigate the deflection response of cross 
ply plates under linearly varying uniform temperature field, 
four layered symmetric [00/900/900/00] and anti-symmetric 
[00/900/00/900] cross ply plates are taken into consideration. 
The relation defined in Eq. (23) is used for the 
determination of the non-dimensional deflection. 

The effect of span to thickness ratio on maximum 
transverse deflection for four layered symmetric cross ply 
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[00/900/900/00] square plate subjected to linearly varying 
uniform temperature field (T2 = 100, T1 = T3 = 0, q = 0) is 
depicted in Table 6. It is observed that there is a notable 
increase in non-dimensional deflection of the plate under 
uniform temperature field as compared to sinusoidal 
temperature field. The deformation in the plate (a/h = 10) 
subjected to uniform temperature field is approximately 
48% higher than the plate subjected to sinusoidal 
temperature field. The non-dimensional deflection 
decreases with increase in span to thickness ratio under 
uniform temperature field as under sinusoidal temperature 
field. In this case, ITSDT, SESDT, and ICSDT yield 
relatively accurate results. 

Table 7 presents the variation in maximum transverse 
deflection for four layered anti-symmetric cross ply 
[00/900/00/900] square plate with respect to span-thickness 
ratio of the plate. The plate is subjected to linearly varying 
uniform temperature field (T2 = 100, T1 = T3 = 0, q = 0) 
linearly varying across the thickness. It is observed that 
unlike symmetric cross ply plates, the non-dimensional 
deflection increases with increase in span to thickness ratio 
under uniform temperature field. 

Further, the multilayered symmetric cross ply plates are 
considered and the transverse dimensionless deflection due 
to uniformly distributed thermal load (T2 = 100, T1 = T3 = 0, 
q = 0) is examined using ICSDT. The analysis of three 
[00/900/00], four [00/900/900/00], five [00/900/00/900/00] and 
six [00/900/00/00/900/00] layered plates aligned in symmetric 
cross ply lamination is carried out. The results are obtained 
by varying span to thickness ratio (a/h) and are plotted in 

 
 

 
 

 
Fig. 7 Variation in dimensionless deflection for three, four, 

five and six layered symmetric cross ply plates with 
change in span to thickness ratio subjected to 
uniform temperature load 

 
 

Fig. 7. It is observed that the dimensionless deflection 
increases as the number of layers increase. 

 
3.2 Thermo-mechanical analysis of simply 

supported cross ply laminates under 
combined mechanical and linearly varying 
temperature loading 

 
In order to analyse cross ply laminated plates under 

Table 6 Effect of thickness on dimensionless deflection of symmetric cross ply [00/900/900/00] square 
plate subjected to uniform temperature field (αyy/αxx = 3) 

a/h SHSDT SESDT TSDT SSDT ICSDT ITSDT 
5 2.2376 2.2551 2.2504 2.2505 2.2572 2.2576 

6.25 2.1416 2.1637 2.1548 2.1549 2.1641 2.1641 
10 1.9787 1.9963 1.9879 1.9880 1.9957 1.9954 

12.5 1.9265 1.9399 1.9334 1.9334 1.9394 1.9391 
20 1.8601 1.8666 1.8633 1.8634 1.8663 1.8661 
25 1.8429 1.8473 1.8450 1.8451 1.8471 1.8470 
50 1.8184 1.8196 1.8190 1.8190 1.8195 1.8195 
100 1.8120 1.8123 1.8121 1.8121 1.8122 1.8122 

 

Table 7 Effect of thickness on dimensionless deflection of anti-symmetric cross ply [00/900/00/900] 
square plate sunder uniform temperature field (αyy/αxx = 3) 

a/h SHSDT SESDT TSDT SSDT ICSDT ITSDT 
5 2.7589 2.7571 2.7574 2.7574 2.7569 2.7569 

6.25 2.7675 2.7656 2.7661 2.7661 2.7655 2.7655 
10 2.7864 2.7848 2.7854 2.7854 2.7847 2.7848 

12.5 2.7939 2.7926 2.7931 2.7931 2.7926 2.7926 
20 2.8048 2.8041 2.8044 2.8044 2.8041 2.8041 
25 2.8079 2.8074 2.8076 2.8076 2.8074 2.8075 
50 2.8126 2.8125 2.8125 2.8125 2.8125 2.8125 
100 2.8139 2.8139 2.8139 2.8139 2.8139 2.8139 
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combined thermal and mechanical loading in terms of non-
dimensional deflection, an orthotropic plate [00], two 
layered anti-symmetric [00/900]  and three layered 
symmetric [00/900/00] plates subjected to combined 
sinusoidal mechanical loading and linearly varying 
sinusoidal thermal load (T1 = T3 = 0, q = 100, T2 = 100) are 
considered. The relation for non-dimensional transverse 
deflection (𝑤𝑤�) as defined by Reddy and Hsu (1980) is as 
follows 
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The results are obtained for the considered plates using 

the considered theories and are compared with the existing 
results given by FSDT (Reddy and Hsu 1980), HSDT 
(Zenkour 2004) and SPT (Zenkour 2004). 

The variation of non-dimensional deflection for 
orthotropic plate [00], two layered anti-symmetric [00/900] 
and three layered symmetric [00/900/00] plate with change in 
span to thickness ratio subjected to combined sinusoidal 

 
 

 
 

thermal and sinusoidal mechanical loading are shown in 
Tables 8-10 respectively. All the considered higher order 
theories (HSDT, SPT, SHSDT, SESDT, SSDT, TSDT, 
ICSDT, and ITSDT) have good agreement of the results 
with FSDT for thin cross ply plates. However, for thick 
cross ply plates, SPT, SHSDT, SSDT and TSDT under-
predicts the non-dimensional deflection compared to FSDT 
and HSDT. 

Further, a four layered symmetric [00/900/900/00] cross 
ply plate subjected to combined uniformly distributed 
mechanical and linearly variable uniform temperature load 
(T1 = T3 = 0, q = 100, T2 = 100) is considered. The effect of 
span to thickness ratio on maximum transverse deflection 
for the considered plate is shown in Table 11. The non-
dimensional deflection decreases with increase in span to 
thickness ratio. 

In order to observe the effect of change in aspect ratio 
on dimensionless deflection for four layered anti-symmetric 
cross ply [00/900/00/900] plate, Fig. 8 is plotted. The plate is 
subjected to combined uniformly distributed mechanical 
and linearly variable uniform temperature load (T1 = T3 = 0, 
q = 100, T2 = 100). The results are given using SSDT, 
ICSDT and ITSDT for a/h = 10. It is observed that the non-
dimensional deflection increases with increase in aspect 
ratio of the plate. 

 
 

 
 

Table 8 Effect of thickness on dimensionless deflection of orthotropic square plate under sinusoidal 
temperature field and sinusoidal transverse loading (T2 = 100, q = 100, αyy/αxx = 3, αxx = 10-6 ) 

a/h 
FSDT 

(Reddy and 
Hsu 1980) 

HSDT 
(Zenkour 

2004) 

SPT 
(Zenkour 

2004) 
SHSDT SESDT TSDT SSDT ICSDT ITSDT 

5 2.8332 2.7769 2.7654 2.7947 2.6844 2.7926 2.7925 2.7243 2.7359 
6.25 2.1868 2.1631 2.1575 2.1669 2.1093 2.1696 2.1695 2.1326 2.1393 
10 1.4671 1.4634 1.4621 1.4614 1.4451 1.4644 1.4643 1.4531 1.4553 

12.5 1.2973 1.2958 1.2951 1.294 1.2845 1.2962 1.2962 1.2895 1.2908 
20 1.1150 1.1113 1.1111 1.1103 1.107 1.1113 1.1113 1.1089 1.1094 
25 1.0683 1.0682 1.0681 1.0676 1.0655 1.0682 1.0682 1.0667 1.067 
50 1.0105 1.0105 1.0105 1.0104 1.0099 1.0105 1.0105 1.0102 1.0102 
100 0.9962 0.9961 0.9960 0.9960 0.9959 0.9961 0.9961 0.9960 0.9960 

 

Table 9 Effect of thickness on dimensionless  deflection of two layered anti symmetric cross ply 
[00/900] square  plate subjected to sinusoidal temperature field and sinusoidal transverse 
loading (T2 = 100, q = 100, αyy/αxx = 3, αxx = 10-6 ) 

a/h 
FSDT 

(Reddy and 
Hsu, 1980) 

HSDT 
(Zenkour, 

2004) 

SPT 
(Zenkour, 

2004) 
SHSDT SESDT TSDT SSDT ICSDT ITSDT 

5 4.0415 3.812 3.7821 3.8915 3.6469 3.8323 3.8317 3.7011 3.719 
6.25 3.4666 3.3273 3.3090 3.3736 3.2231 3.3375 3.3371 3.2567 3.2678 
10 2.8438 2.7927 2.7859 2.8088 2.7527 2.7954 2.7953 2.7653 2.7695 

12.5 27001 2.6679 2.6636 2.6779 2.6424 2.6695 2.6694 2.6504 2.653 
20 2.5443 2.5321 2.5304 2.5358 2.5221 2.5326 2.5326 2.5252 2.5263 
25 2.5083 2.5006 2.4996 2.503 2.4943 2.5009 2.5009 2.4962 2.4969 
50 2.4597 2.4586 2.4584 2.4592 2.4571 2.4587 2.4587 2.4576 2.4577 
100 2.44541 2.4481 2.4481 2.4483 2.4478 2.4482 2.4482 2.4479 2.4479 
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Fig. 8 Effect of aspect ratio and lamination on maximum  

dimensionless deflection of simply supported anti-
symmetric cross ply [00/900/00/900] square plate 
subjected to uniform temperature field and uniform 
transverse loading (T2 = 100, q = 100, αyy/αxx = 3, 
αxx = 10-6, a/h = 10 ) 

 
 
 
 
 

 
 

 
 
3.3 Thermo-mechanical analysis of 

cross ply laminates under non-linearly varying 
temperature field 

 
In order to investigate the deflection response of cross 

ply plates under non-linearly varying uniform temperature 
field, four layered symmetric [00/900/900/00] and anti-
symmetric [00/900/00/900] cross ply plates are taken into 
consideration. The relation defined in Eq. (23) is used for 
the formulation of non-dimensional deflection. The plate is 
subjected to non-linearly varying temperature field (T1 = 0, 
q = 0, T3 = T2 = 100). The results for variation in non-
dimensional deflection with respect to change in thickness 
are presented in Figs. 9 and 10. The results are compared 
with the results of SPT (Zenkour 2004). The SESDT, 
ICSDT and SSDT predicts better results as compared to 
other ESL theories for both the considered laminated plates. 
It may be noted that for symmetric cross ply plate, non 
dimensional deflection decreases with increase in span to 
thickness ratio. However, for anti-symmetric cross ply 
plate, non-dimensional deflection increases with increase in 
span to thickness ratio. 

Further, the effect of non-linear temperature field (T3) on 
the dimensionless deflection is examined for a four layered 
symmetric laminated plate [00/900/900/00]. Fig. 11 shows 
the variation in dimensionless deflection due to extent of 

Table 10 Effect of thickness on dimensionless deflection of three layered symmetric cross ply [00/900/ 
00] square plate subjected to sinusoidal temperature field and sinusoidal transverse loading 
(MP1, T2 = 100, q = 100, αyy/αxx = 3, αxx = 10-6 ) 

a/h 
FSDT 

(Reddy and 
Hsu 1980) 

HSDT 
(Zenkour 

2004) 

SPT 
(Zenkour 

2004) 
SHSDT SESDT TSDT SSDT ICSDT ITSDT 

5 3.0377 3.2948 3.3238 3.1977 3.3967 3.3126 3.3133 3.3987 3.3923 
6.25 2.9983 2.5394 2.5637 2.4598 2.629 2.5465 2.547 2.6231 2.6165 
10 1.5384 1.6366 1.6493 1.596 1.6858 1.6373 1.6376 1.6794 1.6754 

12.5 1.3451 1.4115 1.4202 1.3839 1.4456 1.4116 1.4118 1.4408 1.4379 
20 1.1312 1.1587 1.1624 1.1471 1.1733 1.1586 1.1587 1.1711 1.1698 
25 1.0811 1.0989 11013 1.0914 1.1085 1.0988 1.0989 1.107 1.1062 
50 1.0138 1.0183 1.0189 1.0164 1.0208 1.0183 1.0183 1.0204 1.0202 
100 0.9973 0.9980 0.9982 0.9975 0.9986 0.9880 0.998 0.9985 0.9985 

 

Table 11 Effect of thickness on dimensionless deflection of four layer symmetric cross ply 
[00/900/900/00] square plate subjected to uniform temperature field and uniform transverse 
loading (T2 = 100, q = 100, αyy/αxx = 3, αxx = 10-6 ) 

a/h SHSDT SESDT TSDT SSDT ICSDT ITSDT 
5 5.4189 5.4146 5.3035 5.3047 5.4189 5.4145 

6.25 4.1943 4.1975 4.1000 4.1009 4.1943 4.1897 
10 2.7126 2.7174 2.6627 2.6631 2.7126 2.7097 

12.5 2.3338 2.3376 2.2991 2.2994 2.3338 2.3318 
20 1.9004 1.9022 1.8854 1.8855 1.9004 1.8995 
25 1.7963 1.7975 1.7865 1.7866 1.7963 1.7957 
50 1.6548 1.6551 1.6523 1.6523 1.6548 1.6546 
100 1.6189 1.6190 1.6183 1.6183 1.6189 1.6189 
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Fig. 9 Variation in dimensionless deflection with 

thickness for symmetric [00/900/900/00] cross ply 
plate (T1 = 0, q = 0, T3 = T2 = 100) 

 
 

 
Fig. 10 Variation in dimensionless deflection with 

thickness for anti-symmetric [00/900/00/900] cross 
ply plate (T1 = 0, q = 0, T3 = T2 = 100) 

 
 

 
Fig. 11 Effect of nonlinear temperature field ratio (T3/T2) 

on non-dimensional deflection for symmetric 
[00/900/900/00] cross ply plate (a/h = 10) 

nonlinear temperature field ratio (T3/T2). The linear 
increment in deflection is observed due to increment in the 
extent of non-linear temperature field ratio (T3/T2). 
However the rate of the increment is different for different 
theories due to difference of shear strain function (f(z)). 

 
 

4. Conclusions 
 
The thermo-mechanical response characteristics of 

laminated composite plates subjected to linearly and non-
linearly distributed temperature field and in the presence 
and absence of mechanical loads are evaluated. The 
laminated composite plates are modeled in the framework 
of non-polynomial shear deformation theories. The 
performance of six recently developed shear deformation 
theories is assessed quantitatively and their applicability 
and accuracy are ascertained. The principle of virtual work 
is adopted to yield the governing equations and these 
equations are solved in the closed form using Navier 
solution for simply supported cross ply plates. The response 
is obtained in the form of transverse deformation and the 
results are compared with existing results. The effects of 
parameters such as span-thickness ratio, lamination 
sequence, loading conditions, aspect ratio, and material 
anisotropy ratio are examined and the following 
conclusions are observed: 

 
 It is observed that the performance of the theories 

designated as SESDT, ICSDT, and ITSDT for the 
prediction of thermo-mechanical response 
characteristics is better as compared to SHSDT, 
TSDT, and SSDT. 

 The non-dimensional deflection decreases with 
increase in span-thickness ratio for the symmetric 
cross ply plate subjected to sinusoidal as well as 
uniform temperature field. However, the non-
dimensional deflection increases with increase in 
span-thickness ratio for the anti-symmetric cross ply 
plate. It is also observed that the deformation of the 
plate subjected to uniform temperature field is higher 
than the plate subjected to sinusoidal temperature 
field. 

 The response of the plate subjected to non-linear 
temperature field is dependent significantly on the 
choice of shear deformation theory since the non-
linear temperature fields are assumed in accordance 
with the shear deformation theory. It is observed that 
the extent of non-linear temperature field with 
respect to linear temperature field influences the 
deformation behaviour. The increase in the non-
linear to linear temperature ratio (T3/T2) increases the 
transverse deformation linearly. However, the rate of 
this increment is dependent on the shear strain 
function employed. 
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