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Abstract.

In the present work, the recently developed non-polynomial shear deformation theories are assessed for thermo-

mechanical response characteristics of laminated composite plates. The applicability and accuracy of these theories for static,
buckling and free vibration responses were ascertained in the recent past by several authors. However, the assessment of these
theories for thermo-mechanical analysis of the laminated composite structures is still to be ascertained. The response
characteristics are investigated in linear and non-linear thermal gradient and also in the presence and absence of mechanical
transverse loads. The laminated composite plates are modelled using recently developed six shear deformation theories
involving different shear strain functions. The principle of virtual work is used to develop the governing system of equations.
The Navier type closed form solution is adopted to yield the exact solution of the developed equation for simply supported cross
ply laminated plates. The thermo-mechanical response characteristics due to these six different theories are obtained and

compared with the existing results.
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1. Introduction

In modern times, the composite materials are
extensively preferred in automobile, civil, aerospace, and
marine applications due to their higher specific stiffness and
strength, thermal and chemical resistivity, flexibility in
designing, and impact resistance. Due to the usage of these
advanced materials in variable thermal environment, it has
become a field of keen interest for the researchers to model
and analyse these layered structures for their optimal design
to an edge.

In order to analyse these composite structures, the
researchers have used various approaches in the past.
Reissner (1945) and Mindlin (1951) analysed the plates
taking into account of transverse shear in the deformation
leading to the development of first order shear deformation
theory (FSDT). However, the results predicted by FSDT are
dependent on the choice of shear correction factor whose
value is dependent on the parameters such as boundary
conditions, lamination sequence, etc. (Pai 1995). The
researchers have focused on various modelling approaches
for laminated composite plates taking into consideration of
the complicating effects of such structures. In the axiomatic
approach based on the displacement field, the theories are
categorized in equivalent single layer (ESL) theories, zig-
zag (ZZ) theories and layer wise (LW) theories. The
extensive review on the devolvement of the theories for
modelling of laminated composites are found in the
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literature (Reddy 1990, Reddy and Robbins 1994, Ghugal
and Shimpi 2002, Carrera 2003a, Zhang and Yang 2009,
Khandan et al. 2012, Singh and Grover 2013). The
complexity in FSDT due to the requirement of shear
correction factor is eliminated by the development of higher
order shear deformation theories (HSDTs). The HSDTSs can
be further grouped into polynomial shear deformation
theories (PSDTs) and non-polynomial shear deformation
theories (NPSDTSs). The displacement field of PSDT’s are
the polynomial expansion of the transverse coordinate.
(Reddy 1984, Maiti and Sinha 1994, Kant and Khare 1997,
Kant and Swaminathan 2002, Shimpi and Patel 2006, Talha
and Singh 2010). However, in NPSDTs, a non-polynomial
function of thickness coordinate such as trigonometric
(Touratier 1991, Shimpi et al. 2003, Ferreira et al. 2005,
Mantari et al. 2012, Grover et al. 2013a, Thai and Vo 2013,
Tounsi et al. 2013), inverse trigonometric (Grover et al.
2013a, Thai et al. 2015), exponential (Karama et al. 2003,
Aydogdu 2009), hyperbolic (Akavci 2010, Meiche et al.
2011, Daouadji et al. 2013, Zenkour 2013) and inverse
hyperbolic (Grover et al. 2013b, Joshan et al. 2017) is used
in the displacement field. Mantari and Ore (2015) and
Merdaci et al. (2016) developed ESL theories with four
degrees of freedom to analyze the composite plates. Carrera
(1998) developed unified formulation (CUF) expanding the
displacement field to N-order using Taylor’s expansion.
Furthermore, Carrera (2001, 2003b) implemented LW
approach to analyze the laminated structures. Sahoo and
Singh (2013, 2014) used non-polynomial zig-zag models to
evaluate structural response of laminated composite plates.
The laminated plates subjected to thermo-mechanical
loading have been investigated by the researchers using the

ISSN: 1229-9367 (Print), 1598-6233 (Online)



762 Yadwinder S. Joshan, Neeraj Grover and B.N. Singh

developed displacement models. Wu and Tauchert (1980)
analyzed the response of anti-symmetric cross ply and
angle-ply laminates by implementing Kirchhoff's
hypothesis using classical laminated plate theory (CLPT)
subjected to constant and linearly varying thermal loading.
Reddy and Hsu (1980) used FSDT for the analysis of the
cross ply laminated plates under thermal bending using
Navier type closed form solution. Khdeir and Reddy (1991)
used Levy type closed form solution to analyze thermo
static behavior of cross plylaminated plates using CLPT,
FSDT and HSDT under various boundary constraints.
Bhaskar et al. (1996) investigated thermo-elastic response
of laminates and presented results for angle-ply strips under
linearly varying thermal field. Fares and Zenkour (1999)
investigated thermal bending behavior of composite plates
implementing mixed variational formulation. Khare et al.
(2003) analyzed the laminated cross plycylindrical shells
using HSDT under thermal gradient. Zenkour (2004)
developed analytical solution for thermo-mechanical
analysis of laminated plates employing sinusoidal plate
theory (SPT) developed by Touratier (1991). Mechab et al.
(2012) examined thick orthotropic plates subjected to
thermal bending using HSDT and SPT. Cetkovic (2015)
used LW approach for studying the thermo-mechanical
behaviour of laminated and sandwich plates. Chattibi et al.
(2015) used four variable sinusoidal theory for thermo-
mechanical analysis of laminated plates. Bouchafa et al.
(2015) implemented refined hyperbolic shear deformation
theory for thermal stress analysis of functionally graded
sandwich plates. Ramos et al. (2016) analyzed the effect of
thermal load on laminated plates based on CUF. Panduro
and Mantari (2017) analyzed laminated plates under hygro-
thermo-mechanical loading using CUF.

It is observed from the existing literature that a number
of ESL theories are developed and used for the analysis of
the composite structures due to their simplicity and
computational economical behavior. However, the recently
developed theories are generally implemented for the
structural behavior of composite plates due to mechanical
loads. Due to the development of a large number of

&y
—

theories, there is a need to incorporate the recently
developed theories for investigating the thermo-mechanical
response characteristics of laminated composite plates in
order to accurately predict the results. Moreover, the
considered shear deformation theories have proven their
credibility to investigate the response of composite plates
for free vibration, buckling and bending analysis. The
objective of the present work is to analytically investigate
the thermo-mechanical response characteristics of
composite plates using the recently developed shear
deformation theories. The assessment of these theories for
the prediction of thermo-mechanical response of laminated
composite plates is addressed and a detailed comparison of
the quantitative results is presented.

2. Mathematical formulation

In the present work, a multi-layered laminated plate
having n layers of equal thickness and total thickness of h
and having dimensions (axb) along x and y co-ordinates is
considered. The mid plane of laminated plate is considered
at the z = 0 plane in the Cartesian coordinates as shown in
Fig. 1.

2.1 Displacement field

In the present formulation, the displacement field at any
point (x, y, z) of the laminated plate is defined in terms of
displacements (u, v, w) along x, y and z directions
respectively. The displacement field in the framework of a

non-polynomial shear deformation theory in terms of a
function of a transverse co-ordinate is expressed as follows

aWO
u(x,y,z)=u,(x,y)— 2t f(2)0,
V(X,Y,2) =V, (X, y)—zaaV;I;’+ f(2)6, @

W(X, Y, 2) =Wy (X, y)

v

J"

/|

¥

b

Fig. 1 Coordinate system of the laminated plate
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Fig. 2 Variation of shear deformation functions along the thickness of the plate

Table 1 Shear deformation functions of various theories

Theory Notation 9(2) Q
Akavci (2010) SHSDT z sec h(zz%/h?) z sec h(z/4)(z/2(tanh(z/4)) — 1)
Mantari et al. (2011) SESDT sin(zz/h)el/Acozz/) l2h
Mantari et al. (2012) TSDT tan(mz) —m(sec?mh/2); m = 0.2
Grover et al. (2013a) SSDT zsec(rz/h) —sec(r/2)(1+(r/2)(tan(r/2))); r = 0.1
Grover et al. (2013a) ICSDT cot*(rh/z) —4r/h(4r’+1); r = 0.42
Thai et al. (2015) ITSDT htan*(2z/h) — z 0

where the parameters up , vy are the in plane mid surface
displacements along x and y directions respectively and wy
is the transverse displacement of the mid surface of the
plate. The quantities &,and 6, are the shear rotations around
x and y directions respectively. The function f(z) is chosen
such that (Soldatos and Timarci 1993)

[z f@dz=0
and
f'(+h/2)=0

where (*) denotes the derivative of the function and both f(z)
and f'(z) are the continuous functions in the domain (-h/2)
to (h/2). Further the function f(z) is chosen in such a way
that

f(z2)=9(2) +Qz 2

where g(z) is a non-polynomial function of transverse co-
ordinate andQ is constant introduced in the equation in
order to equate the value of shear stains to zero at the top
and bottom surface disregarding the need of shear
correction factor. The various functions recently used in the
literature in order to predict the behavior of laminated plates
are illustrated in Table 1. The accuracy of the predicted
results depends significantly on choice of the function f(z).
The variation of the functions considered in Table 1 along

the thickness of the plate is plotted in Fig. 2.
2.2 Temperature field

The laminated plate is subjected to a temperature field
(T) across the thickness in accordance with non-polynomial
displacement field as

T2 =TI+ TN+ DT xyY) @

where the parameters T;, T, and T; are constants and
respectively represent the coefficients of constant
temperature field, linearly varying temperature field across
the thickness and non-linearly varying temperature field
across the thickness. The non-linear term (f(z) Ta/h) in the
temperature field depends on the choice of function (f(z))
and hence is different for each theory as mentioned in Table
1. However the constant (T;) and linear (zT./h) are not
affected by the choice of the function (f(z)) and hence the
temperature field is same for each theory in this case.

2.3 Stress strain relations

The constitutive relations for each layer of composite
plate characterize the material behavior of the composites.
For a general k™ layer, the stress components {c} = [0 Oyy
Ty Ty 7,]" are related to strain components {¢} and
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temperature induced strains {¢""} as follows

o) (o, Q, @, 0 o]
oyl |Q Q Qs 0 0
Ty ( = Qs Qpx Qs O 0
7, 0 0 0 Q, Qg
7o) |0 0 0 Qs Q
. (4)
Eg — O, AT
gw—ayyAT
X yxy—aXyAT
7y
Vxa

(1 =[0,]" (e} ~{em)"

where the matrix [Qij](k)depicts the transformed stiffness
matrix for the k™ layer which is a function of reduced
stiffness matrix [Q;] and the angle of fiber orientation (6)
of the layer (Reddy 2004). The parameters oy, oy, and oy
are the coefficients of thermal expansion in the respective
co-ordinates.

2.4 Strain displacement relationship

The linear  strain-displacement  relationship s
implemented in the considered structural problem since the
laminated plate is considered to undergo linear deformation.
These relations are as follows

2
g, = _Wo OV ¢ 70,
oX  OX OX OX
2
gxxzﬁ—u:%—28—\’\2/"+f(z)89X
oxX  OX OX OX
ou v ou, ov, _20°Ww,
Vg =t = +—2—72
oy oOx oy oX OXoy ©)
06, 00
+f (7)) —=2+—=
oy  oX
ou ow
=—+—="1'(2)0
7/XZ az 6)( ()X
o ow
7/yz:_+_:f (Z)ey
oz oy

The parameters &,and &, are the normal strains in x and
y directions respectively, y,, is the in-plane shear strain, y,,
and yy, are the shear strains along the transverse directions.

2.5 Governing equations

The principle of virtual work is employed in order to
derive the governing equations in terms of stress and
moment resultants.

[, (U +ow)dt =0 (6)

where the quantity 6U represents the virtual strain energy
and oW denotes the virtual work done by the applied load
on the laminated plate. These are redefined as follows

b | OOE +0y08,,
2

N = e J: + 7,07y T 7,07, dz rdxdy @)

=

N

+7y 57xz

oW = I qow,dxdy (®)
Q

where g denotes the applied mechanical load onto the plate.
The values of virtual strain energy and virtual work are
substituted in Eq. (6) and the strains are introduced in terms
of displacements using strain displacement relations defined
in Eq.(5). The product law of differential calculus is used
and corresponding coefficients of five primary variables (uo,
Vo, Wo, 6y, 6y) are equated to zero. The governing differential
equations in the form of stress and moment resultants are
obtained in the process and are as follows

aN XX aN Xy aN Ix aN >-<r)’
= +
OX oy OX oy
oN, N, oN] ON]
= +

Yy + o Xy
oy OX oy OX
2M . 82M oM,
0 XX vy +2 Yy +q:

ox? " oy? oxoy

O'My, | O°M,, M,
+ o +2

OX oy Oxoy

©)

M P oM,, P,
Qa XX+aXX+Q Y+ 2 -0S, -K,
oX OX oy oy
T T oM oP!
:QaMxx +apxx +0 Xy + Xy
x X oy oy
oM oP, oM P
O—2+—2 10—+ -—2-05, K,

oy oy x| ox
oMT  oPT oM Py
O—¥ 4+ H 0¥ 49

oy oy X ox

where the parameters N, M and P are resultants of in-plane
stresses and moments due to applied mechanical load. The
quantities S and K are resultants due to transverse shear
stresses. The parameters N', M" and P are in-plane stresses
and moments due to thermal load. These parameters are
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redefined in terms of integrals of in-plane and transverse
stresses (Zenkour 2004).

Nxx Mxx Pxx h O
N, M, P, :J._ih o, Lz g(z)|z (10)
N, M, P, 2 Ty
aXX
N;(rx Ml—x Px-)r< h O,’yy
Py Kk
NJ, M}, P; :J.i[(S]M ay <[l z g(@)frdz (1)
NI ML oPL| 2 0
0

S2 KZ g yz '
[S ‘ }jh{j }[1 g @k (12)

Xz

In order to express the governing equations of the plate
in terms of primary variables, the stress strain relations
defined in Eq. (4) are implemented. In the formulation, the
following integrals are used in order to the express the
governing equations in partial differential equations of mid-
plane displacements and rotations (Zenkour 2004)

h (k)
lAJ B D E F HJ J.h[QIJ:I (13)
<[z 22 9(2) 29(2) (g(z»Z]dz
[A" BT D7 B D FM]
aXX
LN
_[i [Qii ]() Ay (14)
2 0
0

x{l 7 2% £(2) 2.1(z) ((2))*[Tdz
where i, jarel,2,4,5,6

(k)

Ky L= ﬁ[éi,—] (9@ (@@)]d @5

where i, j are 4, 5.
The generalized partial differential equations obtained
can be represented in the form

[Ria}=1{F} (16)

where [R] is a differential operator matrix, {A} is
displacement vector of primary displacements and rotations
and {F} is force vector constituting both thermal and
mechanical load terms. For cross ply laminates, the stiffness
characteristics are defined in Eq. (17).

Asp =A% =Bis =B =D1s =Dy =0

Ei6 = Eas = Fi6=F2s =Hyg =H% =0

A =Bis=Dss=Ess =Fus =Hus = Kss = l;5=0
A(I:B;:DT:BGAT:D;T:FGAT:O

These stiffness characteristics are implemented in Eq.
(16) to obtain the explicit partial differential equations for
cross ply laminates as follows

o%u 00, ow,
R
629 o
+Eu| — |t A .
oxoy

N Blz[Qa 0, ow, ] Elz(azﬁy]
6X3y oxoy? OXoy

(17

(18a)

+B/T (%j +QB/] (%j + A (ﬂj
X OX oy

o))
oy oy

AZZ[aZVO j'f‘ Bzz[Q azey _ a3W0 ]
X
0

R

(18b)

866[9(829* + azeyJ_z( 0w, B
oxoy  ox? ox%oy
JE, [azg azgzyJ_Az(aT] BT(@T )
oxdy  0OX oy oy
ot [ oei 54 (3
oy
+Be[6T j+B£T( ] QBG( ]
OX
Bn(%j"" Dy ( 0 -2 Woj (18c)
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2.6 Solution methodology

The partial differential equations defined in Eq. (18) are
solved using the Navier type closed form solution for
simply supported cross ply laminates. The boundary
conditions for simply supported plate are as follows

Up=Wo=6=Ny,=My,=0 at y=0,b (19)
Vo=Wo =60y, =Nyx=My=0 at x=0,a

The Navier solution for the cross ply laminated plates
for investigating thermo-mechanical behaviour is as follows
(Reddy 2004)
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where the quantities Upn, Vi, Win, Xmn and Yy, are
arbitrarily parameters to be determined by substituting the
mid-plane displacements in Eq. (18). The mechanical load
and the thermal load applied on the plate are taken as

q= iiq sin(ax)sin(Ay)

T, =T,sin(ax)sin(By) (21)
T, =T,sin(ax)sin(By)

T, =T,sin(ax)sin(By)

767

where g, = Qo for sinusoidal loading and Qm, = 16qez?/mn
for uniformly distributed loading. The solution and loading
conditions are substituted into differential equations defined
in Eq. (18) and algebraic form of the equations is obtained.
The solution of the quantities(Unn, Vin, Win, X @nd Yon)
are retrieved in the form

{U V,, W, X (22)

‘HC1-1fC-

mn mn mn mn ITII’]}:[R ] {F }

The mid plane displacements (uo, Vo, Wg) and rotations

(6%, 6y) can be obtained following the solution methodology.

The coefficients of the resultant matrix [R] are given in
Appendix A.

3. Numerical results and discussion

In this section, a study of thermo-mechanical behavior
of the laminated plates implementing various non-
polynomial shear deformation theories is presented. Using
the developed mathematical formulation and solution
methodology, a MATLAB code for each of the theory is
developed in order to solve the mathematical problem. A
number of results are presented in order to validate the
present formulation and the effects of various parameters
such as side to thickness ratio, aspect ratio, lamination
sequence, loading conditions and material anisotropy on
thermo-mechanical response of cross ply laminates are
discussed and few new results are also presented. Each plate

Table 2 Effect of thickness on dimensionless deflection of orthotropic square plate subjected to

sinusoidal temperature field (ayy/ay = 3)

FSDT HSDT SPT
a/h (Reddy and  (Zenkour (Zenkour SHSDT SESDT TSDT SSDT ICSDT ITSDT
Hsu 1980) 2004) 2004)
6.25 1.0602 1.0597 10595 1.0597 1.0583 1.0597 1.0597 1.0588 1.0590
10 1.0440 1.0439 1.0438 1.0438 1.0434 1.0439 1.0439 1.0436 1.0436
12,5 1.0396 1.0396 1.0396 1.0395 1.0393 1.0396 1.0396 1.0394 1.0394
20 1.0346 1.0346 1.0346 1.0346 1.0345 1.0346 1.0346 1.0345 1.0345
25 1.0334 1.0334 1.0334 1.0334 1.0333 1.0334 1.0334 1.0333 1.0333
50 1.0317 1.0317 1.0317 1.0317 1.0317 1.0317 1.0317 1.0317 1.0317
100 1.0313 1.0313 1.0313 1.0313 1.0313 1.0313 1.0313 1.0313 1.0313

Table 3 Effect of thickness on dimensionless deflection of simply supported anti symmetric cross ply

[0°/90°] square plate under sinusoidal temperature field (oyy/ax, = 3)

FSDT HSDT SPT
a/h (Reddy and  (Zenkour (Zenkour SHSDT SESDT TSDT SSDT ICSDT ITSDT
Hsu 1980) 2004) 2004)
6.25 1.6765 1.6848 1.6858 1.6821 1.6916 1.6883 1.6883 1.6883 1.6879
10 1.6765 1.6798 1.6802 1.6787 1.6825 1.6812 1.6812 1.6812 1.6810
12,5 1.6765 1.6786 1.6789 1.6779 1.6804 16795 1.6795 1.6795 1.6794
20 1.6765 1.6773 1.6774 1.6771 1.678 1.6777 1.6777 16777 1.6777
25 1.6765 1.6770 1.6771 1.6769 16775 1.6773 16773 16773 1.6772
50 1.6765 1.6767 1.6767 1.6766 1.6768 1.6767 1.6767 1.6767 1.6767
100 1.6765 1.6766 1.6766 1.6765 16766 1.6766 1.6766 1.6766 1.6766
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Table 4 Effect of thickness on dimensionless deflection of symmetric cross ply [0°/90°/0°] square plate
subjected to sinusoidal temperature field (ay,/ax = 3)

FSDT HSDT SPT

ah  (Reddyand (Zenkour  (Zenkour SHSDT SESDT TSDT SSDT ICSDT ITSDT
Hsu1980)  2004) 2004)

625 11870 1.2057 12077 11995 1.1958 12057 1.2057 1.2118 12113

10 1.1365 1.1463 11475 11428 1.1438 11463 11463 1.1502 1.1498

125 11224 1.1292 11300 11267 11278 11291 11291 1.1319 1.1316

20 1.0158 1.1087 11090 11076 1.1083 1.1087 1.1087 1.1099 1.1098

25 1.1018 1.1036 11039 11029 1.1034 11036 1.1036 1.1044 1.1044

50 1.0963 1.0967 1.0968  1.0966 1.0967 1.0967 1.0967 1.0969 1.0969

100 1.0949 1.0950 1.0950  1.0949 1.095 1.0950 1.0950 1.0950 1.0950

Table 5 Effect of aspect ratio and span to thickness ratio on dimensionless deflection for simply

supported three layered symmetric cross ply[0°/90°/0°] rectangular plate subjected to
sinusoidal temperature field (ay,/ay = 3)

FSDT HSDT SPT
alb ah (Reddyand (Zenkour (Zenkour SHSDT SESDT TSDT SSDT ICSDT ITSDT
Hsu1980)  2004) 2004)
10 1.0959 1.1008 1.1014 1.0813 1.0993 1.0922 1.0923 1.0981 1.1026
0.5 20 1.0795 1.0808 1.0810 1.0759 1.0806 1.0786 1.0786 1.0801 1.0813
100 1.0741 1.0741 1.0741 1.0739 1.0741 1074 1074 1.0741 1.0742
10 0.7508 0.7455 0.7449 0.7376 0.7449 0.7525 0.7525 0.7477 0.7437
2.0 20 0.7601 0.7583 0.7581 0.7563 0.7581 0.7608 0.7608 0.7591 0.7577
100 0.7643 0.7642 0.7642 0.7642 0.7642 0.7644 0.7644 0.7643 0.7642

is considered of equal thickness layers and the material
properties of each layer of the laminated plate are assumed
as

E,/E,=25G,/E,=05G,;/E, =05,

Gy /E, =02,v;, =025, [, =1/3,a, =0

3.1 Thermo-mechanical analysis of
cross ply laminates under linearly
varying temperature field

The thermo-mechanical response characteristics of
simply supported laminated plates are investigated for an
orthotropic plate [0°], two layered anti-symmetric [0%90°]
and three layered symmetric [0%/90%0°] plates subjected to
linearly varying sinusoidal thermal field (T, = 100, T; = T3
=0, g = 0). The response characteristics of the considered
plates are expressed in terms of maximum non-dimensional
transverse deflection (w) defined as

w = (1owh)/(a,. T ,a%) 23)

The results obtained for the considered plates using the
respective theories are compared with the existing results
due to FSDT (Reddy and Hsu 1980), HSDT (Zenkour 2004)
and SPT (Zenkour 2004).

The non-dimensional deflection for orthotropic plate
[0%], two layered anti-symmetric [0%90°] and three layered
symmetric [0°/90°/0°] plate is obtained for a variety of span

to thickness ratio so as to ensure the applicability for thick
and thin plates. These results are enlisted in Tables 2-4. All
the considered higher order theories (HSDT, SPT, SHSDT,
SESDT, SSDT, TSDT, ICSDT, and ITSDT) have a good
agreement of the results with FSDT for thin cross ply
plates. However, for the thick cross ply plates, due to the
higher order contributions of SHSDT, SSDT and TSDT,
these non-polynomial theories predict the results more
accurately relative to FSDT. The SESDT, ICSDT and
ITSDT predict the results more accurately as comparable to
SPT, SHSDT, SSDT and TSDT.

Further, a three layered symmetric [0%90%0°]
rectangular cross ply laminated plate is considered. A
linearly varying sinusoidal temperature load is applied on
the laminated plate. The effect of aspect ratio on non-
dimensional transverse deflection is illustrated in Table 5
and the results given by the higher order non-polynomial
theories are compared with FSDT (Reddy and Hsu, 1980),
HSDT (Zenkour 2004) and SPT (Zenkour 2004). It is
observed that for a thin plate (a/h = 100), the response
predicted due to higher order theories (HSDT, SPT, SHSDT,
SESDT, SSDT, TSDT, ICSDT, ITSDT) are identical as
predicted by FSDT. However, for thick plates (a/h = 10),
the SHSDT, SESDT, ICSDT and ITSDT vyield accurate
results relative to other shear deformation theories.

The variation of non-dimensional deflection with
change in span to thickness ratio for four layered symmetric
cross ply [0°90°90°0°] and anti- symmetric cross ply
[0°790°/0°/90°] square plate under linearly varying



Assessment of non-polynomial shear deformation theories for thermo-mechanical analysis of laminated composite plates 769

1.55

1.40

—a— SHSDT]
—e— SESDT
—&— TSDT
—¥—S88DT
—a4— ICSDT
—+—ITSDT

alh

Fig. 3 Variation of maximum dimensionless deflection

with side to thickness ratio for symmetric cross ply

[0°/90%/90°/0°] plate subjected to sinusoidal

temperature field
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Fig. 4 Variation of dimensionless deflection at the centre
of the plate with side to thickness ratio for anti-
symmetric cross ply[0°/90%/0°/90°] plate subjected to
sinusoidal temperature field

sinusoidal temperature field (T, =100, T, =T3=0,q=0) is
illustrated in Figs. 3 and 4. It is observed that for thin plates
i.e., a/h =50, all the considered theories (SHSDT, SESDT,
SSDT, TSDT, ICSDT, and ITSDT) yield the same result.
However, for thick symmetric cross ply plate, SHSDT,
ITSDT and ICSDT vyield accurate results and for anti-
symmetric cross ply plate, SESDT ITSDT and ICSDT
produce accurate results. Further, the variation of transverse
shear stress (7,,) across the thickness of the considered
four layered symmetric cross ply [0%/90%90°%0°] laminated
plate is presented in Fig. 5. The non-dimensional relation
used for transverse shear stress (7,,) is given as follows

_ [ a2
Ty =, | —————
g ” axxTzhz E,

It is observed that the value of transverse shear stress

—a—SESDT
—+—55DT

—&— ICSDT
—¥—ITSDT i
—a— SPT (Zenkour, 2004)

0.4

zh 4,

0.4

0.8 T . T . . . T : T

T yz

Fig. 5 Variation of transverse shear stress across the
thickness for symmetric cross ply [0%/90°/90°0°]
plate subjected to sinusoidal temperature field
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Fig. 6 Variation of dimensionless deflection with material
anisotropy for anti-symmetric cross ply plate

[0%90°] (T5 = 0)

(7y,) is obtained as zero at the top and bottom of the plate
without any use of shear correction factor for the considered
theories (SHSDT, SSDT, ITSDT, ICSDT).

The effect of change in material anisotropy (E,/E;) on
two layered anti-symmetric cross ply [0°%/90°] plate (a/h =
10) under linearly variable sinusoidal temperature field (T,
=100, T, = T3 = 0, g = 0) is illustrated in Fig. 6. The
considered higher order deformation theories predict an
increase in non-dimensional deflection with the increase in
E./E; ratio. In this case, the SESDT, ITSDT and ICSDT are
more accurate as compared to SSDT, TSDT and SHSDT.

In order to investigate the deflection response of cross
ply plates under linearly varying uniform temperature field,
four layered symmetric [0%90%90°/0°] and anti-symmetric
[0°/90%0°/90°] cross ply plates are taken into consideration.
The relation defined in Eq. (23) is used for the
determination of the non-dimensional deflection.

The effect of span to thickness ratio on maximum
transverse deflection for four layered symmetric cross ply
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Table 6 Effect of thickness on dimensionless deflection of symmetric cross ply [0°/90°/90%0°] square
plate subjected to uniform temperature field (ay,/a,« = 3)

a/h SHSDT SESDT TSDT SSDT ICSDT ITSDT
5 2.2376 2.2551 2.2504 2.2505 2.2572 2.2576
6.25 2.1416 2.1637 2.1548 2.1549 2.1641 2.1641
10 1.9787 1.9963 1.9879 1.9880 1.9957 1.9954
125 1.9265 1.9399 1.9334 1.9334 1.9394 1.9391
20 1.8601 1.8666 1.8633 1.8634 1.8663 1.8661
25 1.8429 1.8473 1.8450 1.8451 1.8471 1.8470
50 1.8184 1.8196 1.8190 1.8190 1.8195 1.8195
100 1.8120 1.8123 1.8121 1.8121 1.8122 1.8122

Table 7 Effect of thickness on dimensionless deflection of anti-symmetric cross ply [0°/90°/0%/90°]
square plate sunder uniform temperature field (ayy/ox = 3)

a/h SHSDT SESDT TSDT SSDT ICSDT ITSDT
5 2.7589 2.7571 2.7574 2.7574 2.7569 2.7569
6.25 2.7675 2.7656 2.7661 2.7661 2.7655 2.7655
10 2.7864 2.7848 2.7854 2.7854 2.7847 2.7848
125 2.7939 2.7926 2.7931 2.7931 2.7926 2.7926
20 2.8048 2.8041 2.8044 2.8044 2.8041 2.8041
25 2.8079 2.8074 2.8076 2.8076 2.8074 2.8075
50 2.8126 2.8125 2.8125 2.8125 2.8125 2.8125
100 2.8139 2.8139 2.8139 2.8139 2.8139 2.8139
[0°/90%90°%/0°] square plate subjected to linearly varying 230 . - . -
uniform temperature field (T, = 100, T, =T; =0,g=0) is f‘f: :H
depicted in Table 6. It is observed that there is a notable o ¥ y
increase in non-dimensional deflection of the plate under ;_13;\‘_‘\
uniform temperature field as compared to sinusoidal 205 s
temperature field. The deformation in the plate (a/h = 10) w2007
subjected to uniform temperature field is approximately =
48% higher than the plate subjected to sinusoidal e
temperature  field. The non-dimensional deflection 180 ] -
decreases with increase in span to thickness ratio under 175 —8— 3 layeres
uniform temperature field as under sinusoidal temperature L I?hﬁmf
field. In this case, ITSDT, SESDT, and ICSDT yield :';:;E\.\ﬂ\ sl
relatively accurate results. ey -
Table 7 presents the variation in maximum transverse =L * & * e ' LB B

deflection for four layered anti-symmetric cross ply
[0°/90%0°/90°] square plate with respect to span-thickness
ratio of the plate. The plate is subjected to linearly varying
uniform temperature field (T, = 100, T; = T3 =0, g = 0)
linearly varying across the thickness. It is observed that
unlike symmetric cross ply plates, the non-dimensional
deflection increases with increase in span to thickness ratio
under uniform temperature field.

Further, the multilayered symmetric cross ply plates are
considered and the transverse dimensionless deflection due
to uniformly distributed thermal load (T, = 100, T; =Tz =0,
q = 0) is examined using ICSDT. The analysis of three
[0°/90%0°], four [0%/90%/90°/0°], five [0%90°/0%90%0°] and
six [0%90°/0°/0°/90%0°] layered plates aligned in symmetric
cross ply lamination is carried out. The results are obtained
by varying span to thickness ratio (a/h) and are plotted in

alh

Fig. 7 Variation in dimensionless deflection for three, four,
five and six layered symmetric cross ply plates with
change in span to thickness ratio subjected to
uniform temperature load

Fig. 7. It is observed that the dimensionless deflection
increases as the number of layers increase.

3.2 Thermo-mechanical analysis of simply
supported cross ply laminates under
combined mechanical and linearly varying
temperature loading

In order to analyse cross ply laminated plates under
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combined thermal and mechanical loading in terms of non-
dimensional deflection, an orthotropic plate [0%], two
layered anti-symmetric  [0%90°]  and three layered
symmetric [0%90°%0°] plates subjected to combined
sinusoidal mechanical loading and linearly varying
sinusoidal thermal load (T, = T; = 0, g = 100, T, = 100) are
considered. The relation for non-dimensional transverse
deflection (w) as defined by Reddy and Hsu (1980) is as

follows
— g.a*) (a,T,a -
wW=w 03 4 XX | 2
h°A 10h

1- Vi,Voy

(24)

The results are obtained for the considered plates using
the considered theories and are compared with the existing
results given by FSDT (Reddy and Hsu 1980), HSDT
(Zenkour 2004) and SPT (Zenkour 2004).

The variation of non-dimensional deflection for
orthotropic plate [0°], two layered anti-symmetric [0°/90°]
and three layered symmetric [0°/90%0°] plate with change in
span to thickness ratio subjected to combined sinusoidal

thermal and sinusoidal mechanical loading are shown in
Tables 8-10 respectively. All the considered higher order
theories (HSDT, SPT, SHSDT, SESDT, SSDT, TSDT,
ICSDT, and ITSDT) have good agreement of the results
with FSDT for thin cross ply plates. However, for thick
cross ply plates, SPT, SHSDT, SSDT and TSDT under-
predicts the non-dimensional deflection compared to FSDT
and HSDT.

Further, a four layered symmetric [0°/90°%90%0°] cross
ply plate subjected to combined uniformly distributed
mechanical and linearly variable uniform temperature load
(T, =T3=0,g=100, T, = 100) is considered. The effect of
span to thickness ratio on maximum transverse deflection
for the considered plate is shown in Table 11. The non-
dimensional deflection decreases with increase in span to
thickness ratio.

In order to observe the effect of change in aspect ratio
on dimensionless deflection for four layered anti-symmetric
cross ply [0°%/90°/0°/90°] plate, Fig. 8 is plotted. The plate is
subjected to combined uniformly distributed mechanical
and linearly variable uniform temperature load (T; = T3 =0,
g = 100, T, = 100). The results are given using SSDT,
ICSDT and ITSDT for a/h = 10. It is observed that the non-
dimensional deflection increases with increase in aspect
ratio of the plate.

Table 8 Effect of thickness on dimensionless deflection of orthotropic square plate under sinusoidal
temperature field and sinusoidal transverse loading (T, = 100, g = 100, ayy/ax = 3, ox = 10°® )

FSDT HSDT SPT
alh  (Reddyand (Zenkour  (Zenkour SHSDT SESDT TSDT SSDT ICSDT ITSDT

Hsu1980)  2004) 2004)
5 2.8332 2.7769 27654 27947 2.6844 27926 27925 2.7243 2.7359
625  2.1868 2.1631 21575 21669 21093 2.1696 21695 2.1326 2.1393
10 1.4671 1.4634 14621 14614 14451 14644 14643 14531 1.4553
125  1.2973 1.2958 12951 1294 12845 12962 12962 1.2895 1.2908
20 1.1150 1.1113 11111 11103 1107 11113 11113 1.1089 1.1094
25 1.0683 1.0682 1.0681  1.0676 1.0655 1.0682 1.0682 1.0667 1.067
50 1.0105 1.0105 1.0105  1.0104 10099 1.0105 1.0105 1.0102 1.0102
100 0.9962 0.9961 09960  0.9960 0.9959 0.9961 0.9961 0.9960 0.9960

Table 9 Effect of thickness on dimensionless deflection of two layered anti symmetric cross ply

[0°/90%] square plate subjected to sinusoidal temperature field and sinusoidal transverse
loading (T, = 100, g = 100, oy /o, = 3, ot = 10°)

FSDT HSDT SPT
a/h (Reddy and  (Zenkour, (Zenkour, SHSDT SESDT TSDT SSDT ICSDT ITSDT
Hsu, 1980) 2004) 2004)
5 4.0415 3.812 3.7821 3.8915 3.6469 3.8323 3.8317 3.7011 3.719
6.25 3.4666 3.3273 3.3090 3.3736 3.2231 3.3375 3.3371 3.2567 3.2678
10 2.8438 2.7927 2.7859 2.8088 2.7527 2.7954 2.7953 2.7653 2.7695
125 27001 2.6679 2.6636 2.6779 2.6424 2.6695 2.6694 2.6504 2.653
20 2.5443 2.5321 2.5304 25358 25221 25326 2.5326 25252 2.5263
25 2.5083 2.5006 2.4996 2503 24943 25009 2.5009 2.4962 2.4969
50 2.4597 2.4586 2.4584 24592 24571 24587 24587 24576 2.4577
100 2.44541 2.4481 2.4481 24483 24478 24482 24482 24479 2.4479
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Table 10 Effect of thickness on dimensionless deflection of three layered symmetric cross ply [0%/90%
0°] square plate subjected to sinusoidal temperature field and sinusoidal transverse loading
(MP1, T, =100, g = 100, atyy/anx = 3, ot = 10°)
FSDT HSDT SPT
a/h (Reddy and  (Zenkour (Zenkour SHSDT SESDT TSDT SSDT ICSDT ITSDT
Hsu 1980) 2004) 2004)
5 3.0377 3.2948 3.3238 31977 3.3967 3.3126 3.3133 3.3987 3.3923
6.25 2.9983 2.5394 2.5637 24598 2.629 25465 2547 2.6231 2.6165
10 1.5384 1.6366 1.6493 1596 1.6858 1.6373 1.6376 1.6794 1.6754
125 1.3451 1.4115 1.4202 1.3839 14456 1.4116 14118 1.4408 1.4379
20 1.1312 1.1587 1.1624 11471 1.1733 1.1586 1.1587 1.1711 1.1698
25 1.0811 1.0989 11013 1.0914 1.1085 1.0988 1.0989 1.107 1.1062
50 1.0138 1.0183 1.0189 1.0164 1.0208 1.0183 1.0183 1.0204 1.0202
100 0.9973 0.9980 0.9982 0.9975 0.9986 0.9880 0.998 0.9985 0.9985
Table 11 Effect of thickness on dimensionless deflection of four layer symmetric cross ply
[0%/90°/90%/0°%] square plate subjected to uniform temperature field and uniform transverse
loading (T, = 100, g = 100, o/t = 3, ot = 10°)
a/h SHSDT SESDT TSDT SSDT ICSDT ITSDT
5 5.4189 5.4146 5.3035 5.3047 5.4189 5.4145
6.25 4.1943 41975 4.1000 4.1009 4.1943 4.1897
10 2.7126 2.7174 2.6627 2.6631 2.7126 2.7097
125 2.3338 2.3376 2.2991 2.2994 2.3338 2.3318
20 1.9004 1.9022 1.8854 1.8855 1.9004 1.8995
25 1.7963 1.7975 1.7865 1.7866 1.7963 1.7957
50 1.6548 1.6551 1.6523 1.6523 1.6548 1.6546
100 1.6189 1.6190 1.6183 1.6183 1.6189 1.6189
] ' ! : ; 3.3 Thermo-mechanical analysis of
cross ply laminates under non-linearly varying
EEh temperature field
3.0+
i 57 In order to investigate the defl_ection response of cross
] e ICSDT ply plates under non-linearly varying uniform temperature
Wz 4 mspT| A field, four layered symmetric [0%90%90°%0°] and anti-
] 1 symmetric [0°/90°/0°/90°] cross ply plates are taken into
consideration. The relation defined in Eq. (23) is used for
e 1 the formulation of non-dimensional deflection. The plate is
e ] subjected to non-linearly varying temperature field (T; = 0,
g =0, T3 = T, = 100). The results for variation in non-
0 - i dimensional deflection with respect to change in thickness
05 10 15 20 23 30 are presented in Figs. 9 and 10. The results are compared

ab

Fig. 8 Effect of aspect ratio and lamination on maximum
dimensionless deflection of simply supported anti-
symmetric cross ply [0%/90°/0°/90°] square plate
subjected to uniform temperature field and uniform
transverse loading (T, = 100, g = 100, ayy/ox = 3,
o =10°, a/h = 10)

with the results of SPT (Zenkour 2004). The SESDT,
ICSDT and SSDT predicts better results as compared to
other ESL theories for both the considered laminated plates.
It may be noted that for symmetric cross ply plate, non
dimensional deflection decreases with increase in span to
thickness ratio. However, for anti-symmetric cross ply
plate, non-dimensional deflection increases with increase in
span to thickness ratio.

Further, the effect of non-linear temperature field (T3) on
the dimensionless deflection is examined for a four layered
symmetric laminated plate [0%90°/90%0°]. Fig. 11 shows
the variation in dimensionless deflection due to extent of



Assessment of non-polynomial shear deformation theories for thermo-mechanical analysis of laminated composite plates 773

5.0 o

4.5 o

—a—3HSDT
—i&—TEDT
—a4—IC3DT

—— 3ESDT]
—»—558DT
—»—IT3DT

w 40+ —4— SPT (Zenkour, 2004)

15

a'h
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Fig. 10 Variation in dimensionless deflection with

thickness for anti-symmetric [0%/90%0°%90°] cross

ply plate (T, =0,q =0, T3 =T, = 100)
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Fig. 11 Effect of nonlinear temperature field ratio (T3/T,)

on non-dimensional deflection for symmetric
[0%/90%/90°/0°] cross ply plate (a/h = 10)

nonlinear temperature field ratio (Ts/T,). The linear
increment in deflection is observed due to increment in the
extent of non-linear temperature field ratio (Ta/T)).
However the rate of the increment is different for different
theories due to difference of shear strain function (f(z)).

4. Conclusions

The thermo-mechanical response characteristics of
laminated composite plates subjected to linearly and non-
linearly distributed temperature field and in the presence
and absence of mechanical loads are evaluated. The
laminated composite plates are modeled in the framework
of non-polynomial shear deformation theories. The
performance of six recently developed shear deformation
theories is assessed quantitatively and their applicability
and accuracy are ascertained. The principle of virtual work
is adopted to yield the governing equations and these
equations are solved in the closed form using Navier
solution for simply supported cross ply plates. The response
is obtained in the form of transverse deformation and the
results are compared with existing results. The effects of
parameters such as span-thickness ratio, lamination
sequence, loading conditions, aspect ratio, and material
anisotropy ratio are examined and the following
conclusions are observed:

e |t is observed that the performance of the theories
designated as SESDT, ICSDT, and ITSDT for the
prediction ~ of  thermo-mechanical  response
characteristics is better as compared to SHSDT,
TSDT, and SSDT.

e The non-dimensional deflection decreases with
increase in span-thickness ratio for the symmetric
cross ply plate subjected to sinusoidal as well as
uniform temperature field. However, the non-
dimensional deflection increases with increase in
span-thickness ratio for the anti-symmetric cross ply
plate. It is also observed that the deformation of the
plate subjected to uniform temperature field is higher
than the plate subjected to sinusoidal temperature
field.

e The response of the plate subjected to non-linear
temperature field is dependent significantly on the
choice of shear deformation theory since the non-
linear temperature fields are assumed in accordance
with the shear deformation theory. It is observed that
the extent of non-linear temperature field with
respect to linear temperature field influences the
deformation behaviour. The increase in the non-
linear to linear temperature ratio (T3/T,) increases the
transverse deformation linearly. However, the rate of
this increment is dependent on the shear strain
function employed.
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