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1. Introduction 

 
It is well known that fiber-reinforced laminated 

composite (FRLC) structures have a sudden change in their 
material properties when they across the interfaces between 
adjacent layers due to the fact that two dissimilar materials 
have bonded together. As a result, residual stresses always 
concentrate around these interfaces when the FRLC 
structures are subjected to external mechanical and thermal 
loads and cause the FRLC structures to be prone to 
delamination in these areas. Thus, in lieu of FRLC 
materials, a new class of materials, the so-called 
functionally graded materials (FGM), was introduced by a 
group of scientists in Sendai, Japan in 1984 (Koizumi 1997, 
Miyamoto et al. 1999), to form various beam-, plate-, and 
shell-like structures in advanced engineering in order to 
prevent the above-mentioned weakness that typically occurs 
in FRLC structures. The material properties of these FGM 
structures are designed to vary continuously and smoothly 
with the thickness coordinate according to the predefined 
distributions of the volume fractions of the constituents. 
Along with the increasing popularity of FGM structures, the 
related structural analyses have attracted considerable 
attention. Some review articles on the theoretical metho-
dologies and numerical models of FGM beams, plates, and 
shells can be found in the literature (Carrera and Brischetto 
2009, Liew et al. 2015, Wu and Liu 2016a). Among these, 
the review conducted in this work will focus on articles 
related to the structural analyses of FGM circular plates. 

Some two-dimensional (2D) advanced and refined plate 
theories and the three-dimensional (3D) elasticity theory 
have been used for assorted analyses of one-directional 
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functionally graded (FG) circular plates with simply-
supported or clamped boundary conditions that are 
subjected to uniformly distributed loads. Among these, the 
material properties of the FG circular plate considered in 
most of the articles were assumed to vary through the 
thickness direction and remain unchanged over the 
circumferential-radial surface, which are the so-called one-
directional FG circular plates. The articles examining the 
structural behavior of two-directional FG circular plates are 
rare in the public literature as compared with those for one-
directional FG and laminated composite circular plates. 

Based on the first-order shear deformation theory 
(FSDT), Reddy et al. (1999) investigated the axisymmetric 
bending and stretching behavior of FG circular and annular 
plates. A two-phase (ceramic-metal) composite material was 
used to form the plate, the material properties of which 
were assumed to obey the power-law distribution through 
the thickness direction according to the volume fractions of 
the constituents, and the effective material properties were 
estimated using the rules of mixtures. The FSDT was also 
extended by Bouderba et al. (2016) to the thermal buckling 
problem of FG sandwich plates. The above-mentioned issue 
was also studied by Saidi et al. (2009) and Sahraee and 
Saidi (2009) using an unconstrained third-order shear 
deformation theory (TSDT) and a fourth-order shear 
deformation theory (FOSDT), respectively. Numerical 
results for displacement and stress components induced in 
the one-directional FG circular plates were presented for 
different values of material-property gradient indices. 
Tornabene and Viola (2009a, b) and Tornabene (2009) 
extended the FSDT to the free vibration analysis of one-
directional power-law-type FG parabolic and circular 
panels, as well as various shells of revolution, such as 
conical shells, cylindrical shells and annular plates. Based 
on a new simple three-unknown shear deformation theory, 
Hachemi et al. (2017) and Houari et al. (2016) examined 
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the bending behavior of one-directional FG plates with and 
without resting on an elastic medium, respectively. Sobhy 
(2016) proposed a four-variable shear deformation theory to 
examine the vibration and buckling behavior of power-law-
type FG sandwich plates in hygrothermal environment. 
Abdelaziz et al. (2017) developed an efficient hyperbolic 
shear deformation theory for a variety of mechanical 
analyses of sandwich FG plates, such as bending, buckling, 
and free vibration. Elmossouess et al. (2017) developed a 
new higher-order shear deformation theory (HSDT) for the 
thermal buckling analysis of FG sandwich plates, in which 
the total number of primary variables of the theory is taken 
to be four only, which is even less than that of FSDT and 
conventional HSDT. Based on various shear deformation 
theories, Sobhy (2013) dealt with the vibration and buckling 
behavior of exponent function-type FG sandwich plates 
resting on elastic foundations. Bouchafa et al. (2015) 
presented the results with regard to the thermal stress and 
deflection components induced in an FG sandwich plate 
subjected to thermo-mechanical loads using a new refined 
hyperbolic shear deformation theory, in which a parametric 
study regarding effects of the shear deformation, aspect 
ratios, and material-property gradient index on the coupled 
thermo-elastic behavior of the plate were carried out. Based 
on a sinusoidal shear deformation theory, Sobhy (2015) 
investigated the thermoelastic response of power-law-type 
FG plates with temperature-dependent properties resting on 
variable elastic foundations. Some weak formulations on 
the basis of differential and integral quadrature methods 
have also been developed for the free vibration analysis of 
composite plates and shells (Tornabene et al. 2017a, 
2017b). 

Within the framework of 3D elasticity theory, Wang et 
al. (2010) studied the axisymmetric bending behavior of 
transversely isotropic and FG circular plates using the direct 
displacement method (DDM). The material properties were 
assumed to obey the exponential function distribution 
through the thickness direction, the applied external load 
was expanded as a series of Fourier-Bessel functions, and 
the superposition principle was used to obtain the final 
results by summarizing the results of each individual 
external force. The DDM was extended to the 3D coupled 
thermo-elastic analysis of FG circular plates under 
axisymmetric thermo-mechanical loads by Li et al. (2012) 
and Jabbari et al. (2014), and the analysis of axisymmetric 
buckling and vibration of FG circular and annular plates by 
Xu et al. (2005) and Wang et al. (2009), respectively. 
Pendhari et al. (2012) presented mixed semi-analytical and 
analytical solutions for the static problems of simply-
supported, one-directional FG rectangular plates. Based on 
the 3D elasticity theory, Tahouneh (2014) studied the free 
vibration behavior of bidirectional FG annular plates resting 
on the Pasternak-type foundation using the differential 
quadrature method. 

In order to not only capture the 3D behavior of FGM 
plates and shells, such as the thickness effect, but also to 
overcome the restrictions of 3D analytical methods, such as 
the complicated solution process and difficulty associated 
with use for one- and multi-directional FG circular plates, 
on the basis of Reissner’s mixed variational theorem 

(RMVT), Wu and Li (2013a, b) developed the finite 
rectangular prism method (FRPM) and finite cylindrical 
prism method (FCPM) for the quasi-3D analysis of one-
directional FG rectangular plates and cylinders with various 
boundary conditions, respectively. Implementation of the 
RMVT-based FRPM and FCPM showed that their solutions 
are accurate and converge rapidly. In the current article, the 
RMVT is extended to develop the finite annular prism 
method (FAPM) for the quasi-3D static analysis of two-
directional FG circular plates with both simply-supported 
and clamped boundary conditions. The material properties 
of the FGM circular plate are assumed to obey either a two-
directional power-law distribution of the volume fractions 
of the constituents through the radial-thickness surface or an 
exponential function distribution varying doubly exponent-
ially through the radial-thickness surface. The number of 
nodes on the nodal surface of each prism can be set at four 
for the linear FAPM, and at eight and 12 for the quadratic 
and cubic FAPM of the serendipity-family. A parametric 
study with regard to some key effects on the quasi-3D static 
behavior of two-directional FG circular plates with various 
boundary conditions is carried out, such as the material-
property gradient indices, aspect ratios, and different 
boundary conditions. 

 
 

2. RMVT-based finite annular prism methods 
 
The authors consider an Nl-layered two-directional FG 

circular plate subjected to a trigonometriclly (or uniformly) 
distributed load on the top surface of the circular plate, as 
shown in Fig. 1, in which Nl is the total number of the 
layers constituting the circular plate. The thickness and 
mid-surface radius of the circular plate are defined as h and 
R, respectively. The thickness of each individual layer is 
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conditions of the circular plate are considered as either the 
clamped or simply-supported boundary conditions. The 
cylindrical global coordinate system (i.e., r, θ and z 
coordinates) is located on the mid-surface of the circular 
plate. The typical four-node linear, eight-node quadratic, 
and 12-node cubic annular prisms of the serendipity-family 
in the natural coordinate system are shown in Fig. 2, in 
which (ξ, η) denotes the natural coordinates, which are 
located at the center of the nodal surface of a typical 
annular prism (i.e., the radial-thickness surface). The 
mapping relations between the global and natural 
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in which ns denotes the degree of approximation used to 
describe the coordinate transformation for the annular 

prism, and   ,1  ,,)(
s

e
i ni   denote the shape (or 

interpo-lation) functions of the annular prism. Since the iso-
parametric annular prisms are used in the implementation of 
these FAPM, i.e., the degree of approximation used to 
describe the coordinate transformation is equal to that used 
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Fig. 1 The configuration, cylindrical coordinate system 

and boundary conditions of a circular plate with a 
4×2 mesh of the Q8 FAPM 

 
 

to represent each primary field variable, such that the values 
of ns are taken to be four, eight, and 12 for the linear, 
quadratic, and cubic FAPM, respectively. 

 
2.1 Kinematic and kinetic assumptions 
 
The displacement and transverse stress components of a 

typical annular prism of the mth-layer are given by (Wu and 
Li 2013b) 
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with ),,2 ,1( dni   are the nodal displacement and 
transverse stress components of a typical annular prism of 
the mth-layer of the circular plate; nd denotes the total 

(a) 
 

(b) 
 

(c) 
Fig. 2 The configuration of a typical finite annular prism: 

(1) L4; (b) Q8; and (c) C12 
 
 
number of nodes of a typical annular prism, such that the 
values of nd are four, eight and 12 for the linear, quadratic 
and cubic annular prisms, respectively. The symbols, L4, 
Q8, and C12, will be used later in this work to represent 
four-node linear, eight-node quadratic, and 12-node cubic 
annular prisms.   ),,1(

)()(
d

m

i
e ni  are the corresponding 

shape (or interpolation) functions used to interpolate the 
primary field variables over the prism domain. 

The linear constitutive equations of the mth-layer, which 
are valid for the orthotropic materials, are given by 
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2.2 The Reissner mixed variational theorem 
 
The Reissner mixed variational theorem is used to 

derive the static equilibrium equations of the FG circular 
plate under mechanical loads, and the corresponding energy 
functional (ΠR) of the loaded plate is written in the form of 
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where Ω+ and Ω‒ denote the top and bottom surfaces of the 
circular plate (i.e., z = h/2 and z = ‒h/2), respectively, in 
which the transverse loads 

kq  and 
kq  (k = r, θ and z) 

are applied, the upward ones of which are defined as 
positive; Γσ and Γu denote the portions of the edge 
boundary, in which the surface traction and displacement 
components (i.e., kt  and ku  (k = r, θ and z)) are 
prescribed, respectively. B(σij) is the complementary energy 
density function. 

In the current formulation, the RMVT is used, such that 
the displacement and transverse stress components are 
taken as the primary variables subject to variation. Using 
the kinematic and kinetic assumptions, given in Eqs. (1)-(3) 
and (4)-(6), respectively, the authors perform the first-order 
variation of the Reissner energy functional as zero, as 
follows 
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where Ne denotes the number of annular prisms in each 
individual layer; Ae is defined as the cross-sectional area of 
a typical annular prism, such that dAe = dr × dz; the 
superscript of T denotes the transposition of the matrices or 
vectors; and 
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2.3 Euler-Lagrange equations 
 

The static behavior of a multilayered FG circular plate 
with either simply-supported or clamped boundary edges 
under mechanical loads is studied in the following 
illustrative examples, in which the material properties are 
considered as either a two-directional power-law 
distribution or an exponential function one over the radial-
thickness surface, while they are independent of the 
circumferential direction. The applied loading conditions on 
the top and bottom surfaces of the circular plate are 
prescribed as 
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where 
zq  are expressed as the single Fourier series and 

given as )ˆcos(
0ˆ

ˆ nqq
n

nz 




   in which n̂  is either a 

positive integer or zero. 
The boundary edge at r = R is considered to be either the 

clamped or simply-supported edge, the corresponding 
boundary conditions of which are given as follows: 

For clamped (C) supports 
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For simple (S) supports 
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The continuity conditions at the center of the circular 
plate (r = 0) are given as 
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Using the separation of variables, the authors expand the 
primary field variables of each individual annular prism, 
which are given in Eqs. (1)-(6), as the single Fourier series 
in the circumferential coordinate, and they are rewritten as 

 

       nuu
m

i
e

n
n

n

i

e
i

me
r

d

ˆcos 
)()(

ˆ
0ˆ 1

)()()( 


 

  (19)

 

       nvu
m

i
e

n
n

n

i

e
i

me
d

ˆsin 
)()(

ˆ
0ˆ 1

)()()( 


 

  (20)

 

      nwu
m

i
e

n
n

n

i

e
i

me
z

d

ˆcos 
)()(

ˆ
0ˆ 1

)()()( 


 

  (21)

 

       n
m

i
e
n

n

n

i

e
i

me
zr

d

ˆcos 
)()(

ˆ13
0ˆ 1

)()()( 


 

  (22)

 

      n
m

i
e

n
n

n

i

e
i

me
z

d

ˆsin 
)()(

ˆ23
0ˆ 1

)()()( 


 

  (23)

 

       n
m

i
e
n

n

n

i

e
i

me
z

d

ˆcos 
)()(

ˆ3
0ˆ 1

)()()( 


 

  (24)

 

Introducing the kinetic and kinematic models of the 
FAPMs (Eqs. (19)-(24)) and the boundary conditions on the 
top and bottom surfaces (Eqs. (16a) and (16b)) in Eq. (15) 
and imposing the stationary principle of the Reissner energy 
functional (i.e., δΠR = 0), we thus obtain the Euler-Lagrange 
equations of the FG circular plate as follows 
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δmNi
 is the Kronecker delta symbol, in which δmNi

 =0 
when m ≠ Nl, and δNiNi = 1. 

By imposing the continuity conditions of each node’s 
nodal primary variables, i.e., the nodal displacement and 
transverse stress components, at the nodal lines between 
adjacent prisms, the local stiffness matrix and forcing 
vector of each prism in Eq. (25) can be assembled as their 
corresponding global stiffness matrix and forcing vector of 
the FG circular plate. The nodal primary variables at each 
node of the prism can then be determined. Subsequently, the 
variables of the in-plane stresses at the nodes can be 
obtained using the primary variables, which were 
determined, and are given by 
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Using the above-mentioned weak-form formulation of 

the RMVT-based FAPM, the authors investigate the quasi-
3D static behavior of two-directional FG circular plates 
with both simply-supported and clamped boundary 
conditions under mechanical loads in the following 
illustrative examples, and the performance of the current 
RMVT-based L4, Q8, and C12 FAPM is also examined. 

 
 

3. Illustration examples 
 
3.1 One- and two-directional power-law-type 

FG circular plates 
 
In this section, the authors examine the static behavior 

of a one-directional power-law-type FG circular plate with 
simply-supported and clamped boundary conditions under a 
uniformly distributed load, i.e., 0qqz   and ,0

zq  
such that the half wave number n̂  in the current 
formulation is identical to zero. The problem was 
previously investigated by Reddy et al. (1999), Saidi et al. 
(2009) and Sahraee and Saidi (2009) using 2D advanced 
and refined plate theories, such as FSDT, TSDT, and 
FOSDT, respectively, and was also investigated by Wang et 
al. (2010) and Wu and Liu (2016b) using the state space 
analytical method and the state space differential 
reproducing kernel (SSDRK) method, respectively, and the 
corresponding solutions are thus used to validate the 
solutions obtained using the current L4, Q8 and C12 FAPM. 

The circular plate considered is composed of ceramic 
and metal materials according to a one-directional power-
law distribution of volume fractions of the constituents 
through the thickness coordinate. The effective material 

properties are estimated using the rule of mixtures, in which 
the Poisson’s ratio υ remains a constant (i.e., υ = 0.288), 
while Young’s modulus is in the form of 

 
  )()( zEEEzE mcmc   (28)

 
where Γm(z) denotes the volume fraction of the metal 
material, and Γm(z) = [(1/2) ‒ (z/h)]κpz. Em and Ec represent 
the Young’s moduli of the metal and ceramic materials, 
respectively, and the ratio of Em/Ec is taken to be 0.396. The 
superscript, κpz, denotes the material-property gradient 
index in the thickness direction. When κpz = 0 and κpz = ∞, 
the FG circular plate will reduce to the homogeneous metal 
and ceramic plates, respectively, while in the cases of other 
values of κpz, the top and bottom surfaces of the FGM plate 
are ceramic- and metal-rich, respectively. 

Tables 1 and 2 show the convergence studies for the 
current L4, Q8, and C12 FAPM solutions of the 
displacement components at the center of the FG circular 
plate with clamped and simply-supported boundary 
conditions, respectively, under a uniform load. The 
dimensionless displacement is defined as 

      0,,0/64 4
0 zcz uRqDu  , in which . 

When using the current FAPM, the uniform meshes on the 
nodal surface (i.e., the radial-thickness surface) are taken to 
be (nr × nz) = (8×2), (8×4), (16×4) and (32×8). The 
material-property gradient indices κpz of the FG circular 
plate are considered to be κpz = 2, 5, and 10. The aspect 
ratios (h/R) of the circular plate are taken to be h/R = 0.05, 
0.1, 0.15, and 0.2. 

It can be seen in Tables 1 and 2 that the current FAPM 
solutions are accurate and converge rapidly. The convergent 
solutions of L4, Q8 and C12 FAPM are obtained, when we 
use an (nr × nz) = (32×8) mesh. These convergent solutions 
are shown to be in excellent agreement with the 3D exact 
solutions (Wang et al. 2010), quasi-3D SSDRK solutions 
(Wu and Liu 2016b) and 2D accurate solutions (Reddy et 
al. 1999; Saidi et al. 2009; Sahraee and Saidi 2009). In the 
cases of h/R = 0.1, κpz = 2, and (nr × nz) = (32×8), the 
relative errors between the L4, Q8, and C12 FAPM 
solutions and 3D exact solutions are 0.99%, 0.25%, and 
0.06%, respectively, for the clamped edges cases, while 
they are 0.1%, 0.1%, and 0.02% for the simply-supported 
edges cases. The performance of these FAPM are C12 > Q8 
> L4, in which the symbol “>” means that the solutions are 
more accurate and that the convergence rate is faster. The 
convergence rates of these FAPM for the simply-supported 
edges cases are slightly more rapid than those for the 
clamped edges cases. 

To have a clearer picture with regard to the displacement 
and stress components induced over the domain of a more 
general nonhomogeneous circular plate, the authors study 
the static problem of a two-directional, rather than a one-
directional, power-law-type FG circular plate with clamped 
boundary conditions and under a uniformly distributed load. 
The Poisson’s ratio υ remains a constant (i.e., υ = 0.288), 
the ratio of Em/Ec is taken to be 0.396, and the effective 
Young’s modulus of the FG circular plate are given in the 
same form as in Eq. (28), while the volume fraction of the 
mental material Γm is defined to obey a two-directional 
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power-law variation, as follows 
 

          rpzp
m Rrhzzr  /1/2/1,   (29)

 
where κpr denotes the material-property gradient index in 
the radial direction. 

A set of dimensionless variables are given as follows 
 

      zuRqDu zcz ,,0/64 4
0   (30a)
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Fig. 3 shows the through-thickness distribution of the 

dimensionless displacement component in the thickness 

 
 

direction ),( zu  the so-called deflection, induced in the 
two-directional FG circular plate, in which h/R = 0.1 and κpz 
= κpr = 3. It can be seen in Fig. 3 that the through-thickness 
distribution of zu  appears to be a higher-order polynomial 
function, rather than a constant, as conventionally assumed 
in the 2D advanced and refine plate theories. The maximum 
value of zu  occurs in the vicinity of the mid-plane of the 
FG circular plate, while the minimum value is on the 
bottom surface, even though the deviation of these two 
deflection values is very minor. 

Distributions of the in-plane and transverse stress 
components through the thickness direction are shown in 
Fig. 4, in which h/R = 0.1 and κpz = κpr = 0.5, 1 and 3. The 
results shown in Fig. 4 indicate that these stress components 

Table 1 Convergence studies for various RMVT-based FAPM solutions of the displacement 
components at the center of one-directional power-law-type FG circular plates with 
clamped boundary conditions and under a uniformly distributed load 

κpz Theories h/R = 0.05 h/R = 0.1 h/R = 0.15 h/R = 0.2 

2 

Current L4 finite prism method (8×2) 1.4707 1.5073 1.5681 1.6529 

Current L4 finite prism method (8×4) 1.4728 1.5159 1.5860 1.6820 

Current L4 finite prism method (16×4) 1.4264 1.4687 1.5368 1.6302 

Current L4 finite prism method (32×8) 1.4104 1.4523 1.5201 1.6140 

Current Q8 finite prism method (8×2) 1.4151 1.4541 1.5192 1.6102 

Current Q8 finite prism method (8×4) 1.4178 1.4594 1.5272 1.6210 

Current Q8 finite prism method (16×4) 1.4061 1.4460 1.5121 1.6046 

Current Q8 finite prism method (32×8) 1.4024 1.4416 1.5076 1.6004 

Current C12 finite prism method (8×2) 1.3872 1.4262 1.4915 1.5832 

Current C12 finite prism method (8×4) 1.3913 1.4316 1.4979 1.5904 

Current C12 finite prism method (16×4) 1.3962 1.4351 1.5004 1.5924 

Current C12 finite prism method (32×8) 1.3986 1.4371 1.5026 1.5951 

CPT (Reddy et al. 1999) 1.388 1.388 1.388 1.388 

FSDT (Reddy et al. 1999) 1.402 1.444 1.515 1.613 

TSDT (Saidi et al. 2009) 1.3882 1.4426 NA 1.6032 

FOSDT (Sahraee and Saidi 2009) 1.3882 1.4426 NA 1.6033 

SSDRK (Wu and Liu 2016b) 1.405 1.447 1.513 1.603 

3D solutions (Wang et al. 2010) 1.400 1.438 1.500 1.586 

5 

Current L4 finite prism method (8×2) 1.3080 1.3402 1.3938 1.4685 

Current L4 finite prism method (8×4) 1.3094 1.3472 1.4089 1.4932 

Current L4 finite prism method (16×4) 1.2682 1.3054 1.3653 1.4476 

Current L4 finite prism method (32×8) 1.2539 1.2907 1.3503 1.4328 

Current Q8 finite prism method (8×2) 1.2585 1.2928 1.3500 1.4301 

Current Q8 finite prism method (8×4) 1.2605 1.2971 1.3568 1.4392 

Current Q8 finite prism method (16×4) 1.2501 1.2852 1.3433 1.4247 

Current Q8 finite prism method (32×8) 1.2467 1.2813 1.3393 1.4208 

Current C12 finite prism method (8×2) 1.2335 1.2677 1.3251 1.4058 

Current C12 finite prism method (8×4) 1.2369 1.2724 1.3308 1.4121 

Current C12 finite prism method (16×4) 1.2413 1.2756 1.3330 1.4139 

Current C12 finite prism method (32×8) 1.2434 1.2772 1.3348 1.4161 

TSDT (Saidi et al. 2009) 1.2343 1.2821 NA 1.4235 

FOSDT (Sahraee and Saidi 2009) 1.2343 1.2822 NA 1.4237 
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appear to be the higher-order polynomial function 
variations through the thickness direction. The in-plane 
stress and transverse normal stress components change 
drastically along the thickness direction when the values of 
κpz and κpr become greater. In the cases of κpz = κpr = 3, the 
maximum in-plane, transverse shear, and transverse normal 
stress components occur at the top surface, mid-plane, and 
top surface of the FG circular plate, respectively, the 
corresponding values of which are 52.99 q0, -5.64 q0, and 
q0, i.e., the magnitude ratios among these peak values are 
about 50: 5: 1 for the moderately thick plate (h/R = 0.1). 
Note that the traction conditions on the top and bottom 
surfaces of the FG plate are exactly satisfied, which should 
have been hard to achieve when using the principle of 
virtual displacement (PVD)-based finite element methods in 

 
 

Fig. 3 The through-thickness distribution of zu  induced in
a clamped, two-directional power-law-type FG 
circular plate with κpz = κpr = 3 

Table 2 Convergence studies for various RMVT-based FAPM solutions of the displacement 
components at the center of one-directional power-law-type FG circular plates with simply 
supported boundary conditions and under a uniformly distributed load 

κpz Theories h/R = 0.05 h/R = 0.1 h/R = 0.15 h/R = 0.2 

2 

Current L4 finite prism method (8×2) 5.7459 5.7808 5.8387 5.9195 

Current L4 finite prism method (8×4) 5.7460 5.7808 5.8389 5.9201 

Current L4 finite prism method (16×4) 5.7232 5.7584 5.8170 5.8987 

Current L4 finite prism method (32×8) 5.7153 5.7508 5.8099 5.8924 

Current Q8 finite prism method (8×2) 5.7440 5.7795 5.8385 5.9208 

Current Q8 finite prism method (8×4) 5.7445 5.7803 5.8397 5.9227 

Current Q8 finite prism method (16×4) 5.7234 5.7590 5.8182 5.9009 

Current Q8 finite prism method (32×8) 5.7157 5.7510 5.8100 5.8927 

Current C12 finite prism method (8×2) 5.7088 5.7444 5.8037 5.8866 

Current C12 finite prism method (8×4) 5.7100 5.7455 5.8046 5.8873 

Current C12 finite prism method (16×4) 5.7104 5.7457 5.8047 5.8873 

Current C12 finite prism method (32×8) 5.7107 5.7459 5.8048 5.8875 

CPT (Reddy et al. 1999) 5.700 5.700 5.700 5.700 

FSDT (Reddy et al. 1999) 5.714 5.756 5.826 5.925 

TSDT (Saidi et al. 2009) 5.7133 5.7546 5.8232 5.9194 

3D solutions (Wang et al. 2010) 5.710 5.745 5.804 5.886 

10 

Current L4 finite prism method (8×2) 4.7296 4.7575 4.8040 4.8689 

Current L4 finite prism method (8×4) 4.7297 4.7579 4.8049 4.8707 

Current L4 finite prism method (16×4) 4.7109 4.7394 4.7869 4.8532 

Current L4 finite prism method (32×8) 4.7044 4.7332 4.7809 4.8477 

Current Q8 finite prism method (8×2) 4.7281 4.7569 4.8046 4.8713 

Current Q8 finite prism method (8×4) 4.7285 4.7574 4.8054 4.8726 

Current Q8 finite prism method (16×4) 4.7111 4.7399 4.7878 4.8547 

Current Q8 finite prism method (32×8) 4.7047 4.7333 4.7811 4.8480 

Current C12 finite prism method (8×2) 4.6991 4.7279 4.7759 4.8429 

Current C12 finite prism method (8×4) 4.7001 4.7288 4.7766 4.8435 

Current C12 finite prism method (16×4) 4.7004 4.7290 4.7767 4.8435 

Current C12 finite prism method (32×8) 4.7007 4.7291 4.7768 4.8437 

CPT (Reddy et al. 1999) 4.692 4.692 4.692 4.692 

FSDT (Reddy et al. 1999) 4.704 4.739 4.799 4.882 

TSDT (Saidi et al. 2009) 4.7033 4.7382 4.7964 4.8778 

3D solutions (Wang et al. 2010) 4.698 4.726 4.774 4.840 
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Q8, and C12 FAPM solutions and the 3D SSDQ solutions 
are 0.98%, 0.46%, and 0.20%, respectively. As Nie and 
Zhong (2007) mentioned, the finite element solutions using 
ANSYS are obtained using a 3D eight-node solid element 
code, in which the total numbers of elements and nodes are 
14,549 and 16,745, respectively, while in the current FAPM 
analysis, these are 256 C12 prism elements with 1,401 
nodes for a 32×8 mesh, 256 Q8 prism elements with 849 
nodes, and 256 L4 prism elements with 297 nodes. 
Comparing the accuracy between the finite element 
solutions obtained using ANSYS software and the current 
FAPM as well as the numbers of nodes used, it is shown 
that the current FAPM are superior to the finite element 
codes in the commercial software ANSYS for the static 
analysis of two-directional FG circular plates. 

A parametric study with regard to the variations of the 
displacement and stress components induced through the 
thickness direction with different values of κer and κez and 
the effects of κer and κez on the deflection of the FG circular 
plate with simply-supported edges is presented in Figs. 6-7 
and 8, respectively, in which the dimensionless variables are 
defined the same as those used in Example 3.1, except that 

 
 

Fig. 6 The through-thickness distribution of zu  induced 
in a simply-supported, two-directional exponential 
function-type FG circular plate with κpz = κpr = 3 

 
 

the variable of Ec in the dimensionless displacement form is 
replaced with E0. 

Fig. 6 shows the through-thickness distribution of zu  
induced in the two-directional exponential function-type FG 

Table 3 Convergence studies for various RMVT-based FAPM solutions of the displacement 
components at z = -h/2 of two-directional exponential function-type FG circular plates with 
simply supported and clamped boundary conditions and under a uniformly distributed load 

BCs Theories r/R = 0 r/R = 0.25 r/R = 0.5 r/R = 0.75

Clamped 

Current L4 finite prism method (8×4) 0.1587 0.1301 0.0773 0.0244 

Current L4 finite prism method (16×4) 0.1550 0.1297 0.0777 0.0248 

Current L4 finite prism method (16×8) 0.1551 0.1298 0.0778 0.0249 

Current L4 finite prism method (32×8) 0.1538 0.1301 0.0781 0.0251 

Current Q8 finite prism method (8×4) 0.1544 0.1299 0.0779 0.0249 

Current Q8 finite prism method (16×4) 0.1533 0.1301 0.0781 0.0251 

Current Q8 finite prism method (16×8) 0.1535 0.1302 0.0782 0.0252 

Current Q8 finite prism method (32×8) 0.1530 0.1303 0.0783 0.0252 

Current C12 finite prism method (8×4) 0.1521 0.1298 0.0780 0.0250 

Current C12 finite prism method (16×4) 0.1524 0.1301 0.0782 0.0252 

Current C12 finite prism method (16×8) 0.1526 0.1302 0.0783 0.0252 

Current C12 finite prism method (32×8) 0.1526 0.1303 0.0783 0.0253 

3D solutions (Nie and Zhong 2007) 0.1523 0.1297 0.0776 0.0247 

ANSYS (Nie and Zhong 2007) 0.1513 0.1289 0.0775 0.0250 

Simply 
supported 

Current L4 finite prism method (8×2) 0.6938 0.6265 0.4618 0.2393 

Current L4 finite prism method (8×4) 0.6944 0.6271 0.4622 0.2395 

Current L4 finite prism method (16×4) 0.6915 0.6266 0.4623 0.2398 

Current L4 finite prism method (16×8) 0.6915 0.6267 0.4624 0.2398 

Current Q8 finite prism method (8×2) 0.6940 0.6272 0.4627 0.2401 

Current Q8 finite prism method (8×4) 0.6941 0.6273 0.4628 0.2401 

Current Q8 finite prism method (16×4) 0.6916 0.6269 0.4627 0.2401 

Current Q8 finite prism method (16×8) 0.6916 0.6269 0.4627 0.2401 

Current C12 finite prism method (8×2) 0.6897 0.6265 0.4624 0.2399 

Current C12 finite prism method (8×4) 0.6899 0.6267 0.4626 0.2400 

Current C12 finite prism method (16×4) 0.6900 0.6268 0.4627 0.2401 

Current C12 finite prism method (16×8) 0.6901 0.6268 0.4627 0.2401 
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the commercial software ANSYS by comparing the 
solutions obtained using the current FAPM and ANSYS 
with the 3D exact solutions available in the literature, as 
well as the total numbers of nodes used in the current 
FAPM and ANASYS software. 

Some 3D static behavior of the two-directional FG 
circular plates under mechanical loads is captured in the 
numerical examples. The through-thickness distribution of 
the displacement component in the thickness direction 
appears to be a higher-order polynomial function, rather 
than a constant as is conventionally assumed to be the case 
in the 2D advanced and refined plate theories. The results 
also show that distributions of the in-plane and transverse 
stress components appear to be much higher-order 
polynomial functions through the thickness direction, and 
these variables change drastically along the thickness 
direction when the material-property gradient indices 
become greater, i.e., when the degree of heterogeneity of 
the FG plate becomes severe. These observations are 
helpful for making the kinematic and kinetic assumptions a 
priori when an advanced or refined plate theory for 
nonhomogeneous circular plates is to be developed. 

The current FAPM can be regarded as the semi-
analytical finite element methods, and these are suitable for 
the 3D elasticity analysis of annular and circulate plates, the 
corresponding coefficients of the system equations in the 
circumferential direction are constants, while they are 
variable coefficients through the thickness-meridional 
surface. The benefits of the current FAPM are that the 
quasi-3D solutions can be obtained using the computational 
complexity of the 2D finite element methods only and that 
the current FAPM can be straightforwardly extended to the 
analysis of assorted multilayered FG shells of revolution, 
such as truncated conical shells, annular spherical shells, 
and toroidal shells. The relevant research work is ongoing. 
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