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Quasi-3D static analysis of two-directional functionally graded circular plates
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Abstract. A weak-form formulation of finite annular prism methods (FAPM) based on Reissner’s mixed variational theorem
(RMVT), is developed for the quasi three-dimensional (3D) static analysis of two-directional functionally graded (FG) circular
plates with various boundary conditions and under mechanical loads. The material properties of the circular plate are assumed to
obey either a two-directional power-law distribution of the volume fractions of the constituents through the radial-thickness
surface or an exponential function distribution varying doubly exponentially through it. These FAPM solutions of the loaded FG
circular plates with both simply-supported and clamped edges are in excellent agreement with the solutions obtained using the
3D analytical approach and two-dimensional advanced plate theories available in the literature.
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1. Introduction

It is well known that fiber-reinforced laminated
composite (FRLC) structures have a sudden change in their
material properties when they across the interfaces between
adjacent layers due to the fact that two dissimilar materials
have bonded together. As a result, residual stresses always
concentrate around these interfaces when the FRLC
structures are subjected to external mechanical and thermal
loads and cause the FRLC structures to be prone to
delamination in these areas. Thus, in lieu of FRLC
materials, a new class of materials, the so-called
functionally graded materials (FGM), was introduced by a
group of scientists in Sendai, Japan in 1984 (Koizumi 1997,
Miyamoto et al. 1999), to form various beam-, plate-, and
shell-like structures in advanced engineering in order to
prevent the above-mentioned weakness that typically occurs
in FRLC structures. The material properties of these FGM
structures are designed to vary continuously and smoothly
with the thickness coordinate according to the predefined
distributions of the volume fractions of the constituents.
Along with the increasing popularity of FGM structures, the
related structural analyses have attracted considerable
attention. Some review articles on the theoretical metho-
dologies and numerical models of FGM beams, plates, and
shells can be found in the literature (Carrera and Brischetto
2009, Liew et al. 2015, Wu and Liu 2016a). Among these,
the review conducted in this work will focus on articles
related to the structural analyses of FGM circular plates.

Some two-dimensional (2D) advanced and refined plate
theories and the three-dimensional (3D) elasticity theory
have been used for assorted analyses of one-directional
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functionally graded (FG) circular plates with simply-
supported or clamped boundary conditions that are
subjected to uniformly distributed loads. Among these, the
material properties of the FG circular plate considered in
most of the articles were assumed to vary through the
thickness direction and remain unchanged over the
circumferential-radial surface, which are the so-called one-
directional FG circular plates. The articles examining the
structural behavior of two-directional FG circular plates are
rare in the public literature as compared with those for one-
directional FG and laminated composite circular plates.
Based on the first-order shear deformation theory
(FSDT), Reddy et al. (1999) investigated the axisymmetric
bending and stretching behavior of FG circular and annular
plates. A two-phase (ceramic-metal) composite material was
used to form the plate, the material properties of which
were assumed to obey the power-law distribution through
the thickness direction according to the volume fractions of
the constituents, and the effective material properties were
estimated using the rules of mixtures. The FSDT was also
extended by Bouderba ef al. (2016) to the thermal buckling
problem of FG sandwich plates. The above-mentioned issue
was also studied by Saidi et al. (2009) and Sahrace and
Saidi (2009) using an unconstrained third-order shear
deformation theory (TSDT) and a fourth-order shear
deformation theory (FOSDT), respectively. Numerical
results for displacement and stress components induced in
the one-directional FG circular plates were presented for
different values of material-property gradient indices.
Tornabene and Viola (2009a, b) and Tornabene (2009)
extended the FSDT to the free vibration analysis of one-
directional power-law-type FG parabolic and circular
panels, as well as various shells of revolution, such as
conical shells, cylindrical shells and annular plates. Based
on a new simple three-unknown shear deformation theory,
Hachemi et al. (2017) and Houari et al. (2016) examined
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the bending behavior of one-directional FG plates with and
without resting on an elastic medium, respectively. Sobhy
(2016) proposed a four-variable shear deformation theory to
examine the vibration and buckling behavior of power-law-
type FG sandwich plates in hygrothermal environment.
Abdelaziz et al. (2017) developed an efficient hyperbolic
shear deformation theory for a variety of mechanical
analyses of sandwich FG plates, such as bending, buckling,
and free vibration. Elmossouess et al. (2017) developed a
new higher-order shear deformation theory (HSDT) for the
thermal buckling analysis of FG sandwich plates, in which
the total number of primary variables of the theory is taken
to be four only, which is even less than that of FSDT and
conventional HSDT. Based on various shear deformation
theories, Sobhy (2013) dealt with the vibration and buckling
behavior of exponent function-type FG sandwich plates
resting on elastic foundations. Bouchafa et al. (2015)
presented the results with regard to the thermal stress and
deflection components induced in an FG sandwich plate
subjected to thermo-mechanical loads using a new refined
hyperbolic shear deformation theory, in which a parametric
study regarding effects of the shear deformation, aspect
ratios, and material-property gradient index on the coupled
thermo-elastic behavior of the plate were carried out. Based
on a sinusoidal shear deformation theory, Sobhy (2015)
investigated the thermoelastic response of power-law-type
FG plates with temperature-dependent properties resting on
variable elastic foundations. Some weak formulations on
the basis of differential and integral quadrature methods
have also been developed for the free vibration analysis of
composite plates and shells (Tornabene et al. 2017a,
2017b).

Within the framework of 3D elasticity theory, Wang et
al. (2010) studied the axisymmetric bending behavior of
transversely isotropic and FG circular plates using the direct
displacement method (DDM). The material properties were
assumed to obey the exponential function distribution
through the thickness direction, the applied external load
was expanded as a series of Fourier-Bessel functions, and
the superposition principle was used to obtain the final
results by summarizing the results of each individual
external force. The DDM was extended to the 3D coupled
thermo-elastic analysis of FG circular plates under
axisymmetric thermo-mechanical loads by Li et al. (2012)
and Jabbari et al. (2014), and the analysis of axisymmetric
buckling and vibration of FG circular and annular plates by
Xu et al. (2005) and Wang et al. (2009), respectively.
Pendhari et al. (2012) presented mixed semi-analytical and
analytical solutions for the static problems of simply-
supported, one-directional FG rectangular plates. Based on
the 3D elasticity theory, Tahouneh (2014) studied the free
vibration behavior of bidirectional FG annular plates resting
on the Pasternak-type foundation using the differential
quadrature method.

In order to not only capture the 3D behavior of FGM
plates and shells, such as the thickness effect, but also to
overcome the restrictions of 3D analytical methods, such as
the complicated solution process and difficulty associated
with use for one- and multi-directional FG circular plates,
on the basis of Reissner’s mixed variational theorem

(RMVT), Wu and Li (2013a, b) developed the finite
rectangular prism method (FRPM) and finite cylindrical
prism method (FCPM) for the quasi-3D analysis of one-
directional FG rectangular plates and cylinders with various
boundary conditions, respectively. Implementation of the
RMVT-based FRPM and FCPM showed that their solutions
are accurate and converge rapidly. In the current article, the
RMVT is extended to develop the finite annular prism
method (FAPM) for the quasi-3D static analysis of two-
directional FG circular plates with both simply-supported
and clamped boundary conditions. The material properties
of the FGM circular plate are assumed to obey either a two-
directional power-law distribution of the volume fractions
of the constituents through the radial-thickness surface or an
exponential function distribution varying doubly exponent-
ially through the radial-thickness surface. The number of
nodes on the nodal surface of each prism can be set at four
for the linear FAPM, and at eight and 12 for the quadratic
and cubic FAPM of the serendipity-family. A parametric
study with regard to some key effects on the quasi-3D static
behavior of two-directional FG circular plates with various
boundary conditions is carried out, such as the material-
property gradient indices, aspect ratios, and different
boundary conditions.

2. RMVT-based finite annular prism methods

The authors consider an Ni-layered two-directional FG
circular plate subjected to a trigonometriclly (or uniformly)
distributed load on the top surface of the circular plate, as
shown in Fig. 1, in which N, is the total number of the
layers constituting the circular plate. The thickness and
mid-surface radius of the circular plate are defined as 4 and
R, respectively. The thickness of each individual layer is

N
h,(m=1,2,---,N,), such that hzz h,. The boundary

m=1
conditions of the circular plate are considered as either the
clamped or simply-supported boundary conditions. The
cylindrical global coordinate system (i.e., r, § and z
coordinates) is located on the mid-surface of the circular
plate. The typical four-node linear, eight-node quadratic,
and 12-node cubic annular prisms of the serendipity-family
in the natural coordinate system are shown in Fig. 2, in
which (&, #) denotes the natural coordinates, which are
located at the center of the nodal surface of a typical
annular prism (i.e., the radial-thickness surface). The
mapping relations between the global and natural
coordinates of each point in the prism domain are expressed

ng ng
as 9= 9y n) and 0= Y (&)
i=l i=1
in which n, denotes the degree of approximation used to
describe the coordinate transformation for the annular

prism, and w(?(&,n7), i=1-n,, denote the shape (or

interpo-lation) functions of the annular prism. Since the iso-
parametric annular prisms are used in the implementation of
these FAPM, i.e., the degree of approximation used to
describe the coordinate transformation is equal to that used
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Fig. 1 The configuration, cylindrical coordinate system
and boundary conditions of a circular plate with a
4x2 mesh of the Q8 FAPM

to represent each primary field variable, such that the values
of n, are taken to be four, eight, and 12 for the linear,
quadratic, and cubic FAPM, respectively.

2.1 Kinematic and kinetic assumptions

The displacement and transverse stress components of a
typical annular prism of the mth-layer are given by (Wu and
Li2013b)
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with (i=1,2,---,n,) are the nodal displacement and

transverse stress components of a typical annular prism of
the mth-layer of the circular plate; n, denotes the total

Fig. 2 The configuration of a typical finite annular prism:
(1) L4; (b) Q8; and (c) C12

number of nodes of a typical annular prism, such that the
values of n, are four, eight and 12 for the linear, quadratic
and cubic annular prisms, respectively. The symbols, L4,
Q8, and C12, will be used later in this work to represent
four-node linear, eight-node quadratic, and 12-node cubic
annular prisms. (W“") )Em)(i =1,---,n,) are the corresponding
shape (or interpolation) functions used to interpolate the
primary field variables over the prism domain.

The linear constitutive equations of the mth-layer, which
are valid for the orthotropic materials, are given by

o™ cl(”’) P 0 0 0 gm
o e ™ o0 0 0 ey
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(7o 0 0 em o0 0|y @
rm 0 0 0 0 c™ 0o |]|ym
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where ¢ ,0",---and 7'}’ are the stress components;
g™ ey",---andy'p) are the strain components; c|" are
the elastic coefficients, which are considered to be
independent of the circumferential coordinate in the
analysis, while they are variable over the radial-thickness
surface of the annular prism (i.e.,c(" (r,z)

The strain-displacement relations for a typical annular
prism of the mth-layer, based on the assumed displacement
components in Egs. (1)-(3), are given by

(m)
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where the commas denote partial differentiation with
respect to the suffix variables, and Dy =0y /or,
Dyl =0yl oz

2.2 The Reissner mixed variational theorem
The Reissner mixed variational theorem is used to
derive the static equilibrium equations of the FG circular
plate under mechanical loads, and the corresponding energy
functional (Il;) of the loaded plate is written in the form of
hi2 2z
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where Q" and Q denote the top and bottom surfaces of the
circular plate (i.e., z = h/2 and z = —h/2), respectively, in
which the transverse loads g, and ¢, (k =7, 0 and z)

are applied, the upward ones of which are defined as
positive; T, and T', denote the portions of the edge
boundary, in which the surface traction and displacement
components (i.e., 7, and u, (k = r, 6 and z)) are
prescribed, respectively. B(o;) is the complementary energy
density function.

In the current formulation, the RMVT is used, such that
the displacement and transverse stress components are
taken as the primary variables subject to variation. Using
the kinematic and kinetic assumptions, given in Egs. (1)-(3)
and (4)-(6), respectively, the authors perform the first-order
variation of the Reissner energy functional as zero, as
follows
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where N, denotes the number of annular prisms in each
individual layer; A4, is defined as the cross-sectional area of
a typical annular prism, such that d4, = dr x dz; the
superscript of 7 denotes the transposition of the matrices or
vectors; and
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2.3 Euler-Lagrange equations

The static behavior of a multilayered FG circular plate
with either simply-supported or clamped boundary edges
under mechanical loads is studied in the following
illustrative examples, in which the material properties are
considered as either a two-directional power-law
distribution or an exponential function one over the radial-
thickness surface, while they are independent of the
circumferential direction. The applied loading conditions on
the top and bottom surfaces of the circular plate are
prescribed as

[t (r.0,h12) 5P (.0.0/2) 60 (r,0.h12)]

16
=[0 0 r?;(xﬁ)] on z=h/2 (16a)

[f0(.0.-h/2) 22(r.0.-h/2) 6O (r.0.~h/2)|

16b
=[0 0 0] on z=-h12 (e

where ¢ are expressed as the single Fourier series and

given as ¢, = Z@ cos(nf) in which 7 is either a
=0
positive integer or zero.

The boundary edge at » = R is considered to be either the
clamped or simply-supported edge, the corresponding
boundary conditions of which are given as follows:

For clamped (C) supports

0 =) =19 =0 (17a)
For simple (S) supports
==t =0 am)

The continuity conditions at the center of the circular
plate (» = 0) are given as

u =up) =79 =0 (18)

Using the separation of variables, the authors expand the
primary field variables of each individual annular prism,
which are given in Egs. (1)-(6), as the single Fourier series
in the circumferential coordinate, and they are rewritten as
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Introducing the kinetic and kinematic models of the
FAPMs (Egs. (19)-(24)) and the boundary conditions on the
top and bottom surfaces (Egs. (16a) and (16b)) in Eq. (15)
and imposing the stationary principle of the Reissner energy
functional (i.e., oI1z = 0), we thus obtain the Euler-Lagrange
equations of the FG circular plate as follows
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Omy, is the Kronecker delta symbol, in which 6y, =0
when m # N, and oy = 1.

By imposing the continuity conditions of each node’s
nodal primary variables, i.e., the nodal displacement and
transverse stress components, at the nodal lines between
adjacent prisms, the local stiffness matrix and forcing
vector of each prism in Eq. (25) can be assembled as their
corresponding global stiffness matrix and forcing vector of
the FG circular plate. The nodal primary variables at each
node of the prism can then be determined. Subsequently, the
variables of the in-plane stresses at the nodes can be
obtained using the primary variables, which were
determined, and are given by

QY™ _ N (m
(09, )" =3 (0, o) cosi0 (26)

n=0

()™ =S () sinio @7)

n=0

where

() () <m> ~
[(Ul(;)) (ﬁ?) (e) ]T QY B & + QY BYG®

Using the above-mentioned weak-form formulation of
the RMVT-based FAPM, the authors investigate the quasi-
3D static behavior of two-directional FG circular plates
with both simply-supported and clamped boundary
conditions under mechanical loads in the following
illustrative examples, and the performance of the current
RMVT-based L4, Q8, and C12 FAPM is also examined.

3. lllustration examples

3.1 One- and two-directional power-law-type
FG circular plates

In this section, the authors examine the static behavior
of a one-directional power-law-type FG circular plate with
simply-supported and clamped boundary conditions under a
uniformly distributed load, ie., ¢ =¢q, and ¢, =0,
such that the half wave number 7 in the current
formulation is identical to zero. The problem was
previously investigated by Reddy et al. (1999), Saidi et al.
(2009) and Sahraee and Saidi (2009) using 2D advanced
and refined plate theories, such as FSDT, TSDT, and
FOSDT, respectively, and was also investigated by Wang et
al. (2010) and Wu and Liu (2016b) using the state space
analytical method and the state space differential
reproducing kernel (SSDRK) method, respectively, and the
corresponding solutions are thus used to validate the
solutions obtained using the current L4, Q8 and C12 FAPM.

The circular plate considered is composed of ceramic
and metal materials according to a one-directional power-
law distribution of volume fractions of the constituents
through the thickness coordinate. The effective material

properties are estimated using the rule of mixtures, in which
the Poisson’s ratio » remains a constant (i.e., v = 0.288),
while Young’s modulus is in the form of

E(z)=E, +(E, - E,)T, () (28)

where T',(z) denotes the volume fraction of the metal
material, and T,,(z) = [(1/2) — (z/h)]*=. E,, and E, represent
the Young’s moduli of the metal and ceramic materials,
respectively, and the ratio of E,/E. is taken to be 0.396. The
superscript, x,., denotes the material-property gradient
index in the thickness direction. When x,. = 0 and x,, = o,
the FG circular plate will reduce to the homogeneous metal
and ceramic plates, respectively, while in the cases of other
values of ., the top and bottom surfaces of the FGM plate
are ceramic- and metal-rich, respectively.

Tables 1 and 2 show the convergence studies for the
current L4, Q8, and C12 FAPM solutions of the
displacement components at the center of the FG circular
plate with clamped and simply-supported boundary
conditions, respectively, under a uniform load. The
dimensionless displacement is defined as

=[(64D.)/(g, B*)]u.(0, 6, 0 in which 2 = (e )2(-0?)]
When using the current FAPM, the uniform meshes on the
nodal surface (i.e., the radial-thickness surface) are taken to
be (n, x n,) = (8x2), (8x4), (16x4) and (32x8). The
material-property gradient indices x,. of the FG circular
plate are considered to be x,. = 2, 5, and 10. The aspect
ratios (4/R) of the circular plate are taken to be 4#/R = 0.05,
0.1,0.15,and 0.2.

It can be seen in Tables 1 and 2 that the current FAPM
solutions are accurate and converge rapidly. The convergent
solutions of L4, Q8 and C12 FAPM are obtained, when we
use an (n, x n,) = (32x8) mesh. These convergent solutions
are shown to be in excellent agreement with the 3D exact
solutions (Wang et al. 2010), quasi-3D SSDRK solutions
(Wu and Liu 2016b) and 2D accurate solutions (Reddy et
al. 1999; Saidi et al. 2009; Sahraee and Saidi 2009). In the
cases of A/R = 0.1, ,. = 2, and (n, X n;) = (32x8), the
relative errors between the L4, Q8, and Cl12 FAPM
solutions and 3D exact solutions are 0.99%, 0.25%, and
0.06%, respectively, for the clamped edges cases, while
they are 0.1%, 0.1%, and 0.02% for the simply-supported
edges cases. The performance of these FAPM are C12 > QS8
> L4, in which the symbol “>” means that the solutions are
more accurate and that the convergence rate is faster. The
convergence rates of these FAPM for the simply-supported
edges cases are slightly more rapid than those for the
clamped edges cases.

To have a clearer picture with regard to the displacement
and stress components induced over the domain of a more
general nonhomogeneous circular plate, the authors study
the static problem of a two-directional, rather than a one-
directional, power-law-type FG circular plate with clamped
boundary conditions and under a uniformly distributed load.
The Poisson’s ratio v remains a constant (i.e., v = 0.288),
the ratio of E,/E. is taken to be 0.396, and the effective
Young’s modulus of the FG circular plate are given in the
same form as in Eq. (28), while the volume fraction of the
mental material I',, is defined to obey a two-directional
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Table 1 Convergence studies for various RMVT-based FAPM solutions of the displacement
components at the center of one-directional power-law-type FG circular plates with
clamped boundary conditions and under a uniformly distributed load

Ky Theories WR=0.05 AWR=0.1 WR=0.15 hR=02
Current L4 finite prism method (8%2) 1.4707 1.5073 1.5681 1.6529
Current L4 finite prism method (8x4) 1.4728 1.5159 1.5860 1.6820

Current L4 finite prism method (16x4) 1.4264 1.4687 1.5368 1.6302
Current L4 finite prism method (32x8) 1.4104 1.4523 1.5201 1.6140
Current QS finite prism method (8%2) 1.4151 1.4541 1.5192 1.6102
Current Q8 finite prism method (8x4) 1.4178 1.4594 1.5272 1.6210
Current Q8 finite prism method (16x4) 1.4061 1.4460 1.5121 1.6046
Current Q8 finite prism method (32x8) 1.4024 1.4416 1.5076 1.6004
) Current C12 finite prism method (8x2) 1.3872 1.4262 1.4915 1.5832
Current C12 finite prism method (8x4) 1.3913 1.4316 1.4979 1.5904
Current C12 finite prism method (16x4) 1.3962 1.4351 1.5004 1.5924
Current C12 finite prism method (32x8) 1.3986 1.4371 1.5026 1.5951
CPT (Reddy et al. 1999) 1.388 1.388 1.388 1.388

FSDT (Reddy et al. 1999) 1.402 1.444 1.515 1.613

TSDT (Saidi et al. 2009) 1.3882 1.4426 NA 1.6032
FOSDT (Sahraee and Saidi 2009) 1.3882 1.4426 NA 1.6033
SSDRK (Wu and Liu 2016b) 1.405 1.447 1.513 1.603

3D solutions (Wang et al. 2010) 1.400 1.438 1.500 1.586
Current L4 finite prism method (8x2) 1.3080 1.3402 1.3938 1.4685
Current L4 finite prism method (8x4) 1.3094 1.3472 1.4089 1.4932
Current L4 finite prism method (16x4) 1.2682 1.3054 1.3653 1.4476
Current L4 finite prism method (32x8) 1.2539 1.2907 1.3503 1.4328
Current Q8 finite prism method (8%2) 1.2585 1.2928 1.3500 1.4301
Current Q8 finite prism method (8x4) 1.2605 1.2971 1.3568 1.4392
s Current Q8 finite prism method (16x4) 1.2501 1.2852 1.3433 1.4247
Current Q8 finite prism method (32x8) 1.2467 1.2813 1.3393 1.4208
Current C12 finite prism method (8x2) 1.2335 1.2677 1.3251 1.4058
Current C12 finite prism method (8x4) 1.2369 1.2724 1.3308 1.4121
Current C12 finite prism method (16x4) 1.2413 1.2756 1.3330 1.4139
Current C12 finite prism method (32x8) 1.2434 1.2772 1.3348 1.4161
TSDT (Saidi et al. 2009) 1.2343 1.2821 NA 1.4235
FOSDT (Sahraee and Saidi 2009) 1.2343 1.2822 NA 1.4237

power-law variation, as follows
T, (r,z)=[1/2)=(z/B)*= [1=(r/ R)}*r (29)

where «,. denotes the material-property gradient index in
the radial direction.
A set of dimensionless variables are given as follows

7. = [(64D,)1(qoR* u. (0,6,2) (30a)
(,,7.,5.)=0,(0,0,2).7,.3R/4,6,2),5.(0,6,z)|/ ¢, (30D)

Fig. 3 shows the through-thickness distribution of the
dimensionless displacement component in the thickness

direction (u,), the so-called deflection, induced in the
two-directional FG circular plate, in which #/R = 0.1 and .
= K, = 3. It can be seen in Fig. 3 that the through-thickness
distribution of u, appears to be a higher-order polynomial
function, rather than a constant, as conventionally assumed
in the 2D advanced and refine plate theories. The maximum
value of u_ occurs in the vicinity of the mid-plane of the
FG circular plate, while the minimum value is on the
bottom surface, even though the deviation of these two
deflection values is very minor.

Distributions of the in-plane and transverse stress
components through the thickness direction are shown in
Fig. 4, in which #/R = 0.1 and «,, = x,, = 0.5, 1 and 3. The
results shown in Fig. 4 indicate that these stress components
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Table 2 Convergence studies for various RMVT-based FAPM solutions of the displacement
components at the center of one-directional power-law-type FG circular plates with simply
supported boundary conditions and under a uniformly distributed load

K- Theories h/R=0.05 h/R=0.1 h/R=0.15 h/R=0.2
Current L4 finite prism method (8%2) 5.7459 5.7808 5.8387 5.9195
Current L4 finite prism method (8x4) 5.7460 5.7808 5.8389 5.9201
Current L4 finite prism method (16x4) 5.7232 5.7584 5.8170 5.8987
Current L4 finite prism method (32x8) 5.7153 5.7508 5.8099 5.8924
Current Q8 finite prism method (8%2) 5.7440 5.7795 5.8385 5.9208
Current Q8 finite prism method (8x4) 5.7445 5.7803 5.8397 5.9227
Current Q8 finite prism method (16x4) 5.7234 5.7590 5.8182 5.9009
5 Current Q8 finite prism method (32x8) 5.7157 5.7510 5.8100 5.8927
Current C12 finite prism method (8%2) 5.7088 5.7444 5.8037 5.8866
Current C12 finite prism method (8x4) 5.7100 5.7455 5.8046 5.8873
Current C12 finite prism method (16x4) 5.7104 5.7457 5.8047 5.8873
Current C12 finite prism method (32x8) 5.7107 5.7459 5.8048 5.8875
CPT (Reddy et al. 1999) 5.700 5.700 5.700 5.700
FSDT (Reddy et al. 1999) 5.714 5.756 5.826 5.925
TSDT (Saidi et al. 2009) 5.7133 5.7546 5.8232 5.9194
3D solutions (Wang et al. 2010) 5.710 5.745 5.804 5.886
Current L4 finite prism method (8x2) 4.7296 4.7575 4.8040 4.8689
Current L4 finite prism method (8x4) 4.7297 4.7579 4.8049 4.8707
Current L4 finite prism method (16x4) 4.7109 4.7394 4.7869 4.8532
Current L4 finite prism method (32x8) 4.7044 4.7332 4.7809 4.8477
Current QS finite prism method (8%2) 4.7281 4.7569 4.8046 4.8713
Current Q8 finite prism method (8x4) 4.7285 47574 4.8054 4.8726
Current Q8 finite prism method (16x4) 47111 4.7399 4.7878 4.8547
10 Current Q8 finite prism method (32x8) 4.7047 4.7333 4.7811 4.8480
Current C12 finite prism method (8%2) 4.6991 4.7279 4.7759 4.8429
Current C12 finite prism method (8x4) 4.7001 4.7288 4.7766 4.8435
Current C12 finite prism method (16x4) 4.7004 4.7290 4.7767 4.8435
Current C12 finite prism method (32x8) 4.7007 4.7291 4.7768 4.8437
CPT (Reddy et al. 1999) 4.692 4.692 4.692 4.692
FSDT (Reddy et al. 1999) 4.704 4.739 4.799 4.882
TSDT (Saidi et al. 2009) 4.7033 4.7382 4.7964 4.8778
3D solutions (Wang et al. 2010) 4.698 4.726 4.774 4.840
appear to be the higher-order polynomial function o8 ] ]
variations through the thickness direction. The in-plane | |
stress and transverse normal stress components change | |
drastically along the thickness direction when the values of L |
k,. and x,. become greater. In the cases of x,. = k. = 3, the oh ol ¥ " |
maximum in-plane, transverse shear, and transverse normal | ]
stress components occur at the top surface, mid-plane, and | )
top surface of the FG circular plate, respectively, the | i
corresponding values of which are 52.99 ¢, -5.64 g, and | )l
qo, 1.e., the magnitude ratios among these peak values are sl L L
1.083 1.085 1.087 1.089 1.091

about 50: 5: 1 for the moderately thick plate (#/R = 0.1).
Note that the traction conditions on the top and bottom
surfaces of the FG plate are exactly satisfied, which should
have been hard to achieve when using the principle of
virtual displacement (PVD)-based finite element methods in

u.
Fig. 3 The through-thickness distribution of #, induced in
a clamped, two-directional power-law-type FG

circular plate with x,, = x,,, = 3
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Fig. 5 Variations of u, at the center of a clamped, two-
directional power-law-type FG circular plate with
different values of «,,, and «,

most of the commercial software, such as ANSYS,
ABAQUS and NASTRAN.

Fig. 5 shows the deflection induced at the center of the
FG circular plate for different values of «,. and x,,, in which
h/R=0.1; k,,=0, 1, 5, 10, and 1000, and «,, = 1 — 1000. It
can be seen in Fig. 5 that the deflection increase when the
values of x,. and x,, become smaller, which also means the
volume fraction of the metal material becomes greater, such
that the gross stiffness of the FG plate becomes softer. In
the cases of x,, = 1, the dimensionless central deflections of
the plate decrease from 1.1967 to 1.0424 when the values of
Kk, change from 1 to 1000, while these decrease from
1.1967 to 1.0431 in the cases of x,, = 1 and x,. = 1 — 1000.
The results show that the effects of the material-property
gradient indices on the dimensionless central deflections of
the plate are significant, and the degree of influence of x,,.
on the dimensionless central deflections of the plate is
almost equivalent to that of x,. on the dimensionless central
deflections of the plate when the volume fraction of the
plate is defined in the form of Eq. (29).

3.2 Two-directional exponential function-type
FG circular plates

In this section, the authors investigate the static behavior
of a two-directional exponential function-type FG circular
plate with various boundary conditions and subjected to a
uniformly distributed load. The Young’s modulus of the FG
circular plate is considered to obey a two-directional
exponential function distribution over the radial-thickness
surface, while the Poisson’s ratio of this remains a constant.
They are given as follows

E(r, Z): E, eKeZ[O.5+(z/h)] exer(r/R) (31a)

v=03 (31b)
where £, denotes the Young’s modulus at the central point
of the bottom surface, £, = 380 GPa, and «,, and k., are the
material-property gradient indices in the radial and
thickness directions, respectively.

Table 3 shows the displacement components, u, (7, z =
—h/2), of the FG circular plate obtained using the current
L4, Q8 and C12 FAPM with clamped and simply-supported
edges and different meshes, such as (n, x n,) = (8x4),
(16%4), (16x8) and (32%8), in which x,, =x,,=1,h=0.1 m,
and R = 1 m. The current issue for the clamped edges was
also studied by Nie and Zhong (2007) using the 3D state
space differential quadrature (SSDQ) method and ANSYS
software, the results for which are thus used to validate the
performance of assorted FAPM.

It can be seen in Table 3 that the performance of these
FAPM is C12 > Q8 > L4 when comparing their solutions
with the solutions obtained using the 3D SSDQ method, in
which the symbol “>” represents more accurate solutions
and a faster convergence rate. The convergent FAPM
solutions are obtained when a 32x8 mesh is used, which
closely agree the 3D analytical solutions and accurate finite
element solutions obtained using the SSDQ method and
ANSYS software, respectively. The relative errors of the
deflection components at »/R = 0 between the current L4,
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Table 3 Convergence studies for various RMVT-based FAPM solutions of the displacement
components at z = -A/2 of two-directional exponential function-type FG circular plates with
simply supported and clamped boundary conditions and under a uniformly distributed load

BCs Theories ¥/R=0 #»/R=025 r/R=0.5 r/R=0.75
Current L4 finite prism method (8x4) 0.1587 0.1301 0.0773 0.0244
Current L4 finite prism method (16x4) 0.1550 0.1297 0.0777 0.0248
Current L4 finite prism method (16x8) 0.1551 0.1298 0.0778 0.0249
Current L4 finite prism method (32x8) 0.1538 0.1301 0.0781 0.0251
Current Q8 finite prism method (8x4) 0.1544 0.1299 0.0779 0.0249
Current Q8 finite prism method (16x4) 0.1533 0.1301 0.0781 0.0251
ol q Current Q8 finite prism method (16x8) 0.1535 0.1302 0.0782 0.0252
ampe
P Current Q8 finite prism method (32x8) 0.1530 0.1303 0.0783 0.0252
Current C12 finite prism method (8x4) 0.1521 0.1298 0.0780 0.0250
Current C12 finite prism method (16x4) 0.1524 0.1301 0.0782 0.0252
Current C12 finite prism method (16x8) 0.1526 0.1302 0.0783 0.0252
Current C12 finite prism method (32x8) 0.1526 0.1303 0.0783 0.0253
3D solutions (Nie and Zhong 2007) 0.1523 0.1297 0.0776 0.0247
ANSYS (Nie and Zhong 2007) 0.1513 0.1289 0.0775 0.0250
Current L4 finite prism method (8x2) 0.6938 0.6265 0.4618 0.2393
Current L4 finite prism method (8x4) 0.6944 0.6271 0.4622 0.2395
Current L4 finite prism method (16x4) 0.6915 0.6266 0.4623 0.2398
Current L4 finite prism method (16x8) 0.6915 0.6267 0.4624 0.2398
Current Q8 finite prism method (8x2) 0.6940 0.6272 0.4627 0.2401
Simply Current Q8 finite prism method (8x4) 0.6941 0.6273 0.4628 0.2401
supported Current Q8 finite prism method (16x4) 0.6916 0.6269 0.4627 0.2401
Current Q8 finite prism method (16x8) 0.6916 0.6269 0.4627 0.2401
Current C12 finite prism method (8x2) 0.6897 0.6265 0.4624 0.2399
Current C12 finite prism method (8x4) 0.6899 0.6267 0.4626 0.2400
Current C12 finite prism method (16x4) 0.6900 0.6268 0.4627 0.2401
Current C12 finite prism method (16x8) 0.6901 0.6268 0.4627 0.2401
Q8, and C12 FAPM solutions and the 3D SSDQ solutions 0.5
are 0.98%, 0.46%, and 0.20%, respectively. As Nie and r ]
Zhong (2007) mentioned, the finite element solutions using r ]
ANSYS are obtained using a 3D eight-node solid element 3 1
code, in which the total numbers of elements and nodes are 3 .
14,549 and 16,745, respectively, while in the current FAPM Zh 0 -
analysis, these are 256 C12 prism elements with 1,401 L |
nodes for a 32x8 mesh, 256 Q8 prism elements with 849 L _
nodes, and 256 L4 prism elements with 297 nodes. L _
Comparing the accuracy between the finite element | i
solutions obtained using ANSYS software and the current 05
FAPM as well as the numbers of nodes used, it is shown 0202 0203 0204 0205 0206

that the current FAPM are superior to the finite element
codes in the commercial software ANSYS for the static
analysis of two-directional FG circular plates.

A parametric study with regard to the variations of the
displacement and stress components induced through the
thickness direction with different values of x,, and x,. and
the effects of «,, and .. on the deflection of the FG circular
plate with simply-supported edges is presented in Figs. 6-7
and 8, respectively, in which the dimensionless variables are
defined the same as those used in Example 3.1, except that

u;

Fig. 6 The through-thickness distribution of u#_ induced
in a simply-supported, two-directional exponential
function-type FG circular plate with «,, = x,,, = 3

the variable of E, in the dimensionless displacement form is
replaced with Ej.

Fig. 6 shows the through-thickness distribution of u,
induced in the two-directional exponential function-type FG
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Fig. 7 Through-thickness distributions of (a) in-plane stress component; (b) transverse shear stress component; and
(c) transverse normal stress component, induced in a simply-supported, two-directional exponential function-

type FG circular plate for ,, = x,, = 0.5, 1 and 3

circular plate, in which #/R = 0.1 and «,, = k., = 3. Again, it
is shown that the through-thickness distribution of .
appears to be a higher-order polynomial function, and its
maximum value occurs in the vicinity of a quarter thickness
away from the top surface of the plate, while its minimum
value occurs on the bottom surface.

Fig. 7 shows distributions of the in-plane and transverse
shear and normal stress components through the thickness
direction, in which 4#/R = 0.1 and k., = ., = 0.5, 1 and 3. It
can be seen in Fig. 7 that these stress components appear to
be the higher-order polynomial function variations through
the thickness direction. In the cases of x.. = k.. = 3, the
maximum in-plane, transverse shear and transverse normal
stress components occur on the top surface, z = 0.2188% and
z = 0.4375h of the FG circular plate, respectively, the
corresponding values of which are 139.36 ¢, -6.42 ¢, and
1.264,, i.e., the magnitude ratios among these peak values
are about 110: 5: 1 for the moderately thick plate (A/R =
0.1). As shown in Figs. 4 and 7, the through-thickness
distributions of the in-plane stress and transverse stress
components induced in the two-directional exponential
function-type FG circular plates change more drastically
than those induced in the two-directional power-law-type
FG circular plates when the values of material-property
gradient indices become greater. Figs. 7(b) and (c) also
show that the traction conditions on the top and bottom
surfaces of the FG plate are exactly satisfied.

Fig. 8 shows the deflection induced at the center of the
FG circular plate for different values of ., and «,,, in which
hWR=0.1;%x,.=0,05,1, 1.5, and 2; k., = 0 — 2. It can be
seen in Fig. 8 that the deflection increase when the values of
k.. and . become smaller. In the cases of k., = 1, the
dimensionless central deflections of the plate decrease from
2.5172 to 0.9263 when the values of ., change from 0 to 2;
while they decrease from 2.5246 to 0.955 when the values
of k., change from 0 to 2 in the cases of x, = 1. As
compared with the results shown in Figs. 5 and 8, it is
shown that the effects of the material-property gradient
indices on the dimensionless central deflections of the two-
directional exponential function-type FG circular plate are
more significant than those on the dimensionless deflections

i, (=0) [

Fig. 8 Variations of u_ at the center of a simply-
supported, two-directional exponential function-
type FG circular plate with different values of
x.-and x,,

of the two-directional power-law-type FG circular plate,
which is mainly due to the fact that the degree of
heterogeneity of the former is more severe than that of the
latter.

4. Conclusions

In this work, the authors develop a weak-form
formulation of various RMVT-based FAPM to investigate
the static behavior of two-directional power-law-type and
exponential function-type FG circular plates with simply-
supported and clamped edges and under mechanical loads.
Implementation of these FAPM shows that their convergent
solutions closely agree with each other and that these
solutions are in excellent agreement with the 3D exact
solutions and 2D accurate solutions available in the
literature. The performance of assorted FAPM is C12 > Q8
> L4, in which the symbol “>” represents more accurate
results and a rapid convergence rate. In the numerical
examples, it is also shown that the current FAPM are
superior to the PVD-based finite element methods used in
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the commercial software ANSYS by comparing the
solutions obtained using the current FAPM and ANSYS
with the 3D exact solutions available in the literature, as
well as the total numbers of nodes used in the current
FAPM and ANASYS software.

Some 3D static behavior of the two-directional FG
circular plates under mechanical loads is captured in the
numerical examples. The through-thickness distribution of
the displacement component in the thickness direction
appears to be a higher-order polynomial function, rather
than a constant as is conventionally assumed to be the case
in the 2D advanced and refined plate theories. The results
also show that distributions of the in-plane and transverse
stress components appear to be much higher-order
polynomial functions through the thickness direction, and
these variables change drastically along the thickness
direction when the material-property gradient indices
become greater, i.e., when the degree of heterogeneity of
the FG plate becomes severe. These observations are
helpful for making the kinematic and kinetic assumptions a
priori when an advanced or refined plate theory for
nonhomogeneous circular plates is to be developed.

The current FAPM can be regarded as the semi-
analytical finite element methods, and these are suitable for
the 3D elasticity analysis of annular and circulate plates, the
corresponding coefficients of the system equations in the
circumferential direction are constants, while they are
variable coefficients through the thickness-meridional
surface. The benefits of the current FAPM are that the
quasi-3D solutions can be obtained using the computational
complexity of the 2D finite element methods only and that
the current FAPM can be straightforwardly extended to the
analysis of assorted multilayered FG shells of revolution,
such as truncated conical shells, annular spherical shells,
and toroidal shells. The relevant research work is ongoing.
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