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Abstract.

In this article a four unknown quasi-3D shear deformation theory for the bending analysis of functionally graded

(FG) plates is developed. The advantage of this theory is that, in addition to introducing the thickness stretching impact (e, # 0),
the displacement field is modeled with only four variables, which is even less than the first order shear deformation theory
(FSDT). The principle of virtual work is utilized to determine the governing equations. The obtained numerical results from the
proposed theory are compared with the CPT, FSDT, and other quasi-3D HSDTs.
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1. Introduction

Functionally graded materials (FGMs) are a type of
advanced composite materials which was initially proposed
in Japan (Bever and Duwez 1972, Koizumi 1993). The
important feature of this type of composites is the
continuity along a desired direction within a structural
element such as shell, plate or beam (Matsunaga 2008,
Hosseini-Hashemi et al. 2010, Reddy 2011, Eltaher et al.
2013, Swaminathan and Naveenkumar 2014, Bousahla et
al. 2014, Yaghoobi et al. 2014, Kar and Panda 2015,
Darilmaz 2015, Ait Atmane et al. 2015, Akbas 2015, Al-
Basyouni et al. 2015, Kolahchi et al. 2015, Pradhan and
Chakraverty 2015, Meradjah et al. 2015, Bourada et al.
2015, Akbas 2016, Celebi et al. 2016, Bellifa et al. 2016,
Ghorbanpour Arani et al. 2016, Ahouel et al. 2016,
Raminnea et al. 2016, Bellifa et al. 2017a, Benadouda et al.
2017, Sekkal et al. 2017a, Rahmani et al. 2017, Aldousari
2017, Bouafia et al. 2017, Bakhadda et al. 2018).

Some kinds of conventional composites suffer in
continuity within the thickness direction; such discontinuity
can be adjusted by a gradual and smooth variation of
mechanical properties within the thickness of the structural
element as in FGMs. Moreover, FGMs allow us to obtain
high thermal and toughness mechanical characteristics, as a
result of mixing for example ceramic and metal (Tounsi et
al. 2013, Bouderba et al. 2013 and 2016, Zidi et al. 2014,
Taibi et al. 2015, Hamidi et al. 2015, Beldjelili et al. 2016,
Bousahla et al. 2016, El-Haina et al. 2017, Khetir et al.
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2017, Menasria et al. 2017, Mouffoki et al. 2017).

General observations on FGMs can be consulted in the
review article by Jha et al. (2013). However, a detailed
review that focuses on the stress, dynamic and buckling
investigation of FG plates was presented by Swaminathan et
al. (2015). From this article a very large list of studies on
shear deformation theories of plates made of FGMs can be
found. Both analytical and numerical formulation of the
shear deformation plate theories under several types of
loads were indicated but without -considering the
mathematical implication of the employed methodologies
and contributions.

The first non-polynomial HSDT was proposed by Levy
(1877) and after more than one century the sinusoidal
HSDT were investigated and evaluated by Stein (1986).
Currently, this HSDT was extensively employed by
Touratier (1991), Vidal and Polit (2008, 2009, 2011, 2013),
Ghugal (2010), Baseri et al. (2016), etc. Then, Soldatos
(1992) developed a hyperbolic shear strain shape function;
Karama et al. (2003) proposed an exponential expansion,
etc. Others non-polynomial shear strain shape functions are
presented also in the article by Viola et al. (2013a, b).
Kolahchi and Bidgoli (2016) employed a sinusoidal beam
model for dynamic instability of single-walled carbon
nanotubes. Arani and Kolahchi (2016) investigated buckling
behavior of embedded concrete columns armed with carbon
nanotubes. Kolahchi et al. (2016a) used differential
cubature and quadrature-Bolotin methods for dynamic
stability of embedded piezoelectric nanoplates based on
visco-nonlocal-piezoelasticity theories. Bilouei et al. (2016)
examined the stability of concrete columns retrofitted with
nano-fiber reinforced polymer. Madani et al. (2016)
proposed a differential cubature method for vibration
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analysis of embedded FG-CNT-reinforced piezoelectric
cylindrical shells subjected to uniform and non-uniform
temperature distributions. Kolahchi et al. (2016b) analyzed
the dynamic stability of temperature-dependent functionally
graded CNT-reinforced visco-plates resting on orthotropic
elastomeric medium. Kolahchi et al. (2017) presented
visco-nonlocal-refined Zigzag models for dynamic buckling
of laminated nanoplates using differential cubature-Bolotin
methods. Zamanian et al. (2017) discussed the
agglomeration effects on the buckling behavior of
embedded concrete columns reinforced with SiO, nano-
particles.

A refined and generalized self-consistent model was
presented by Bian et al. (2005). This is an extension of
Soldatos” HSDT (Soldatos 1992) to examine the cylindrical
bending response of FG plates. Mantari et al. (2012a, b, c,
2014), and Mantari and Granados (2015a, b) proposed
several refined non-polynomial HSDTs to investigate the
bending, dynamic and thermoelasticity problems of
classical composites and FG plates. Mahi et al. (2015)
developed a new hyperbolic HSDT with five unknowns
without including the thickness stretching effect to
investigate the static and dynamic analysis of isotropic,
functionally graded, sandwich and laminated composite
plates. Nami and Janghorban (2013) analyzed the bending
response of rectangular nanoplates using trigonometric
shear deformation theory based on nonlocal elasticity
theory. Akavci (2014) presented an efficient hyperbolic
HSDT for free vibration of FG thick rectangular plates on
elastic foundation. Hebali et al. (2014) proposed a quasi-3D
hyperbolic HSDT for static and vibration analysis of FG
plates. Ahmed (2014) studied the post-buckling behavior of
sandwich beams with functionally graded faces using a
consistent higher order theory. Belabed et al. (2014)
developed an efficient and simple HSDT for bending and
dynamic analyses of FG plates. The number of variables
and governing equations were reduced to five instead of six
by splitting the transverse displacement into bending, shear
and thickness stretching parts. Akavci (2016) proposed a
new quasi-3D hyperbolic HSDT for analyzing bending
stresses, natural frequencies and buckling loads of FG
sandwich plates. Mantari (2016) used a generalized non-
polynomial quasi-3D shear deformation theory for
advanced composite plates. Liu et al. (2017) presented an
analysis of FG plates by a simple locking-free quasi-3D
hyperbolic plate isogeometric method. Bennoun et al.
(2016) proposed a novel five variable refined plate theory
for vibration analysis of functionally graded sandwich
plates. Abdelaziz et al. (2017) developed an efficient
hyperbolic shear deformation theory for bending, buckling
and dynamic of FG sandwich plates with various boundary
conditions. Hachemi et al. exposed a new simple three-
unknown shear deformation theory for bending analysis of
FG plates resting on elastic foundations (2017). Sekkal et
al. (2017b) presented a new quasi-3D HSDT for buckling
and vibration of FG plate. Abualnour et al. (2018) proposed
a novel quasi-3D trigonometric plate theory for free
vibration analysis of advanced composite plates. Other
works can be also consulted in the articles by Attia et al.
(2015 and 2018), Belabed et al. (2018), Benchohra et al.

(2018), Bouhadra et al. (2018) and Meksi et al. (2018).

In this work, a novel generation of 4-unknown quasi-3D
shear deformation theory is proposed. The advantage of this
theory is that, in addition to incorporating the thickness
stretching influence (¢, # 0), the displacement field is
modeled with only 4 unknowns, which is even less than the
FSDT and do not need shear correction factor. Thus, the
novelty of this work is the use of 4-unknown quasi-3D
shear deformation for bending analysis of FG plates,
resulting in considerably lower computational effort when
compared with the other higher-order theories reported in
the literature having more number of unknown functions.
The principle of virtual work is utilized to obtain the
governing equations. Analytical results from the novel
theory are compared with the CPT, FSDT, and other quasi-
3D HSDTs. This theory is as accurate as other quasy-3D
HSDTs with higher number of variables and so deserves
attention.

2. Theoretical formulation

A rectangular plate of uniform thickness h, length a, and
width b, made of a FGM is presented in Fig. 1.

The rectangular Cartesian coordinate system ¥, y, z, has
the plane xy at z = 0, coinciding with the mid-surface of the
plate. The material characteristics can change through the
thickness according to the function V(z) as given in the
following equation

z 1
RV (2) V(z)=e [" Zj , Case 1 (exponentially graded)
P(z) =

p
(R-R)V(@)+R, V(7)= (%Jr%) ,  Case 2 (powerly graded)

where P; and P, present the property of the top and bottom
faces of the plate, respectively, and p is the exponent that
specifies the material distribution profile within the
thickness. In this work, for example, the Young’s modulus,
E, and shear modulus, G, change depending on the case

hl —>
X
(@)
b | PGP X
(b)

Fig. 1 Geometry of a functionally graded plate
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Fig. 2 Exponentially graded function V(z) along the
thickness of an EGP for different values of the
material parameter p
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Fig. 3 Powerly graded function V(z) along the thickness

of an PGP for different values of the material
parameter p
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problem according to Eqg. (1), and the Poisson ratio,
vconsidered to be constant. Fig. 2 indicates the exponential
function V(Z=2z/h) along the thickness of an
exponentially graded plate (EGP) for different values of the
material parameter p. While Fig. 3, indicates the
corresponding function for powerly graded plates (PGP).

The displacement field satisfying the conditions of
transverse shear stresses (and hence strains) vanishing at a
point (X, y, £h/2) on the top and bottom surfaces of the
plate, is expressed as follows (Besseghier et al. 2017, Fahsi
et al. 2017, Zine et al. 2018)

U Y. 2) = o (x ) -2 22 i T @Oy (22)
VYD) =V -2 Sl T@f 0ty (2b)

W(X, Y, 2) =Wo (X, ¥) +9(2)0 (. y) (2¢)

The coefficients k; and k, depends on the geometry. It

can be seen that the kinematic in Eq. (2) introduces only
four unknowns (uo, Vo, Wo and ).

In this work, the shape function is taken based on the
hyperbolic function given by Mantari and Guedes Soares
(2014) as

f(z)= 4l]SInfl (i Zj+ { cosh (5J+Scos[sﬂ
5 4h 8) 20 8
3 5
g9(z)= —Z—OCOS[E z]

The strain-displacement expressions,
formulation, are given as follows

®)

based on this

& | & ki ks
g, b=180 b2kt [+ f(2){ ks
e kb Key (@)
{y ”}—f(z){y ; +g<z>{7 } &=0@s
Vx2
Where
& 0%,
0
o0 rY kP 52X2
6’2 = 8\/—0 kb = _a WO ’
’ x [ kg oy?
Txy %+% xy 262W0
oy “axay (52)
ks k6
st= k,0
kS 2

Ty _ kZJde ANE] ey =0
{751} [kl_[adx ' yi REGS (50)

and

(5¢)

The integrals presented in the above equations shall be
resolved by a Navier type method and can be expressed as
follows

2
ﬁj‘edx:A'azg, ﬁj'edyzs'ae,
oy oxoy oxoy (6)
Iadx adl j@d _gdl
x’ oy

where the coefficients A’ and B’ are considered according to
the type of solution employed, in this case via Navier
method. Therefore, A'B’, k; and k are expressed as follows

k=-a® k=-F (1)
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where o and £ are defined in expression (20).
The linear constitutive relations are given below

o [C.iC,Cy 0 0 0]fg
o, c,C,Cy 0O 0 O y
0, _|CsCsCs 0 0 0 z 8
o[ [0 0 0 Cq 0 0 |7y ®)
Ty, 0 0 0 0 Cyx O ||V
7,) [0 0 0 0 0 Cuj\ry

where C;; are the three-dimensional elastic constants defined

r _~ _ (Q-vE@®)
C=Cp=Cy= —(1_ 2)1+v)’ (9a)
~ _~ _  VE®
Cp=Cp=Cy= —(1_ 2)11v)’ (9b)
~ _~ _ E®
Cuy=Co5 =Cg = 2L+v)’ (9c)

Considering the static version of the principle of virtual
work, the following relations can be obtained (Fekrar et al.
2014, Ait Amar Meziane et al. 2014, Larbi Chaht et al.
2015, Ait Yahia et al. 2015, Belkorissat et al. 2015, Zemri et
al. 2015, Boukhari et al. 2016, Houari et al. 2016,
Bounouara et al. 2016, Draiche et al. 2016, Zidi et al. 2017,
Bellifa et al. 2017b, Chikh et al. 2017, Klouche et al. 2017,
Kaci et al. 2018, Yazid et al. 2018, Youcef et al. 2018,
Mokhtar et al. 2018)

"Clelode +o 8, +0,6¢,
0= j I dxdy +dz
o + Txy5 7xy + Ty25 Vyz + sz5 V2

-h/2

(10)
—[Iq5wdxdy]
Q
N,6&l+N 6 +N,5&)+N, 575
+MPSK)+MPSKY+MP Sk +M:Sks
Ozj dxdy (11)

o +M;5k;+styé‘kxsy+Q§Z§}/32+sz57/§Z
+Q>3257/>?Z+S:z5yiz_q&,v

Where Q is the top surface and the stress resultants N,
M, S and Q are defined by

h/2
(Ni'Mib’ Mis): J(l,z, f)O'idZ,
_hi2
hi2

(N, M2, M )= I(l,z, flodz, (i=xy.x)  (12)

—-h/2

and

hi2

(85..55.)= Ig(fxz,ryz)dz,

-h/2
hi2

( 2 )S/Z): J.f,(TXZ’TyZ)dZ

-h/2

(12b)

The static version of the governing equations are
obtained from Eq. (11) by integrating the displacement
gradients by parts and setting the coefficients of dug, dvo,
owp and J0 to zero separately. The generalized equations
obtained are as follows

OoN
Suy: %+—xy:0
OX oy
any aNy
oVy: —+—==0
OX oy
262 b aZMb aZMb
SWy: aaXsz +2 axa;y + 8y2y =—q (13)
2 s aZhAs 62hﬂs
00: —klA'a M, )

—k,B' Y _(k,A'+k,B')—=—N
axz 2 ayz ( 1 2 ) axay

: oQ;, os:, S}
+ klA'—aQXZ +k,B' . +% + = icos(EJq
ox &y ox oy 20 (8

Substituting Eqg. (5) into Eg. (8) and the subsequent
results into Egs. (12), the stress resultants are obtained in
terms of strains as following compact form

N A B Bf¢ L
MPL=| B D D° [k°b+6JL%},
Ms| |B® D® H*||k® R (14a)

Q| _[Fe x=|f»"
S - )( S /\S )/1
N, = L(giJ +g;’) + La(kf + k;’) +R(k; + kj) + Ragf (14b)
in which

N =N NG N e =M

" (15a)
Me = (M2, M:, M3, |
8:{83'83'7>?y}t’ kb:{kf’ksk;'ksy}t'
s s s s U (15b)
ke = ks ke, ks, |
Ay A, O B, B, 0
A=A, A, 0| B=|B, By 0|
0 0 A 0 0 B
6 66 (150)
D, D, O
D=|D, D,, O
0 0 Dy
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B: B, 0 D, D; 0
B*=|B; B, 0|, D*=|D; D3 0 |,
0 0 Bg 0 0 Dg
o (15d)
Hi Hy 0
H*=|H; H, 0
0 0 Hg
Q=1QuQf  S=18%S;,
N

y°={73m32}‘. 7={7xz,7yz}t

F. O Xs 0 = 0
Fs:|: 55 S:|, Xs:|: 55 S:|, As:|: 5 S:| (l5f)
0 FS 0 Xg, 0 A,

L 1
j A2) f(z) g'(2)dz (159)
R? g (Z)—

and stiffness components are given as

All Bll Dll Blsl Dlsl Hlsl
AiZ BlZ D12 BfZ D].SZ H1$2
AGG BGG DGG BGSB DGSB HGSG
1-v (16a)
o
=J./1(z)(l,z,zz, f(z2),zf(2), f2)) v ‘dz

—ZV

2v
(A, By, Dy, B, D5, Hs, )= (A4, By, Dy, B, D3 HS ) (16b)

(Fa X5 AL)

E() 2 (16c)
e LU CT RO
(R X )= (R X ) (160)

Introducing Eq. (14) into Eqg. (13), the equations of
motion can be expressed in terms of displacements (ug, Vo,
Wy, ) and the appropriate equations take the form

A0 Ug + Agg Aoyl + (Aiz + Ass )d12V0 = Byyd; W,
- (Blz + ZBee)dlzzwo + (Bgs(klA""kz Bl)"‘ Bk, B')dlzzg (17a)
+ B kA d,,0+Ldo=0,

Ay UV + Ags OV + (Au + Ass) dy,Uy — By, AW
- (812 + 2866) dioW, + (Bge (klAl"'kz B')+ Bk A') d;1,0 (17b)
+B5,k, B'd,,,0 + Ld,6 =0,

By dyyalo + (B12 + 2866) 122U + (B12 + 2Bes)dnzvo

+ Bpy U5V = Dyylyy1aWo — 2(D12 +2Dygq ) dy 15,y

— Dy, AppoWo + Diky A'dyy,60 + (17¢)
((DS, + 2D )k, A+k,B")) dyypp0 + Dk, B0
+1%(d,0+d,,0)+q=0

—k A'Byd;5U, — (szkz B+Bg, (k, A+, B‘))d122u0

- (stzklA"" Bess (klA'+k2 B')) d112V0 - B§2k2 B'dzzzvo

+ Dk Ay, W +<( Dy, +2Dg, (klA'+kZBl))d1122W0

+ Dzzsz'dzzzzwo - H151(k1AI)2d11119 —-H 252 (sz')2 dzzzza
~2HE K koA Bk A, BYF HE Jd 100

+ ((klAl)z Fos + 2K A'X g5 + A ;0

(B R+ 2B X, + Al M0

—-2R(k,A'd,,0 +k,B'd,;0) — L(d,u, +d,V,)

(17d)

+ L2(d;,w, +d,,w,) — R* — 230 cos( ]qm =0

where dj, dj and djn are the following differential
operators
2 3
GNP
OX;OX; OX;0X;0%
64
Gijm = OX.0X. OX, OX.
iCAJOANCAR

(18)
G,j,1,m=12).

The Navier solution method is employed to determine
the analytical solutions for which the displacement
variables are written as product of arbitrary parameters and
known trigonometric functions to respect the equations of
motion and boundary conditions.

u0 U,,, cos(a x)sin(8 y)
V,,, Sin(a x)cos(S y)
Z_;; W, sin(a x)sin(8 y) (19)
9 X Sin(e x)sin(B y)
with
a=mzla and  S=nz/b (20)

The transverse load g is also expanded in the double-
Fourier sine series as

Q. y) =D gsin(a x)sin(A y) (21)

Substituting Eq. (19) into Eq. (17), the following
problem is obtained

S S S5 S [Um .

S12 S22 S5 Saa | | Vim _ (22)
Stz Sz Sz Sas | || Wim 3 a 5

Sia Sas Sas Sas )| X _%Cos(gjq
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Table 1 Non-dimensional center deflection w(a/2, b/2, 0) for various EGPs (a/h = 2)

b/a Theory p=0.1 p=05 p=1 p=15
3-D (Zenkour 2007) 1.638 1.352 1.059 0.826

Mantari and Guedes Soares (2014) 1.658 1.354 1.045 0.802

Mantari and Guedes Soares (2013) 1.637 1.336 1.033 0.794

6 Mantari and Guedes Soares (2012d) 1.735 1.418 1.100 0.850
TPT (Zenkour 2007) 1.629 1.331 1.028 0.791

HPT (Zenkour 2007) 1.548 1.265 0.980 0.756

Present 1.658 1.354 1.045 0.802

3-D (Zenkour 2007) 1.638 1.352 1.059 0.826

Mantari and Guedes Soares (2014) 1.658 1.354 1.045 0.820

Mantari and Guedes Soares (2013) 1.637 1.336 1.033 0.794

1 Mantari and Guedes Soares (2012d) 1.735 1.418 1.100 0.850
TPT (Zenkour 2007) 1.629 1.331 1.028 0.791

HPT (Zenkour 2007) 1.548 1.265 0.980 0.756

Present 1.658 1.354 1.045 0.802

Where

Su = A’ + A5, S =aff (Au + A )-
Siz= _0‘(8110‘2 +(By, +2Bg) f )'
S, = O{(szl B + (klA'+kZBI)B§6)ﬁ2J,
+kABa® - L
Sy = Aa® + A2,
Sy = _ﬁ(Bzzﬂz +(By, + 2Bes)a2)1
o {15 kN
T4 K,B B, A - L ’
Sy = Dya® +2(Dy, +2Dg ) 52 + D, B
S,, =k A'Dja* —2D;k,B'a? B
- 2Dg; (k,A'+k,B")a? B°
—k,B'D5, B4 + L2 (a? + B2),
S = (KA Hia* + (2kk,A'B'HS,
+ (k,A+k,B")2H ) o B2
+ (AR + 2K A X + A5 o
+(k,B")?*H;,B" + R —
2R(k,A'a® + k,B' %)
(0B i+ 208 X + AL )p?

(23)

3. Numerical results and discussion

In this section, the bending analysis of FG plates is
presented. For this end, various FG plates with different
geometry and material characteristics are here studied in
order to assess the accuracy of the proposed theory.

Fig. 4 presents the non-dimensional variation of
maximum deflection within the plate thickness (b/a = 1, 2,
3, 4, alh = 4, p = 0.1). It can be seen that the maximum

deflection is highly influenced by the aspect ratio (b/a).

For example, FG plates with elastic properties varying
exponentially in z, as reported by Zenkour (2007); FG
plates with elastic properties powerly graded along the
thickness direction z, as indicated by Zenkour (2006) and
accurately solved by Carrera et al. (2008).

3.1 Exponentially graded plates

The bending analysis is carried out by utilizing
aluminum (bottom, Al) graded exponentially within the
thickness of a rectangular plate (see Fig. 1(a)). The material
characteristics used for calculating the numerical results are

E, = 70GPa, v, =0.3 (24)

The following non-dimensional quantities are employed

— ab leEth
W= _i_lZ - 1
22 0,2"
X X 2121 qoazl y y 2121 qoazl ( )
S rxz(O,E,ZJL, ;.2
2 )ga h

The bending results in this section are compared with:
(a) the 3D exact solutions and a HSDT with stretching
influence by Zenkour (2007); (b) a developed quasi-3D
HSDT with 6 unknowns (Mantari and Guedes Soares,
2013); and a recent quasi-3D HSDT proposed by Mantari
and Guedes Soares (2014).

Tables 1-5 show results of non-dimensional maximum
deflection, normal stresses and shears stresses. It is found
from the examination of these tables that the computed
results are in good agreements with the published ones.

Fig. 5 plots the non-dimensional normal stresses (&)
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Fig. 4 Variation of non-dimensional displacement, w (a/2,
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Table 2 Non-dimensional normal stresses a,
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Fig. 5 Variation of non-dimensional normal stress, &, (a/2,
b/2, z), through the thickness of a thick EGP (a/h = 4
and p=0.5)

(a/2, b/2, hi2) for various EGPs (a/h = 4)

b/a Theory p=0.1 p=05 p=1 p=15
3-D (Zenkour 2007) 0.206 0.231 0.266 0.309
Mantari and Guedes Soares (2014) 0.218 0.247 0.289 0.337
Mantari and Guedes Soares (2013) 0.213 0.239 0.280 0.329
6 Mantari and Guedes Soares (2012d) 0.201 0.230 0.271 0.319
TPT (Zenkour 2007) 0.237 0.268 0.314 0.370
HPT (Zenkour 2007) 0.282 0.322 0.380 0.448
Present 0.219 0.247 0.286 0.333
3-D (Zenkour 2007) 0.217 0.247 0.290 0.340
Mantari and Guedes Soares (2014) 0.225 0.256 0.302 0.359
Mantari and Guedes Soares (2013) 0.224 0.255 0.301 0.356
1 Mantari and Guedes Soares (2012d) 0.216 0.248 0.293 0.345
TPT (Zenkour 2007) 0.235 0.268 0.317 0.374
HPT (Zenkour 2007) 0.241 0.276 0.326 0.385
Present 0.224 0.255 0.300 0.352
Table 3 Non-dimensional center deflection w(a/2, b/2, 0) for various EGPs (a/h = 10)
b/a Theory p=0.1 p=0.5 p=1 p=15 p=2 p=25 p=3
Ref® 1.034 0.845 0.655 0.507 0.391 0.302 0.232
Ref® 1.035 0.846 0.656 0.507 0.391 0.302 0.232
6 Ref® 1.039 0.852 0.667 0.524 0.412 0.323 0.254
TPT® 1.032 0.844 0.654 0.505 0.39 0.301 0.231
Present 1.034 0.845 0.655 0.507 0.391 0.302 0.232
Ref® 0.279 0.228 0.177 0.137 0.106 0.081 0.063
Ref® 0.280 0.229 0.177 0.137 0.106 0.081 0.063
1 Ref®© 0.282 0.231 0.181 0.142 0.111 0.087 0.068
TPT® 0.279 0.228 0.177 0.137 0.105 0.081 0.062
Present 0.279 0.228 0.177 0.137 0.106 0.081 0.063

@ Mantari and Guedes Soares (2014); ® Mantari and Guedes Soares (2013);
© Mantari and Guedes Soares (2012d)
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Table 4 Non-dimensional normal stresses a,, (a/2, b/2, h/2) for various EGPs (a/h = 10)

b/a Theory p=0.1 p=05 p=1 p=15 p=2 p=25 p=3
Ref® 0.607 0.693 0.817 0.960 1.127 1.322 1.549
Ref® 0.601 0.686 0.808 0.951 1.118 1.312 1.539
6 Ref® 0.603 0.688 0.811 0.954 1.120 1.315 1.542
TPT® 0.627 0.717 0.845 0.993 1.165 1.364 1.593
Present 0.607 0.693 0.816 0.960 1.127 1.322 1.549
Ref® 0.210 0.239 0.281 0.329 0.387 0.455 0.534
Ref® 0.206 0.234 0.275 0.324 0.382 0.451 0.532
1 Ref® 0.206 0.235 0.277 0.326 0.385 0.450 0.528
TPT® 0.220 0.250 0.294 0.346 0.407 0.477 0.560
Present 0.210 0.238 0.280 0.329 0.386 0.454 0.534
@ Mantari and Guedes Soares (2014); ® Mantari and Guedes Soares (2013);
© Mantari and Guedes Soares (2012d)
Table 5 Non-dimensional shear stresses 7, (0, b/2, 0) for various EGPs (a/h = 10)
b/a Theory p=01 p=05 p=1 p=15 p=2 p=25 p=3
Ref® 0.607 0.693 0.817 0.960 1.127 1.322 1.549
Ref® 0.601 0.686 0.808 0.951 1.118 1.312 1.539
6 Ref® 0.603 0.688 0.811 0.954 1.120 1.315 1.542
TPT® 0.627 0.717 0.845 0.993 1.165 1.364 1.593
Present 0.607 0.693 0.816 0.960 1.127 1.322 1.549
Ref® 0.210 0.239 0.281 0.329 0.387 0.455 0.534
Ref® 0.206 0.234 0.275 0.324 0.382 0.451 0.532
1 Ref® 0.206 0.235 0.277 0.326 0.385 0.450 0.528
TPT® 0.220 0.250 0.294 0.346 0.407 0.477 0.560
Present 0.210 0.238 0.280 0.329 0.386 0.454 0.534

@ Mantari and Guedes Soares (2014);

© Mantari and Guedes Soares (2012d)
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Fig. 6 Variation of non-dimensional shear stress, 7., (0,
b/2, z), through the thickness of a thick EGP (a/h =

4and p=0.5)

within the plate thickness. Again, the computed stress &, is
influenced by the aspect ratio (b/a).

® Mantari and Guedes Soares (2013);

Finally, Fig. 6 plots the non-dimensional shear stresses
(t,,) variation through the plate thickness.

It can be observed that by increasing the aspect ratio
(b/a), the non-dimensional shear stresses are increased.

3.2 Powerly graded plates

A square plate fabricated by metal and ceramic powerly
graded within its thickness is presented in Fig. 1(b). In fact,
the Young modulus varying in thickness direction of the FG
plate according to rule of mixtures is shown in Fig. 3.

E, =70GPa, E, =380GPa, v, =%, =03

(26)

The following non-dimensional quantities are employed
— 3 _ 3
D_u 0,9,2 100E;h , il E,E,Z 10E;h ’

2 ga* 22 ga*

— [a b j h — (a b j h
O-X:O-X _y_lz ] O'y:O'y _i_lZ s
22 Jga 22 Jga

(27)
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Table 6 Non-dimensional deflection and normal stresses of square PGPs

w (a2, b/2, 0) a, (a/2, bl2, hi3)
p Theory
ath=4 alh=10 a’/h =100 ahh=4 ah=10 a/h =100
Carrera et al. (2008) 0.717 0.588 0.563 0.622 1.506 14.969
Mantari and Guedes Soares (2014) 0.693 0.568 0.546 0.588 1.459 14.496
Neves et al. (2011) 0.700 0.585 0.562 0.593 1.495 14.969
FSDT (Carrera et al., 2011) 0.729 0.589 0.563 0.806 2.015 20.150
CPT (Carrera et al., 2011) 0.562 0.562 0.562 0.806 2.015 20.150
Present 0.693 0.569 0.546 0.576 1.457 14.482
Carrera et al. (2008) 1.159 0.882 0.829 0.488 1.197 11.923
Mantari and Guedes Soares (2014) 1.092 0.841 0.793 0.434 1.116 11.326
Neves et al. (2011) 1.118 0.875 0.829 0.440 1.178 11.932
FSDT (Carrera et al. 2011) 1.113 0.874 0.829 0.642 1.605 16.049
CPT (Carrera et al. 2011) 0.828 0.828 0.828 0.642 1.605 16.049
Present 1.092 0.841 0.793 0.417 1.115 11.310
Carrera et al. (2008) 1.375 1.007 0.936 0.370 0.897 8.908
Mantari and Guedes Soares (2014) 1.305 0.979 0.914 0.323 0.836 8.527
Neves et al. (2011) 1.349 0.875 0.829 0.323 1.178 11.932
FSDT (Carrera et al. 2011) 1.318 0.997 0.936 0.480 1.199 11.990
CPT (Carrera et al. 2011) 0.935 0.935 0.935 0.480 1.199 11.990
Present 1.322 0.978 0.914 0.306 0.836 8.518

Table 7 Non-dimensional displacements and stresses of square PGPs
p Theory @ (-h4) w@(-h6) WO & (h2) & (W3) T, (W6) T, (0) T (-h3)
Ref@® 0.584 0.444 0.568 3.13 1.459 0.299 0.275 0.562
Ref® 0.663 0.509 0.589 3.087 1.489 0.262 0.246 0.611
Present  0.585 0.445 0.569 3.124 1.457 0.291 0.266 0.563
Ref@® 0.808 0.629 0.722 3.635 1.344 0.277 0.222 0.494
2 Ref® 0.928 0.731 0.757 3.609 1.395 0.276 0.227 0.544
Present  0.809 0.630 0.722 3.630 1.342 0.269 0.214 0.495
Ref® 0.907 0.71 0.798 3.876 1.214 0.244 0.185 0.503
3 Ref® 1.045 0.827 0.838 3.874 1.275 0.272 0.211 0.553
Present  0.908 0.711 0.797 3.870 1.213 0.236 0.178 0.503
Ref® 0.971 0.756 0.872 4.213 1.043 0.195 0.158 0.529
5  Ref® 1.116 0.879 0.912 4.249 1.103 0.243 0.202 0.576
Present  0.972 0.757 0.871 4.209 1.042 0.189 0.152 0.530
Ref® 1.001 0.762 0.979 5.031 0.836 0.162 0.171 0.554
10  Ref® 1.137 0.876 1.009 5.089 0.878 0.204 0.22 0.589
Present  1.002 0.762 0.978 5.028 0.836 0.157 0.164 0.554

[y

- h - a h for simply supported homogenous square plate under to bi-
”VZTW(O’O’Z)E’ Ty =TYZ(§’O‘ Zja’ sinusoidal distributed load, p = {1, 4, 10} and a/h = 10.
27) Good results are achieved by the proposed model compared
Tw=T (09 Zjl with the ones given by Carrera (2008), Mantari and Guedes
* ga Soares (2014), Neves et al. (2011) and both FSDT and CPT

(Carrera et al. 2011).
Table 6 shows results of non-dimensional deflection and Table 7 gives results of non-dimensional displacements

normal stress results at the specified position (see Eq. (27)) ~ (u and w) and normal, in plane shear, and transverse shear
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stresses results at the specified position (see Eq. (27)) for
simply supported homogenous square plate under to bi-
sinusoidal distributed load, p = {1, 2, 3, 5, 10} and a/h = 10.
Good results are achieved by the proposed model compared
with the ones given by Mantari and Guedes Soares (2014)
and Zenkour (2006). It should be indicated that the theory
presented by Zenkour (2006) employs 5 unknowns without
considering the thickness stretching influence.

The through thickness variations of displacements and
stresses are also illustrated in Fig. 7 for square plates with
a’/h =10.

4., Conclusions

A novel quasi-3D HSDT with only 4 variables and
stretching influences is presented in this work. The
governing equations are obtained from the principle of
virtual displacements. Analytical solutions are determined
for simply supported rectangular plates. By considering
further simplifying suppositions to the quasi-3D theory of
Zenkour (2007), the number of variables of the novel quasi-
3D is diminished by one, and hence, makes the novel theory
simple and efficient to utilize. Numerical results
demonstrate that these suppositions have a minimal
influence on the accuracy of the results for the examined
problems. Therefore, it can be deduced that the novel quasi-
3D theory is not only accurate but also simple in predicting
the bending response of FG plates.
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