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1. Introduction 

 

Functionally graded materials (FGMs) are a type of 

advanced composite materials which was initially proposed 

in Japan (Bever and Duwez 1972, Koizumi 1993). The 

important feature of this type of composites is the 

continuity along a desired direction within a structural 

element such as shell, plate or beam (Matsunaga 2008, 

Hosseini-Hashemi et al. 2010, Reddy 2011, Eltaher et al. 

2013, Swaminathan and Naveenkumar 2014, Bousahla et 

al. 2014, Yaghoobi et al. 2014, Kar and Panda 2015, 

Darılmaz 2015, Ait Atmane et al. 2015, Akbaş 2015, Al-

Basyouni et al. 2015, Kolahchi et al. 2015, Pradhan and 

Chakraverty 2015, Meradjah et al. 2015, Bourada et al. 

2015, Akbaş 2016, Celebi et al. 2016, Bellifa et al. 2016, 

Ghorbanpour Arani et al. 2016, Ahouel et al. 2016, 

Raminnea et al. 2016, Bellifa et al. 2017a, Benadouda et al. 

2017, Sekkal et al. 2017a, Rahmani et al. 2017, Aldousari 

2017, Bouafia et al. 2017, Bakhadda et al. 2018). 

Some kinds of conventional composites suffer in 

continuity within the thickness direction; such discontinuity 

can be adjusted by a gradual and smooth variation of 

mechanical properties within the thickness of the structural 

element as in FGMs. Moreover, FGMs allow us to obtain 

high thermal and toughness mechanical characteristics, as a 

result of mixing for example ceramic and metal (Tounsi et 

al. 2013, Bouderba et al. 2013 and 2016, Zidi et al. 2014, 

Taibi et al. 2015, Hamidi et al. 2015, Beldjelili et al. 2016, 

Bousahla et al. 2016, El-Haina et al. 2017, Khetir et al. 
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2017, Menasria et al. 2017, Mouffoki et al. 2017). 

General observations on FGMs can be consulted in the 

review article by Jha et al. (2013). However, a detailed 

review that focuses on the stress, dynamic and buckling 

investigation of FG plates was presented by Swaminathan et 

al. (2015). From this article a very large list of studies on 

shear deformation theories of plates made of FGMs can be 

found. Both analytical and numerical formulation of the 

shear deformation plate theories under several types of 

loads were indicated but without considering the 

mathematical implication of the employed methodologies 

and contributions. 

The first non-polynomial HSDT was proposed by Levy 

(1877) and after more than one century the sinusoidal 

HSDT were investigated and evaluated by Stein (1986). 

Currently, this HSDT was extensively employed by 

Touratier (1991), Vidal and Polit (2008, 2009, 2011, 2013), 

Ghugal (2010), Baseri et al. (2016), etc. Then, Soldatos 

(1992) developed a hyperbolic shear strain shape function; 

Karama et al. (2003) proposed an exponential expansion, 

etc. Others non-polynomial shear strain shape functions are 

presented also in the article by Viola et al. (2013a, b). 

Kolahchi and Bidgoli (2016) employed a sinusoidal beam 

model for dynamic instability of single-walled carbon 

nanotubes. Arani and Kolahchi (2016) investigated buckling 

behavior of embedded concrete columns armed with carbon 

nanotubes. Kolahchi et al. (2016a) used differential 

cubature and quadrature-Bolotin methods for dynamic 

stability of embedded piezoelectric nanoplates based on 

visco-nonlocal-piezoelasticity theories. Bilouei et al. (2016) 

examined the stability of concrete columns retrofitted with 

nano-fiber reinforced polymer. Madani et al. (2016) 

proposed a differential cubature method for vibration 
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analysis of embedded FG-CNT-reinforced piezoelectric 

cylindrical shells subjected to uniform and non-uniform 

temperature distributions. Kolahchi et al. (2016b) analyzed 

the dynamic stability of temperature-dependent functionally 

graded CNT-reinforced visco-plates resting on orthotropic 

elastomeric medium. Kolahchi et al. (2017) presented 

visco-nonlocal-refined Zigzag models for dynamic buckling 

of laminated nanoplates using differential cubature-Bolotin 

methods. Zamanian et al. (2017) discussed the 

agglomeration effects on the buckling behavior of 

embedded concrete columns reinforced with SiO2 nano-

particles. 

A refined and generalized self-consistent model was 

presented by Bian et al. (2005). This is an extension of 

Soldatos’ HSDT (Soldatos 1992) to examine the cylindrical 

bending response of FG plates. Mantari et al. (2012a, b, c, 

2014), and Mantari and Granados (2015a, b) proposed 

several refined non-polynomial HSDTs to investigate the 

bending, dynamic and thermoelasticity problems of 

classical composites and FG plates. Mahi et al. (2015) 

developed a new hyperbolic HSDT with five unknowns 

without including the thickness stretching effect to 

investigate the static and dynamic analysis of isotropic, 

functionally graded, sandwich and laminated composite 

plates. Nami and Janghorban (2013) analyzed the bending 

response of rectangular nanoplates using trigonometric 

shear deformation theory based on nonlocal elasticity 

theory. Akavci (2014) presented an efficient hyperbolic 

HSDT for free vibration of FG thick rectangular plates on 

elastic foundation. Hebali et al. (2014) proposed a quasi-3D 

hyperbolic HSDT for static and vibration analysis of FG 

plates. Ahmed (2014) studied the post-buckling behavior of 

sandwich beams with functionally graded faces using a 

consistent higher order theory. Belabed et al. (2014) 

developed an efficient and simple HSDT for bending and 

dynamic analyses of FG plates. The number of variables 

and governing equations were reduced to five instead of six 

by splitting the transverse displacement into bending, shear 

and thickness stretching parts. Akavci (2016) proposed a 

new quasi-3D hyperbolic HSDT for analyzing bending 

stresses, natural frequencies and buckling loads of FG 

sandwich plates. Mantari (2016) used a generalized non-

polynomial quasi-3D shear deformation theory for 

advanced composite plates. Liu et al. (2017) presented an 

analysis of FG plates by a simple locking-free quasi-3D 

hyperbolic plate isogeometric method. Bennoun et al. 

(2016) proposed a novel five variable refined plate theory 

for vibration analysis of functionally graded sandwich 

plates. Abdelaziz et al. (2017) developed an efficient 

hyperbolic shear deformation theory for bending, buckling 

and dynamic of FG sandwich plates with various boundary 

conditions. Hachemi et al. exposed a new simple three-

unknown shear deformation theory for bending analysis of 

FG plates resting on elastic foundations (2017). Sekkal et 

al. (2017b) presented a new quasi-3D HSDT for buckling 

and vibration of FG plate. Abualnour et al. (2018) proposed 

a novel quasi-3D trigonometric plate theory for free 

vibration analysis of advanced composite plates. Other 

works can be also consulted in the articles by Attia et al. 

(2015 and 2018), Belabed et al. (2018), Benchohra et al. 

(2018), Bouhadra et al. (2018) and Meksi et al. (2018). 

In this work, a novel generation of 4-unknown quasi-3D 

shear deformation theory is proposed. The advantage of this 

theory is that, in addition to incorporating the thickness 

stretching influence (εz ≠ 0), the displacement field is 

modeled with only 4 unknowns, which is even less than the 

FSDT and do not need shear correction factor. Thus, the 

novelty of this work is the use of 4-unknown quasi-3D 

shear deformation for bending analysis of FG plates, 

resulting in considerably lower  computational effort when 

compared with the other higher-order theories reported in 

the literature having more number of unknown functions. 

The principle of virtual work is utilized to obtain the 

governing equations. Analytical results from the novel 

theory are compared with the CPT, FSDT, and other quasi-

3D HSDTs. This theory is as accurate as other quasy-3D 

HSDTs with higher number of variables and so deserves 

attention. 
 

 

2. Theoretical formulation 
 

A rectangular plate of uniform thickness h, length a, and 

width b, made of a FGM is presented in Fig. 1. 

The rectangular Cartesian coordinate system x, y, z, has 

the plane xy at z = 0, coinciding with the mid-surface of the 

plate. The material characteristics can change through the 

thickness according to the function V(z) as given in the 

following equation 
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where Pt and Pb present the property of the top and bottom 

faces of the plate, respectively, and p is the exponent that 

specifies the material distribution profile within the 

thickness. In this work, for example, the Young’s modulus, 

E, and shear modulus, G, change depending on the case 

 

 

 

(a) 
 

 

(b) 

Fig. 1 Geometry of a functionally graded plate 
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Fig. 2 Exponentially graded function V(z) along the 

thickness of an EGP for different values of the 

material parameter p 
 

 

 

Fig. 3 Powerly graded function V(z) along the thickness 

of an PGP for different values of the material 

parameter p 
 

 

problem according to Eq. (1), and the Poisson ratio, 

vconsidered to be constant. Fig. 2 indicates the exponential 

function 𝑉(𝑧 = 𝑧/ℎ) along the thickness of an 

exponentially graded plate (EGP) for different values of the 

material parameter p. While Fig. 3, indicates the 

corresponding function for powerly graded plates (PGP). 

The displacement field satisfying the conditions of 

transverse shear stresses (and hence strains) vanishing at a 

point (x, y, ±h / 2) on the top and bottom surfaces of the 

plate, is expressed as follows (Besseghier et al. 2017, Fahsi 

et al. 2017, Zine et al. 2018) 
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The coefficients k1 and k2 depends on the geometry. It 

can be seen that the kinematic in Eq. (2) introduces only 

four unknowns (u0, v0, w0 and θ). 

In this work, the shape function is taken based on the 

hyperbolic function given by Mantari and Guedes Soares 

(2014) as 
 

4 5 5 3 5
( ) sinh cosh cos

5 4 8 20 8

h
f z z z

h

      
         

        
3 5

( ) cos
20 4

g z z
h

 
   

   

(3) 

 

The strain-displacement expressions, based on this 

formulation, are given as follows 
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The integrals presented in the above equations shall be 

resolved by a Navier type method and can be expressed as 

follows 
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where the coefficients A′ and B′ are considered according to 

the type of solution employed, in this case via Navier 

method. Therefore, A′B′, k1 and k2 are expressed as follows 
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where α and β are defined in expression (20). 

The linear constitutive relations are given below 
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Considering the static version of the principle of virtual 

work, the following relations can be obtained (Fekrar et al. 

2014, Ait Amar Meziane et al. 2014, Larbi Chaht et al. 

2015, Ait Yahia et al. 2015, Belkorissat et al. 2015, Zemri et 

al. 2015, Boukhari et al. 2016, Houari et al. 2016, 

Bounouara et al. 2016, Draiche et al. 2016, Zidi et al. 2017, 

Bellifa et al. 2017b, Chikh et al. 2017, Klouche et al. 2017, 

Kaci et al. 2018, Yazid et al. 2018, Youcef et al. 2018, 

Mokhtar et al. 2018) 
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Where Ω is the top surface and the stress resultants N, 

M, S and Q are defined by 
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The static version of the governing equations are 

obtained from Eq. (11) by integrating the displacement 

gradients by parts and setting the coefficients of δu0, δv0, 

δw0 and δθ to zero separately. The generalized equations 

obtained are as follows 
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Substituting Eq. (5) into Eq. (8) and the subsequent 

results into Eqs. (12), the stress resultants are obtained in 

terms of strains as following compact form 
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and stiffness components are given as 
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Introducing Eq. (14) into Eq. (13), the equations of 

motion can be expressed in terms of displacements (u0, v0, 

w0, θ) and the appropriate equations take the form 
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where dij, dijl and dijlm are the following differential 

operators 
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The Navier solution method is employed to determine 

the analytical solutions for which the displacement 

variables are written as product of arbitrary parameters and 

known trigonometric functions to respect the equations of 

motion and boundary conditions. 
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with 
 

am /     and    bn /   (20) 
 

The transverse load q is also expanded in the double-

Fourier sine series as 
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Substituting Eq. (19) into Eq. (17), the following 

problem is obtained 
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3. Numerical results and discussion 
 

In this section, the bending analysis of FG plates is 

presented. For this end, various FG plates with different 

geometry and material characteristics are here studied in 

order to assess the accuracy of the proposed theory. 

Fig. 4 presents the non-dimensional variation of 

maximum deflection within the plate thickness (b/a = 1, 2, 

3, 4, a/h = 4, p = 0.1). It can be seen that the maximum 

 

 

deflection is highly influenced by the aspect ratio (b/a). 

For example, FG plates with elastic properties varying 

exponentially in z, as reported by Zenkour (2007); FG 

plates with elastic properties powerly graded along the 

thickness direction z, as indicated by Zenkour (2006) and 

accurately solved by Carrera et al. (2008). 

 

3.1 Exponentially graded plates 
 

The bending analysis is carried out by utilizing 

aluminum (bottom, Al) graded exponentially within the 

thickness of a rectangular plate (see Fig. 1(a)). The material 

characteristics used for calculating the numerical results are 
 

GPa, 70bE      3.0b  (24) 

 

The following non-dimensional quantities are employed 
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The bending results in this section are compared with: 

(a) the 3D exact solutions and a HSDT with stretching 

influence by Zenkour (2007); (b) a developed quasi-3D 

HSDT with 6 unknowns (Mantari and Guedes Soares, 

2013); and a recent quasi-3D HSDT proposed by Mantari 

and Guedes Soares (2014). 

Tables 1-5 show results of non-dimensional maximum 

deflection, normal stresses and shears stresses. It is found 

from the examination of these tables that the computed 

results are in good agreements with the published ones. 

Fig. 5 plots the non-dimensional normal stresses (𝜎 𝑥) 

Table 1 Non-dimensional center deflection 𝑤 (a/2, b/2, 0) for various EGPs (a/h = 2) 

b/a Theory p = 0.1 p = 0.5 p = 1 p = 1.5 

6 

3-D (Zenkour 2007) 1.638 1.352 1.059 0.826 

Mantari and Guedes Soares (2014) 1.658 1.354 1.045 0.802 

Mantari and Guedes Soares (2013) 1.637 1.336 1.033 0.794 

Mantari and Guedes Soares (2012d) 1.735 1.418 1.100 0.850 

TPT (Zenkour 2007) 1.629 1.331 1.028 0.791 

HPT (Zenkour 2007) 1.548 1.265 0.980 0.756 

Present 1.658 1.354 1.045 0.802 

1 

3-D (Zenkour 2007) 1.638 1.352 1.059 0.826 

Mantari and Guedes Soares (2014) 1.658 1.354 1.045 0.820 

Mantari and Guedes Soares (2013) 1.637 1.336 1.033 0.794 

Mantari and Guedes Soares (2012d) 1.735 1.418 1.100 0.850 

TPT (Zenkour 2007) 1.629 1.331 1.028 0.791 

HPT (Zenkour 2007) 1.548 1.265 0.980 0.756 

Present 1.658 1.354 1.045 0.802 
 

604



 

A novel four-unknown quasi-3D shear deformation theory for functionally graded plates 

 

Fig. 4 Variation of non-dimensional displacement,  𝑤  (a/2, 

b/2, z), through the thickness of a thick EGP (a/h = 4 

and p = 0.5). 
 

 

 

 
 

 

Fig. 5 Variation of non-dimensional normal stress, 𝜎 𝑥  (a/2, 

b/2, z), through the thickness of a thick EGP (a/h = 4 

and p = 0.5) 

 

 

Table 2 Non-dimensional normal stresses 𝜎 𝑦  (a/2, b/2, h/2) for various EGPs (a/h = 4) 

b/a Theory p = 0.1 p = 0.5 p = 1 p = 1.5 

6 

3-D (Zenkour 2007) 0.206 0.231 0.266 0.309 

Mantari and Guedes Soares (2014) 0.218 0.247 0.289 0.337 

Mantari and Guedes Soares (2013) 0.213 0.239 0.280 0.329 

Mantari and Guedes Soares (2012d) 0.201 0.230 0.271 0.319 

TPT (Zenkour 2007) 0.237 0.268 0.314 0.370 

HPT (Zenkour 2007) 0.282 0.322 0.380 0.448 

Present 0.219 0.247 0.286 0.333 

1 

3-D (Zenkour 2007) 0.217 0.247 0.290 0.340 

Mantari and Guedes Soares (2014) 0.225 0.256 0.302 0.359 

Mantari and Guedes Soares (2013) 0.224 0.255 0.301 0.356 

Mantari and Guedes Soares (2012d) 0.216 0.248 0.293 0.345 

TPT (Zenkour 2007) 0.235 0.268 0.317 0.374 

HPT (Zenkour 2007) 0.241 0.276 0.326 0.385 

Present 0.224 0.255 0.300 0.352 
 

Table 3 Non-dimensional center deflection 𝑤 (a/2, b/2, 0) for various EGPs (a/h = 10) 

b/a Theory p = 0.1 p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 

6 

Ref(a) 1.034 0.845 0.655 0.507 0.391 0.302 0.232 

Ref(b) 1.035 0.846 0.656 0.507 0.391 0.302 0.232 

Ref(c) 1.039 0.852 0.667 0.524 0.412 0.323 0.254 

TPT(b) 1.032 0.844 0.654 0.505 0.39 0.301 0.231 

Present 1.034 0.845 0.655 0.507 0.391 0.302 0.232 

1 

Ref(a) 0.279 0.228 0.177 0.137 0.106 0.081 0.063 

Ref(b) 0.280 0.229 0.177 0.137 0.106 0.081 0.063 

Ref(c) 0.282 0.231 0.181 0.142 0.111 0.087 0.068 

TPT(b) 0.279 0.228 0.177 0.137 0.105 0.081 0.062 

Present 0.279 0.228 0.177 0.137 0.106 0.081 0.063 
 

(a) Mantari and Guedes Soares (2014);  (b) Mantari and Guedes Soares (2013); 
(c) Mantari and Guedes Soares (2012d) 
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Fig. 6 Variation of non-dimensional shear stress, 𝜏 𝑥𝑧  (0, 

b/2, z), through the thickness of a thick EGP (a/h = 

4 and p = 0.5) 
 

 

within the plate thickness. Again, the computed stress 𝜎 𝑥  is 

influenced by the aspect ratio (b/a). 

 

 

 

 

Finally, Fig. 6 plots the non-dimensional shear stresses 

(𝜏 𝑥𝑧 ) variation through the plate thickness. 

It can be observed that by increasing the aspect ratio 

(b/a), the non-dimensional shear stresses are increased. 

 

3.2 Powerly graded plates 
 

A square plate fabricated by metal and ceramic powerly 

graded within its thickness is presented in Fig. 1(b). In fact, 

the Young modulus varying in thickness direction of the FG 

plate according to rule of mixtures is shown in Fig. 3. 

 

GPa, 70bE    GPa, 380tE    3.0 tb   (26) 

 

The following non-dimensional quantities are employed 
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Table 4 Non-dimensional normal stresses 𝜎 𝑦  (a/2, b/2, h/2) for various EGPs (a/h = 10) 

b/a Theory p = 0.1 p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 

6 

Ref(a) 0.607 0.693 0.817 0.960 1.127 1.322 1.549 

Ref(b) 0.601 0.686 0.808 0.951 1.118 1.312 1.539 

Ref(c) 0.603 0.688 0.811 0.954 1.120 1.315 1.542 

TPT(b) 0.627 0.717 0.845 0.993 1.165 1.364 1.593 

Present 0.607 0.693 0.816 0.960 1.127 1.322 1.549 

1 

Ref(a) 0.210 0.239 0.281 0.329 0.387 0.455 0.534 

Ref(b) 0.206 0.234 0.275 0.324 0.382 0.451 0.532 

Ref(c) 0.206 0.235 0.277 0.326 0.385 0.450 0.528 

TPT(b) 0.220 0.250 0.294 0.346 0.407 0.477 0.560 

Present 0.210 0.238 0.280 0.329 0.386 0.454 0.534 
 

(a) Mantari and Guedes Soares (2014);  (b) Mantari and Guedes Soares (2013); 
(c) Mantari and Guedes Soares (2012d) 

Table 5 Non-dimensional shear stresses 𝜏 𝑥𝑧  (0, b/2, 0) for various EGPs (a/h = 10) 

b/a Theory p = 0.1 p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 

6 

Ref(a) 0.607 0.693 0.817 0.960 1.127 1.322 1.549 

Ref(b) 0.601 0.686 0.808 0.951 1.118 1.312 1.539 

Ref(c) 0.603 0.688 0.811 0.954 1.120 1.315 1.542 

TPT(b) 0.627 0.717 0.845 0.993 1.165 1.364 1.593 

Present 0.607 0.693 0.816 0.960 1.127 1.322 1.549 

1 

Ref(a) 0.210 0.239 0.281 0.329 0.387 0.455 0.534 

Ref(b) 0.206 0.234 0.275 0.324 0.382 0.451 0.532 

Ref(c) 0.206 0.235 0.277 0.326 0.385 0.450 0.528 

TPT(b) 0.220 0.250 0.294 0.346 0.407 0.477 0.560 

Present 0.210 0.238 0.280 0.329 0.386 0.454 0.534 
 

(a) Mantari and Guedes Soares (2014);  (b) Mantari and Guedes Soares (2013); 
(c) Mantari and Guedes Soares (2012d) 
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Table 6 shows results of non-dimensional deflection and 

normal stress results at the specified position (see Eq. (27)) 

 

 

 

 

for simply supported homogenous square plate under to bi-

sinusoidal distributed load, p = {1, 4, 10} and a/h = 10. 

Good results are achieved by the proposed model compared 

with the ones given by Carrera (2008), Mantari and Guedes 

Soares (2014), Neves et al. (2011) and both FSDT and CPT 

(Carrera et al. 2011). 

Table 7 gives results of non-dimensional displacements 

(𝑢  and 𝑤 ) and normal, in plane shear, and transverse shear 

Table 6 Non-dimensional deflection and normal stresses of square PGPs 

p Theory 
𝑤  (a/2, b/2, 0) 𝜎 𝑥  (a/2, b/2, h/3) 

a/h = 4 a/h = 10 a/h = 100 a/h = 4 a/h = 10 a/h = 100 

1 

Carrera et al. (2008) 0.717 0.588 0.563 0.622 1.506 14.969 

Mantari and Guedes Soares (2014) 0.693 0.568 0.546 0.588 1.459 14.496 

Neves et al. (2011) 0.700 0.585 0.562 0.593 1.495 14.969 

FSDT (Carrera et al., 2011) 0.729 0.589 0.563 0.806 2.015 20.150 

CPT (Carrera et al., 2011) 0.562 0.562 0.562 0.806 2.015 20.150 

Present 0.693 0.569 0.546 0.576 1.457 14.482 

4 

Carrera et al. (2008) 1.159 0.882 0.829 0.488 1.197 11.923 

Mantari and Guedes Soares (2014) 1.092 0.841 0.793 0.434 1.116 11.326 

Neves et al. (2011) 1.118 0.875 0.829 0.440 1.178 11.932 

FSDT (Carrera et al. 2011) 1.113 0.874 0.829 0.642 1.605 16.049 

CPT (Carrera et al. 2011) 0.828 0.828 0.828 0.642 1.605 16.049 

Present 1.092 0.841 0.793 0.417 1.115 11.310 

10 

Carrera et al. (2008) 1.375 1.007 0.936 0.370 0.897 8.908 

Mantari and Guedes Soares (2014) 1.305 0.979 0.914 0.323 0.836 8.527 

Neves et al. (2011) 1.349 0.875 0.829 0.323 1.178 11.932 

FSDT (Carrera et al. 2011) 1.318 0.997 0.936 0.480 1.199 11.990 

CPT (Carrera et al. 2011) 0.935 0.935 0.935 0.480 1.199 11.990 

Present 1.322 0.978 0.914 0.306 0.836 8.518 
 

Table 7 Non-dimensional displacements and stresses of square PGPs 

p Theory 𝑢  (‒h/4) 𝑢  (‒h/6) 𝑤  (0) 𝜎 𝑥  (h/2) 𝜎 𝑥  (h/3) 𝜏 𝑦𝑧  (h/6) 𝜏 𝑥𝑧  (0) 𝜏 𝑥𝑦  (‒h/3) 

1 

Ref(a) 0.584 0.444 0.568 3.13 1.459 0.299 0.275 0.562 

Ref(b) 0.663 0.509 0.589 3.087 1.489 0.262 0.246 0.611 

Present 0.585 0.445 0.569 3.124 1.457 0.291 0.266 0.563 

2 

Ref(a) 0.808 0.629 0.722 3.635 1.344 0.277 0.222 0.494 

Ref(b) 0.928 0.731 0.757 3.609 1.395 0.276 0.227 0.544 

Present 0.809 0.630 0.722 3.630 1.342 0.269 0.214 0.495 

3 

Ref(a) 0.907 0.71 0.798 3.876 1.214 0.244 0.185 0.503 

Ref(b) 1.045 0.827 0.838 3.874 1.275 0.272 0.211 0.553 

Present 0.908 0.711 0.797 3.870 1.213 0.236 0.178 0.503 

5 

Ref(a) 0.971 0.756 0.872 4.213 1.043 0.195 0.158 0.529 

Ref(b) 1.116 0.879 0.912 4.249 1.103 0.243 0.202 0.576 

Present 0.972 0.757 0.871 4.209 1.042 0.189 0.152 0.530 

10 

Ref(a) 1.001 0.762 0.979 5.031 0.836 0.162 0.171 0.554 

Ref(b) 1.137 0.876 1.009 5.089 0.878 0.204 0.22 0.589 

Present 1.002 0.762 0.978 5.028 0.836 0.157 0.164 0.554 
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stresses results at the specified position (see Eq. (27)) for 

simply supported homogenous square plate under to bi-

sinusoidal distributed load, p = {1, 2, 3, 5, 10} and a/h = 10. 

Good results are achieved by the proposed model compared 

with the ones given by Mantari and Guedes Soares (2014) 

and Zenkour (2006). It should be indicated that the theory 

presented by Zenkour (2006) employs 5 unknowns without 

considering the thickness stretching influence. 

The through thickness variations of displacements and 

stresses are also illustrated in Fig. 7 for square plates with 

a/h = 10. 

 

 

4. Conclusions 
 

A novel quasi-3D HSDT with only 4 variables and 

stretching influences is presented in this work. The 

governing equations are obtained from the principle of 

virtual displacements. Analytical solutions are determined 

for simply supported rectangular plates. By considering 

further simplifying suppositions to the quasi-3D theory of 

Zenkour (2007), the number of variables of the novel quasi-

3D is diminished by one, and hence, makes the novel theory 

simple and efficient to utilize. Numerical results 

demonstrate that these suppositions have a minimal 

influence on the accuracy of the results for the examined 

problems. Therefore, it can be deduced that the novel quasi-

3D theory is not only accurate but also simple in predicting 

the bending response of FG plates. 
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