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1. Introduction 

 

Fiber reinforced composite structures have been used 

many engineering applications, such as aircrafts, space 

vehicles, automotive industries, defence industries and civil 

engineering applications because these structures have 

higher strength-weight ratios, more lightweight and ductile 

properties than classical materials. With the great advances 

in technology, the using of the fiber reinforced composite 

structures is growing in applications. 

It is known that large deflection problems are 

geometrically nonlinear problems. In the literature, much 

more attention has been given to the linear analysis of 

composite beam structures. However, nonlinear studies of 

composite beams are has not been investigated broadly. In 

the open literature, studies of the nonlinear behavior of 

composite beams are as follows; Ghazavi and Gordaninejad 

(1989) studied geometrically nonlinear static of laminated 

bimodular composite beams by using mixed finite element 

model. Singh et al. (1992) investigated nonlinear static 

responses of laminated composite beam based on higher 

shear deformation theory and von Karman’s nonlinear type. 

Pai and Nayfeh (1992) presented three-dimensional 

nonlinear dynamics of anisotropic composite beams with 

Von-Karman nonlinear type. Kim and Dugundji (1993) 

investigated large amplitude non-rotating free vibration of 

composite helicopter blades under large static deflection. Di 

Sciuva and Icardi (1995) investigated large deflection of 

anisotropic laminated composite beams with Timoshenko 

beam theory and von Karman nonlinear strain-displacement 

relations by using Euler method. Amada and Nagase 

analyzed large deflections of the functionally graded 

bamboo composites. Xie and Adams (1996) presented 
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nonlinear finite element solution of the fiber-reinforced 

composite materials. Omidvar and Ghorbanpoor (1996) 

studied fiber-reinforced laminated composite beams by 

using finite element method with updated Langragian 

approach. Donthireddy and Chandrashekhara (1997) 

investigated thermoelastic nonlinear static and dynamic 

analysis of laminated beams by using finite element 

method. Fraternali and Bilotti (1997) analyzed nonlinear 

stress of laminated composite curved beams. Kolli and 

Chandrashekhara (1997) investigated nonlinear static and 

dynamic analysis of stiffened laminated composite plates by 

using Von-Karman nonlinear strain-displacement relations. 

Ganapathi et al. (1998) studied nonlinear vibration analysis 

of laminated composite curved beams. Patel (1999) 

examined nonlinear post-buckling and vibration of 

laminated composite orthotropic beams/columns resting on 

elastic foundation with Von-Karman’s strain-displacement 

relations. Oliveira and Creus (2003) investigated flexure 

and buckling behaviors of thin-walled composite beams 

with nonlinear viscoelastic model. Valido and Cardoso 

(2003) developed a finite element model for optimal desing 

of laminated composite thin-walled beams with 

geometrically nonlinear effects. Machado (2007) studied 

nonlinear buckling and vibration of thin-walled composite 

beams. Vo and Lee (2009) presented geometrically 

nonlinear of thin-walled composite box beams with Von-

Karman nonlinear nonlinearity. Cardoso et al. (2009) 

investigated geometrically nonlinear behavior of the 

laminated composite thin-walled beam structures with finite 

element solution. Emam and Nayfeh (2009) investigated 

post-buckling of the laminated composite beams with 

different boundary conditions. Malekzadeh and Vosoughi 

(2009) studied large amplitude free vibration of laminated 

composite beams resting on elastic foundation by using 

differential quadrature method. Salehi and Falahatgar 

(2010) studied geometrically non-linear of fiber-reinforced 

sector composite plates. Akgöz and Civalek (2011) and 
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Civalek (2013) examined nonlinear vibration laminated 

plates resting on nonlinear-elastic foundation. Youzera et al. 

(2012) presented nonlinear dynamics of laminated 

composite beams with damping effect. Mareishi et al. 

(2014) investigated large deflection, nonlinear vibration and 

buckling of fiber reinforced composite beams with surface 

bonded piezoelectric material. Patel (2014) examined 

nonlinear static of laminated composite plates with the 

Green-Lagrange nonlinearity. Akbaş (2013a, 2014, 2015a, 

b, c) investigated geometrically nonlinear of cracked and 

functionally graded beams. Stoykov and Margenov (2014) 

studied Nonlinear vibrations of 3D laminated composite 

Timoshenko beams. Cunedioğlu and Beylergil (2014) 

examined vibration of laminated composite beams under 

thermal loading. Li and Qiao (2015), Shen et al. (2016, 

2017), Li and Yang (2016) investigated nonlinear 

postbuckling analysis of composite laminated beams. Akbaş 

(2018a, b) investigated nonlinear displacements and post-

buckling responses laminated composite beams. Mahi and 

Tounsi (2015) studied static and vibration of functionally 

graded, sandwich and laminated composite plates by using 

hyperbolic shear deformation theory. Draiche et al. (2016) 

investigated flexure analysis of laminated composite plate 

by using a refined theory with stretching effect. Chikh et al. 

(2017) investigated buckling of laminated plates under 

thermal loading with higher shear deformation theory. Kaci 

et al. (2018) examined post-buckling responses of 

composite beams by using shear deformable theory. 

Kurtaran (2015), Mororó et al. (2015), Pagani and Carrera 

(2017) analyzed large deflections of laminated composite 

beams. Benselama et al. (2015), Liu and Shu (2015), Topal 

(2017) investigated buckling behavior of composite 

laminate beams. Latifi et al. (2016), Ebrahimi and Hosseini 

(2017) presented nonlinear dynamics of laminated 

composite structures. Also, there are many nonlinear, 

vibration, buckling studies of other type composite 

structures such as functionally graded materials, sandwich, 

nano composites etc. in the literature (Tounsi et al. 2013, 

Akbaş and Kocatürk 2012, Zidci et al. 2014, Hamidi et al. 

2015, Meziane et al. 2014, Abdelaziz et al. 2017, Akbaş 

2013a, 2015d, e, 2016a, b, c, 2017a, b, c, d, e, f, g, 2018c, 

Beldjelili et al. 2016, Kocatürk and Akbaş 2010, 2011, 

2012, 2013, El-Haina et al. 2017, Menasria et al. 2017, 

Attia et al. 2018, Belabed et al. 2018, Bouderba et al. 2013, 

Bourada et al. 2015, Hebali et al. 2014, Bennoun et al. 

2016, Bousahla et al. 2014, Belabed et al. 2014), Abualnour 

et al. 2018, Bouafia et al. 2017, Benchohra et al. 2018, 

Bellifa et al. 2017, Zine et al. 2018, Boukhari et al. 2016, 

Yahia et al. 2015, Houari et al. 2016, Bellifa et al. 2016, 

Yazid et al. 2018, Bounouara et al. 2016, Youcef et al. 

2018, Oucif et al. 2017, Alam and Al Riyami 2018, Argyridi 

and Sapountzakis (2016), Ge et al. 2018, Manthena et al. 

2016). 

In the most of the large deflection and nonlinear studies 

of composite beams, the Von-Karman strain displacement 

approximation is used. In the Von-Karman strain, full 

geometric non-linearity cannot be considered because of 

neglect of some components of strain, satisfactory results 

can be obtained only for large displacements but moderate 

rotations. In the open literature, nonlinear studies of 

composite beams with considering full geometric 

nonlinearity has not been investigated broadly. 

In the present study, the large deflection static analysis 

of a fiber reinforced beam is investigated by using total 

Lagrangian finite element model of two dimensional (2-D) 

continuum in which full geometric nonlinearity can be 

considered as distinct from the studies by using Von-

Karman nonlinearity. The main purpose of this paper is to 

fill this gap for fiber reinforced composite beams. In the 

numerical results, the effects of the volume fraction and 

orientation angles of the fibre on the large deflections of the 

fiber reinforced composite beam are investigated. Also, the 

difference between the geometrically linear and nonlinear 

analysis of fiber reinforced composite beam is investigated 

in detail.The distinctive feature of this study is large 

deflection analysis of fiber reinforced composite beams 

with full geometric non-linearity. However, the material 

nonlinearity and elasto-plastic behavior are not considered. 

It would be interesting to demonstrate the ability of the 

procedure through a wider campaign of investigations 

concerning elasto-plastic or material nonlinear analysis of 

fiber reinforced composite beams with geometrically 

nonlinearity. 

 

 

2. Theory and formulation 
 

A fiber reinforced composite cantilever beam of length 

L, width b, and height h, subjected to a transversal point 

load (F) at the right end of the beam with material or 

Lagrangian coordinate system (X, Y, Z) and with spatial or 

Euler coordinate system (x, y, z). 

It is known that the large deflection is a geometrically 

nonlinear problem. In the nonlinear kinematic model of the 

beam for the large deflection problem, total Lagrangian 

approximation is used within the 2-D solid continuum 

model. In the solution of the nonlinear problem, finite 

element method is used for total Lagrangian kinematic 

model for an eight-node quadratic element. 

In the solution of the nonlinear finite element of total 

Lagrangian formulations, small -step incremental 

approaches from known solutions with Newton-Raphson 

iteration method are used. In the Newton-Raphson solution 

for the problem, the applied load is divided by a suitable 

number of increments according to its value. After 

completing an iteration process, the previous accumulated 
 

 

 

Fig. 1 A fiber reinforced composite cantilever beam 

subjected to a point load (F) at the right end of the 

beam 
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load is increased by a load increment. For n+1th load 

increment and ith iteration is obtained in the following form 

 

𝑑𝒖𝑛
𝑖 = (𝑲𝑇

𝑖 )𝑇𝑹𝑛+1
𝑖  (1) 

 

where 𝑲𝑇
𝑖  is the tangent stiffness matrix corresponding to 

a tangent direction at the ith iteration, 𝑑𝒖𝑛
𝑖  is the solution 

increment vector at the ith iteration and n+1th load 

increment, 𝑹𝑛+1
𝑖  is the residual vector at the ith iteration 

and n+1th load increment. This iteration procedure is 

continued until the difference between two successive 

solution vectors is less than a selected tolerance criterion in 

Euclidean norm given by 

 

 
  𝑑𝒖𝑛

𝑖+1 − 𝑑𝒖𝑛
𝑖  𝑇 𝑑𝒖𝑛

𝑖+1 − 𝑑𝒖𝑛
𝑖   2

  𝑑𝒖𝑛
𝑖+1 𝑇 𝑑𝒖𝑛

𝑖+1  2
≤ 𝜉𝑡𝑜𝑙  (2) 

 

A series of successive approximations gives 

 

𝒖𝑛+1
𝑖+1  𝒖𝑛+1

𝑖 + 𝑑𝒖𝑛+1
𝑖 = 𝒖𝑛 + ∆𝒖𝑛

𝑖  (3) 

 

where 

 

∆𝒖𝑛
𝑖 =  𝑑𝒖𝑛

𝑘

𝑖

𝑘=1

 (4) 

 

The tangent stiffness matrix 𝑲𝑇
𝑖  and the residual vector 

𝑹𝑛+1
𝑖  which are to be used in Eq. (1) at the ith iteration for 

the total Lagrangian finite element model of two 

dimensional continua for an eight-node quadratic element 

are given below 

 

 𝐾
11𝐿 + 𝐾11𝑁𝐿 𝐾12𝐿

𝐾21𝐿 𝐾22𝐿 + 𝐾22𝑁𝐿 
𝑖

 
𝑢 
𝑣 
 
𝑖

=  
𝐹0

2 1 − 𝐹0
1 1

𝐹0
2 2 − 𝐹0

1 2 

𝑖

 (5) 

 

where 

 

𝐾𝑖𝑗
11𝐿 = 𝑏   𝐶110  1 +

𝜕𝑢

𝜕𝑋
 

2 𝜕𝜓𝑖

𝜕𝑋

𝜕𝜓𝑗

𝜕𝑋𝐴

+ 𝐶220  
𝜕𝑢

𝜕𝑌
 

2 𝜕𝜓𝑖

𝜕𝑌

𝜕𝜓𝑗

𝜕𝑌

+ 𝐶120  1 +
𝜕𝑢

𝜕𝑋
  

𝜕𝜓𝑖

𝜕𝑋

𝜕𝜓𝑗

𝜕𝑋

+
𝜕𝜓𝑖

𝜕𝑌

𝜕𝜓𝑗

𝜕𝑋
 

+ 𝐶660   1 +
𝜕𝑢

𝜕𝑋
 
𝜕𝜓𝑖

𝜕𝑌
+
𝜕𝑢

𝜕𝑌

𝜕𝜓𝑗

𝜕𝑋
 

×   1 +
𝜕𝑢

𝜕𝑋
 
𝜕𝜓𝑗

𝜕𝑌
+
𝜕𝑢

𝜕𝑌

𝜕𝜓𝑗

𝜕𝑋
  𝑑𝑋𝑑𝑌 

(6a) 

 

𝐾𝑖𝑗
12𝐿 = 𝑏   𝐶110  1 +

𝜕𝑢

𝜕𝑋
 
𝜕𝑣

𝜕𝑋

𝜕𝜓𝑖

𝜕𝑋

𝜕𝜓𝑗

𝜕𝑋𝐴

+ 𝐶220  1 +
𝜕𝑣

𝜕𝑌
 
𝜕𝑢

𝜕𝑌

𝜕𝜓𝑖

𝜕𝑌

𝜕𝜓𝑗

𝜕𝑌

+ 𝐶120   1 +
𝜕𝑢

𝜕𝑋
  1 +

𝜕𝑣

𝜕𝑌
 
𝜕𝜓𝑖

𝜕𝑋

𝜕𝜓𝑗

𝜕𝑌
   

(6b) 

 +
𝜕𝑢

𝜕𝑌

𝜕𝑣

𝜕𝑋
 
𝜕𝜓𝑖

𝜕𝑌

𝜕𝜓𝑗

𝜕𝑋
  

+ 𝐶660   1 +
𝜕𝑢

𝜕𝑋
 
𝜕𝜓𝑖

𝜕𝑌
+
𝜕𝑢

𝜕𝑌

𝜕𝜓𝑗

𝜕𝑋
  

 ×   1 +
𝜕𝑣

𝜕𝑌
 
𝜕𝜓𝑗

𝜕𝑌
+
𝜕𝑢

𝜕𝑌

𝜕𝜓𝑗

𝜕𝑋
  𝑑𝑋𝑑𝑌 

= 𝐾𝑖𝑗
21𝐿 

(6b) 

 

𝐾𝑖𝑗
22𝐿 = 𝑏   𝐶110  

𝜕𝑣

𝜕𝑋
 

2 𝜕𝜓𝑖

𝜕𝑋

𝜕𝜓𝑗

𝜕𝑋𝐴

+ 𝐶220  1 +
𝜕𝑣

𝜕𝑌
 

2 𝜕𝜓𝑖

𝜕𝑌

𝜕𝜓𝑗

𝜕𝑌

+ 𝐶120  1 +
𝜕𝑣

𝜕𝑌
 
𝜕𝑣

𝜕𝑋
 
𝜕𝜓𝑖

𝜕𝑋

𝜕𝜓𝑗

𝜕𝑋

+
𝜕𝜓𝑖

𝜕𝑌

𝜕𝜓𝑗

𝜕𝑋
 

+ 𝐶660   1 +
𝜕𝑣

𝜕𝑌
 
𝜕𝜓𝑖

𝜕𝑋
+
𝜕𝑣

𝜕𝑋

𝜕𝜓𝑗

𝜕𝑌
 

×   1 +
𝜕𝑣

𝜕𝑌
 
𝜕𝜓𝑗

𝜕𝑋
+
𝜕𝑣

𝜕𝑋

𝜕𝜓𝑗

𝜕𝑌
  𝑑𝑋𝑑𝑌 

(6c) 

 

𝐾𝑖𝑗
11𝑁𝐿 = 𝐾𝑖𝑗

22𝑁𝐿 = 𝑏   𝑆110
1

𝜕𝜓𝑖

𝜕𝑋

𝜕𝜓𝑗

𝜕𝑋𝐴

+ 𝑆120
1  

𝜕𝜓𝑖

𝜕𝑌

𝜕𝜓𝑗

𝜕𝑋
+
𝜕𝜓𝑖

𝜕𝑋

𝜕𝜓𝑗

𝜕𝑌
 

+ 𝑆220
1

𝜕𝜓𝑖

𝜕𝑌

𝜕𝜓𝑗

𝜕𝑌

2

 𝑑𝑋𝑑𝑌 

(6d) 

 

𝐹0
2

𝑖
1 = 𝑏  𝑓𝑥  𝜓𝑖0

2 𝑑𝑋𝑑𝑌 +  𝑡𝑥  𝜓𝑖0
2 𝑑𝑠

𝛤𝐴

 (6e) 

 

𝐹0
2

𝑖
2 = 𝑏  𝑓𝑦  𝜓𝑖0

2 𝑑𝑋𝑑𝑌
𝐴

  𝑡𝑦  𝜓𝑖0
2 𝑑𝑠

𝛤

 (6f) 

 

where 𝑓𝑥 ,0
2  𝑓𝑦  0

2  are the body forces, 𝑡𝑥 ,0
2  𝑡𝑦  0

2 are the 

surface forces in the x and y directions. u and v are 

displacements in the x and y directions, ψ indicates the 

shape functions. 
 

𝐹0
1

𝑖
1 = 𝑏   𝑆11  1 +

𝜕𝑢

𝜕𝑋
 0

1
𝜕𝜓𝑖

𝜕𝑋
+ 𝑆22

𝜕𝑢

𝜕𝑌0
1

𝜕𝜓𝑖

𝜕𝑌𝐴

+ 𝑆120
1   1 +

𝜕𝑢

𝜕𝑋
 
𝜕𝜓𝑖

𝜕𝑌

+
𝜕𝑢

𝜕𝑌

𝜕𝜓𝑖

𝜕𝑌
  𝑑𝑋𝑑𝑌 

(7a) 

 

𝐹0
1

𝑖
2 = 𝑏   𝑆11

𝜕𝑣

𝜕𝑋0
1

𝜕𝜓𝑖

𝜕𝑋
+ 𝑆22  1 +

𝜕𝑣

𝜕𝑌
 0

1
𝜕𝜓𝑖

𝜕𝑌𝐴

+ 𝑆120
1   1 +

𝜕𝑣

𝜕𝑌
 
𝜕𝜓𝑖

𝜕𝑋

+
𝜕𝑣

𝜕𝑋

𝜕𝜓𝑖

𝜕𝑌
  𝑑𝑋𝑑𝑌 

(7b) 

 

The constitutive relation between the second Piola-

Kirchhoff stress tensor and the Green-Lagrange strain 

tensor can be expressed as follows 
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𝑆0
1 =  

𝑆110
1

𝑆220
1

𝑆120
1

 =  

 𝑄11  𝑄12  𝑄16

 𝑄12  𝑄22  𝑄26

 𝑄16  𝑄26  𝑄66

  

𝐸110
1

𝐸220
1

2 𝐸120
1

  (8) 

 

where 𝑆110
1 , 𝑆220

1 , 𝑆120
1  are the components of the second 

Piola-Kirchhoff stress tensor components in the initial 

configuration of the body, 𝐸𝑖𝑗0
1  are the components of the 

Green-Lagrange strain tensor, 𝑄𝑖𝑗  are the transformed 

components of the reduced constitutive tensor in the initial 

configuration of the body. The transformed components of 

the reduced constitutive tensor for orthotropic material are 

as follows 

 

𝑄11 = 𝑄11𝑚
4 + 2 𝑄12 + 2𝑄66 𝑚

2𝑛2 + 𝑄22𝑛
4 

 𝑄12 =  𝑄11 + 𝑄22 − 4𝑄66 sin2cos2 + 𝑄12(𝑚4 + 𝑛4) 

𝑄16 =  𝑄11 − 𝑄12 − 2𝑄66 𝑛𝑚
3 

+(𝑄12 − 𝑄22 + 2𝑄66)𝑛3𝑚 

𝑄22 = 𝑄11𝑛
4 + 2 𝑄12 + 2𝑄66 𝑛

2𝑚2 + 𝑄22𝑚
4 

𝑄26 =  𝑄11 − 𝑄12 − 2𝑄66 𝑛
3𝑚 

+(𝑄12 − 𝑄22 + 2𝑄66)𝑛𝑚3 

𝑄66 =  𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66 𝑛
2𝑚2  

+𝑄66 𝑛
4 + 𝑚4  

(9) 

 

where m = cos𝜃  and n = sin𝜃 , 𝜃  indicates the fiber 

orientation angle. 𝑄𝑖𝑗  are the components of the reduced 

constitutive tensor for orthotropic material and their 

expressions are as follows 

 

𝑄11 =
𝐸1

1 − 𝜈12𝜈21
,        𝑄22 =

𝐸2

1 − 𝜈12𝜈21
  

𝑄12 =
𝜈12𝐸2

1 − 𝜈12𝜈21
=

𝜈21𝐸1

1 − 𝜈12𝜈21
 

𝑄21 =
𝜈12𝐸2

1 − 𝜈12𝜈21
=

𝜈21𝐸1

1 − 𝜈12𝜈21
 

𝑄66 = 𝐺12 

(10) 

 

where E1 is the Young’s modulus in the X direction, E2 is 

the Young’s modulus in the Y direction, 𝜈12 and 𝜈21 are 

Poisson’s ratios and 𝐺12 is the shear modulus in XY plane. 

The gross mechanical properties of the composite materials 

are calculated by using the following expression (Vinson 

and Sierakowski 2002) 

 

𝐸1 = 𝐸𝑓   𝑉𝑓 + 𝐸𝑚   1 − 𝑉𝑓 , 

𝐸2 = 𝐸𝑚    
𝐸𝑓 + 𝐸𝑚 +  𝐸𝑓 − 𝐸𝑚 𝑉𝑓

𝐸𝑓 + 𝐸𝑚 −  𝐸𝑓 − 𝐸𝑚 𝑉𝑓
  

𝜈12 = 𝜈𝑓   𝑉𝑓 + 𝜈𝑚   1 − 𝑉𝑓 , 

𝐺12 = 𝐺𝑚    
𝐺𝑓 + 𝐺𝑚 +  𝐺𝑓 − 𝐺𝑚 𝑉𝑓

𝐺𝑓 + 𝐺𝑚 −  𝐺𝑓 − 𝐺𝑚 𝑉𝑓
  

(11) 

 

 

Fig. 2 Eight-node plane element 
 

 

where f indicates the fibre and m indicates the matrix. Vf is 

the volume fraction of fiber. E, G and ν are the Young’s 

modulus, the shear modulus and Poisson’s ratio, 

respectively. The Green-Lagrange strain tensor is expressed 

in terms of displacements in the case of two-dimensional 

solid continuum as follows 
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In the finite element model, eight-node plane element is 

used as shown in Fig. 2. 

These total displacement fields and incremental 

displacement fields are interpolated as follows 
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where 

 

 𝛹 

=  

𝜓1 0  𝜓2 0  𝜓3  0  𝜓4  0  𝜓5 0  𝜓6  0  𝜓7  0  𝜓8  0

0  𝜓1 0  𝜓2 0  0  𝜓4  0  𝜓5 0  𝜓6  0  𝜓7  0  𝜓8  0
  

(15) 

 

 𝛥 𝑇 =  
𝑢1  𝑣1 𝑢2  𝑣2  𝑢3 𝑣3  𝑢4 𝑣4          
        𝑢5  𝑣5  𝑢6 𝑣6  𝑢7 𝑣7  𝑢8 𝑣8

  (16) 

 

 𝑑𝑢 𝑇

=  𝑢 1 𝑣 1 𝑢 2 𝑣 2 𝑢 3 𝑣 3 𝑢 4 𝑣 4 𝑢 5 𝑣 5 𝑢 6 𝑣 6 𝑢 7 𝑣 7 𝑢 8 𝑣 8  
(17) 

 

Shape functions for an eight-node element are as 

follows 
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3. Numerical results 
 

In the numerical examples, large deflections, namely 

geometrically nonlinear deflections of the cantilever fiber 

reinforced beam are calculated and presented for different 

the volume fraction and orientation angles of the fibre. 

Also, the difference between geometrically linear and 

nonlinear results are presented and discussed. Using the 

conventional assembly procedure for the finite elements, the 

tangent stiffness matrix and the residual vector are obtained 

from the element stiffness matrices and residual vectors in 

the total Lagrangian sense for finite element model of 2-D 

solid continuum. After that, the solution process outlined in 

the preceding section is used to obtain the solution for the 

problem of concern. In obtaining the numerical results, 

graphs and solution of the nonlinear finite element model, 

MATLAB program is used. Numerical calculations of the 

integrals seen in the rigidity matrices will be performed by 

using five-point Gauss rule. 

In the numerical examples, as the composite material of 

the beam, the graphite fibre-reinforced polyamide 

composite is selected. The material properties of the  

 

 

graphite fibre-reinforced polyamide composite are as 

follows (Krawczuk et al. 1997, Kısa 2004) with matrix and 

fibre properties values; Em = 2.756 GPa, Ef = 275.6 GPa, Gm 

= 1.036 GPa, Gf = 114.8 GPa, νm = 0.33, νf = 0.2. The 

geometry properties of the beam are considered as follows: 

b = 0.3 m, h = 0.3 m and L = 5 m. 

In Fig. 3, the relationship between the fiber orientation 

angles () and the maximum vertical displacements (at the 

free end of the beam) is plotted for different values of the 

volume fraction of fiber Vf for the point load F = 200 kN. It 

is observed from Fig. 3 that with increasing the fiber 

orientation angles, the deflections of the composite beam 

increase significantly in both linear and nonlinear solutions. 

The equivalent Young’s modulus and bending rigidity 

decrease according to the Eq. (9) with increasing the fiber 

orientation angles. As a result, the strength of the beam 

decreases and the deflections increase naturally. In smaller 

values of the volume fraction of fiber (Vf), the deflections 

fast increase with increasing the fiber orientation angle in 

contrast with higher values of the volume fraction of fiber. 

Also, it is seen from figure 3 that the difference among the 

results of Vf increase considerably with increasing the fiber 

orientation angles (). It shows that the fiber orientation 

angles is very effective for mechanical behavior of fiber 

reinforced composite beams and the results of the volume 

fraction of fiber. 

In Fig. 4, the maximum vertical displacements versus 

load rising are presented for different the fiber orientation 

angles () for Vf = 0.1 in both linear and nonlinear 

solutions. As seen from figure 4, the results of the linear 

solution are bigger than the results of the nonlinear solution 

in all values of the . With increase the fiber orientation 

angle, the displacements increase significantly. Also, it is 

seen from figure 4 that the difference between the linear and 
nonlinear solution increase with increase the fiber 

orientation angle. In higher values of the fiber orientation 

angle, the nonlinear displacements converge. The results of 

the figure 4 show that the fiber orientation angle is very 

effective for the difference between the linear and nonlinear 

solution of the fiber reinforced composite beams. This 

situation can be clearly seen in Fig. 5. In Fig. 5, the effects 

of the fiber orientation angle on the linear and nonlinear 

deflected shapes of the fiber reinforced composite beam are 

shown for F = 1000 kN and Vf = 0.5. The fiber orientation 
 

 

  

(a) For linear solution (b) For nonlinear solution 

Fig. 3 The relationship between fiber orientation angles () and maximum deflections (vmax) for linear and nonlinear 

solution for different values of the volume fraction of fiber Vf 
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angle changes the deflections of the fiber reinforced 

composite beam considerably. There is very big difference 

between the linear and nonlinear results, especially in 

higher values of . Hence, the nonlinear solution must be 

considered in the higher values of load and the fiber 

orientation angle for getting more realistic results. 

Fig. 6 shows the effects of the volume fraction of fiber 

Vf on the on the linear and nonlinear deflections of the fiber 

reinforced beam for  = 40° in the load-displacement 

relation graphs. In order to more learn the effects of the 

volume fraction of fiber Vf, the deflected shapes are plotted 

for different values of Vf for  = 20° and F = 100 kN in Fig. 

7. It is observed from Fig. 6 that increasing the volume 

fraction of fiber Vf leads to decreasing the displacements. 

The difference between the linear and nonlinear solution 

 

 

 

 

decreases significantly with increase the the volume 

fraction of fiber. There is a significant difference between 

the geometrically linear case and nonlinear case in smaller 

values of the fiber orientation angle and higher values of the 

load. It shows that nonlinear theory must be considered in 

the large displacements problems for higher load values and 

smaller values of the fiber orientation angle. Otherwise, 

linear theory fails to satisfy large displacement problems. 

The effect of the volume fraction of fiber Vf can be seen 

clearly in Fig. 7. It is observed from Fig. 7 that the volume 

fractions of fiber play important role on the static response 

of the beam. With increasing the the volume fraction of 

fiber, the deflections increase considerably as the load is 

constant. 

  

(a) For  = 0° (b) For  = 30° 
 

 

(c) For  = 50° 

Fig. 4 Load- maximum deflections curves for different values of the fiber orientation angles () for linear solution 

and nonlinear solution 

  

(a) For linear solution (b) For nonlinear solution 

Fig. 5 The effect of the fiber orientation angles () on the deflected shape of the composite beam for (a) Linear solution; 

(b) Nonlinear solution 
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4. Conclusions 
 

Large deflection static analysis of a cantilever fiber 

reinforced composite beam is investigated. In the solution 

of the problem, total Lagrangian finite element is used in 

the 2-D solid continuum model within Newton-Raphson 

iteration method. In the numerical results, the effects of the 

volume fraction and orientation angles of the fibre on the 

linear and nonlinear deflections of the fiber reinforced 

composite beam are investigated and discussed. 

It is concluded from numerical results that the fibber 

orientation angles and the volume fraction of fiber play 

important role on the large deflection behaviour of the fiber 

reinforced composite beams. The fibber orientation angle is 

very effective to change the deflections and the nonlinear 

 

 

 

 

 

 

static responses. In higher load and fibber orientation angle 

values, there are significant differences of the analysis 

results for the linear and nonlinear. The volume fractions of 

fiber plays important role on the large deflection behavior 

of the fiber reinforced composite beams. With decrease 

values of the volume fractions of fiber, the displacements 

and the difference between of linear and nonlinear increase. 

In higher values of load and fibber orientation angle and in 

smaller values of the volume fractions of fiber, the 

nonlinear theory must be must be considered for large 

deflection problems of the fiber reinforced composite 

beams. 

 

  

(a) For Vf = 0.1 (b) For Vf = 0.3 
 

 

(c) For Vf = 0.6 

Fig. 6 Load- maximum deflections curves for different values of the volume fraction of fiber Vf for linear solution 

and nonlinear solution 

  

(a) For linear solution (b) For nonlinear solution 

Fig. 7 The effect of the volume fraction of fiber Vf on the deflected shape of the composite beam for (a) Linear solution; 

(b) Nonlinear solution 
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